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What is the question?

@ Let X : B? — R be a stationary isotropic random field

For example:

n AN HD ML UM @ nDone

. i _
Figure: Gaussian field with covariance function & "% x = 100/21° (left), Shot
noise field with random disks of radius R = 50 or 100 {with = = 1/2) {right).
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@ X : R? — R is a stationary isotropic random field

@ X is observed on a rectangle T trough its excursion sets at fevel v & R

Ex() = X! ([u.00)) = {t € B, X(1) = u}

we observe: | T 7 Ex{ug) | for a fixed level wy: sparse information.

T R T i

. . . N 3 2 2
Figure: Gaussian field with covariance function e~ 1¥17 . = 100/21° (left) and two
excursion sets for v = 0 {center) and 1 = 1 {right).
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What is the question?

@ X : R?— R is a stationary isotropic random field

@ X is observed on a rectangle T trough its excursion sets at level v ¢ R

Ex(u) =X Y[u,c)) = {t € R*, X(t) = u}
we observe: for a fixed level up: sparse information.

Problems
© Inference problem: is it possible to recover parameters of X7

© Testing: Is X Gaussian or not? Is X symmetric or not?

Tool: Geometry of the excursion sets T M Ex{u).
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© Lipschitz-Killing curvatures for excursion sets (LK)
© Inference using LK curvatures

© Removing assumption “the field is standard”

© Test to compare two images of excursion sets

© LK curvatures for perturbed model
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Lipschitz-Killing (LK) curvatures for excursion sets

If d =2, for a “mice” Borel set A one can define 3 LK curvatures;

@ Euler characteristic (z(connected component) - z{holes)) of A, related to
the connectivity,

@ Perimeter of A, related to the regufarity,
@ Area of A, related to the occupation density.

Applications: Cosmology, 2D x-ray images (detection of osteoporosis,
mammograms),...
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Question: How to properly define these quantities for T M Ex(u)?

Tool: Curvature measures for Positive Reach (PR) sets®

Intuitively, “A is a pasitive reach set if one can roll a ball of positive radius
along the exterior boundary of A keeping in touch with A"

lFederer H., Curvature measures, Trans. Amer. Math. Sec. 93 {1959), 418-49L;
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Testing

LK curvatures for perturbed model

Lipschitz-Killing curvatures for excursion sets

Definition of Curvature measures

Let A be a positive reach set. Define for any Borel set {f ¢ R?

JAA, JA MUY
oo(A 1) = ZCOAYUL G a2 FADYL Ly ea vy = AN,
Luler characteristic 2% ;pc.,-;”wr_m 2 Area
where

@ TC(#A, U} is the integral over U of the curvature along the positively
oriented curve 8A

@ | - |1 the 1-dim Hausdorff measure; | - | the 2-dim Lebesgue measure.

A

Remark: The measures ®,(A, ) are additive : locally finite Union of sets with Positive
Reach (UPR)

A= T Ex(u)is in the UPR class a.s. if, e.g.

X is of class C? a.s.

Ex{u) is locally given by a finite union of disks.
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Lipschitz-Killing curvatures for excursion sets

T 0% WO W) OME W L s

Student random field; Ex(u] UPR a.s.
Shat noise field, B =1 a.s. Ex(u) ¢ PR as. but Ex(u)c UPR as

X Shot noise field, B £1 a.s. Ex(u) € PR a.s. and Ex(u) & UPR a.s. (see
Biermé et Desolgneux, 2016).

Matlab functions
bwarea, buperim and bueuler
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Lipschitz-Killing curvatures for excursion sets

Let X be a stationary isotropic random field defined on £2 and let T be a
bounded rectangle in R? with non empty interior.

Quantities of interest: f T N Ex(u) is a UPR set, define, for i € {0,1,2},

Normalized LK curvatures

D (T M Ex{u), T)

CH X, )

{empirically accessible)

Assuming the limits exist,

CH{X, u) = Tlim?2 ]E[C{;T(X._ uY] ({involves parameters of the field).

Question: How can we compute C*(X, u) : Tli/_n';?2 E[C!.""'T(X, u)]?
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LK curvatures for perturbed model

Gaussian Kinematic formula

Question: How can we compute G (X, u) := Tlifn‘r‘]{2 E[C,.""'T(X._ u)]?
@ Area: Gi(X.u) = E[C;’{X,u}] = F(X(0) > u}.

o Gaussian type fields: X = F{G) where V(G/(0)) = M\h, A = 0,

Gaussian Kinematic formula

P(G(0) € Tube(F, p)) = Ci (X, ) —(;%Cf()(.u) + 75 G (X, u)+ 0(p),
where

Tube(F.p) == {x € R" such that dist(x, F ~*([u, 20))) < p}.
as p—+ 0 .
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© Inference using LK curvatures
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Two bias problems

1 Numerical challenge of the control of the bias in the limit of an
infinitely fine resolution, i.e. pixelization error.
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Two bias problems

1 Numerical challenge of the control of the bias in the limit of an
infinitely fine resolution, i.e. pixelization error.

2 Statistical challenge of the control of the bias due to the intersection
of the excursion set with an observation window.
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Numerical challenge of pixelization error in square tiling

Diffculties of estimating the perimeter of the smooth level set from a
pixelated image.

Let

Figure: Left and center panels: Image of size (20 x 20) realization of a Uniform
white noise model. Right panel: Obtained binary image for v = 0.5.
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K Por excursion sets
Inference

Standard assumption

Testing
LK curvatures for perturbed model

Pixelization error in a square tiling

We consider, for each edge w, the maximal and minimal values on the
two sides of w. Then, the perimeter is given by

Pu(u):= > (F(w) -~ f¥(w)), where
we set of edges
fi(w) = max(Zy ;. 1(v). Zyx{w)) and F(w) = min(Z; . 1(u). Zr(0))

for w the common edge between cells (see Biermé et Desolgneux, 2021).

Figure: Computation of the perimeter of a binary image with m = 3. Here P3 = 5.
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) ui FEl ' as ab a in ' u

. . . ) . 2R
Figure: Centered and unit variance Normal field with r(x) = ¢=*" I, for

7 =100/2" for d = 1 to d = 10. We display the boxplats on M = 10000
samples of the ratio between estimated perimeter and theoretical one for 50
different values of the threshold v. Theoretical known dimensional constants

a 1, 2andc; 2 are displayed in horizontal dashed blue lines.
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Kinematic formula and inference

Observations: we observe T 1 Ex(u) for T a rectangle in RZ.

Naive approach: C;“_&:_LJ) = C;'JT{X, y) = lTE L. T)

Tl
ST NEx(u),T)= & (Ex(u), T) + ST Ex(u),dT).
—_— "
contains all information on ¢; Observation bias

)
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Kinematic formula and inference

Observations: we observe T 1 Ex(u) for T a rectangle in RZ.

Naive approach: C;“_&:_LJ) = C;'JT{X, y) = lTE L. T)

Tl
ST NEx(u),T)= & (Ex(u), T) + ST Ex(u),dT).
—_— "
contains all information on ¢; Observation bias

Proposition (Biermé, DB, Duval, Estrade, 2019)

If X is a centered, unit variance, stationary, isotropic such that either

@ X is a “smooth Gaussian type fiefd”

@ or X is a “shot noise field with bounded disks”,

then
_, . 1, L 1
E[C]T(X, u)] = G5 (X, u) + =G (X, u) jﬂ'l + GX )
E[C{ T (X, )] = CF(X, u) | %C{(X,u) T;'l.

F‘[Cér()ﬁ U}] = C2*(X.~ ”)'

).
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K Por excursion sets
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Kinematic formula and inference

Proposition {Biermé, DB, Duval Estrade, 2019)

The following quantities are unbiased estimators of (g1 ,(X. u),

. aT 1 00Tz 1\
Gorlx,0) = 00 - BT el = (o (BT - e x)
Cor(X, 0y = C{T(X,u) - 'Eﬁf 7 (X, u),

G r(X.u)=Cl'(X.u) (no edge correction).

o As T / R? CLT for C/7(X,u) known in particular cases (Gaussian,
chi-square for o = 1), asymptotic variances not {always) explicit (see, e.g.,
DB, Estrade, Leén 2017 ). (Case i — 2 AREA - see below.)

o Difficult to get “general CLT results”

@ Optimal choice of u ?
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Inference: Gaussian field

Let A == 0 be the second spectral moment of X.

u +— Euler characteristic u > Iperimeter u area
—1—3/2 —u?i2 14172 —u*i2 Bt e_" "2
[2f|) Auve EA € f T
" :.‘\ U:j- L ] 1 “"K
‘ P ] hY
B H ] w4 i 5
?( 1Y are \ 5
i ) Mo - § %
. ) / . § * ' Y
v # ) \
% i ! ¥ % iy
- oo R ey 4 e

Theoretical v — G5 (X, v}, GT(X,u) and G{X, ).

Unbiased (observation window) Eo X, ), f.:l__; (X, u) and é_;(X. u}.
Unbiased (pixelization error) T C1 T{X. u).

Naive estimates: u — Cﬁ (X.u)and ¢ (X, w).

Inference for parameters of chi-squared and + random fields : 20 /a8



Estimation of A: based on C\O,T(X, u), u fixed (bweuler).

Proposition (Biermé, DB, Duval Estrade, 2019)

-
R

Let Ar(u) = B~ Co.7(X,u). Then,

o

\/W(Xr(u} }\) . iR2>.-'\-"(0_.}:(u))._ for some E(u) < |,

"
L= »
e w
w *
o T
Rl 3
- ++_+_*_u_{< e e + N
wn 1
*
11 *
-
[t * * *
. = * P
i
B i 1 o Z E 2 z 1 o & =3
Senls 1 AVEIE L
.2 2
L ER b

Gaussian field with covariance function &7
LEFT Estimate Av{v) with associated confidence intervals for M = 100 sample simulations
RIGHT empirically estimated variance ¥(u)
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Inference: a shot-noise field

Considered shot-noise model

Se(t) = Z bil.n(t —x), for t = R,

T B

where @ is a stationary Poisson point process on R? x R™ x R~ with intensity
measure v Lebge % dFp 50 dFg.

Example:

Figure: Shot-noise field with 8 =1, a.5.,, v =5 x 10 * with random disks of radius R = 50
or i — 100 (each with probability 0.5) (left) and two excursion sets for 4 — 7.5 (center) and

= 14.5 (right). 22/a8



Inference

Inference: a shot-noise field

.. _vz femylel 52 52
@ Euler characteristic = ve™" (_LIJ:J_ (1 —wi 4+ v I{D—_T)
Ivl

3 (13}

1 . _
@ ; perimeter = e

1
2

.5 /)¢
® Area=e “*3 ., L3

where p = 27 B[R] and 3 = = R[R?].

£ i I " e
- e, B S N—— LY PP L o b

N ] R EEE
il s ERe

Shot-noise field with 8 — 1, a.5., with randem disks of radius & — b0 or & — 100;
Left From &3 r = v a(u); Center From € 1 = o p{u); Right From & 7 = 5(u)
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Standard assumption

© Removing assumption “the field is standard”
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K Por excursion sets
Inference

Standard assumption
Testing

LK curvatures for perturbed model

Removing assumption “the field is standard”

@ The mean/variance (j:, a?) of X provide information on the LK curvatures

— 4 black and white zones in comparable proportions
=+ 7: range of levels of non-degenerate excursion sets

@ From Ex{u): impossible to estimate {1, o*) (sparse information)

@ Image comparison: what if the underlying fields have distant (zz, %)?

Leasl s: = 20
’ £
m;ﬂ *‘9’: o4
’ 0. T -

150"‘ ‘”’ g 153 -

-,=m;‘_m " | R .
[CRR A 1]
Imags 1.0

El

B
10 9
151

203

" s
ER E T 55183 20
TFage 7.1 Image: 1.1 5 I 1.1
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Standard assumption

Gaussian case: effective level and spectral moment

(A0) X is Gaussian stationary, isotropic, E[X{0)] = s, ¥(X(0)) = ¢ = 0 and
Y(X'{0)) = Ak for A = 0 (second spectral moment).
t —+ X(t) are almost surely of class 3.

Define the effective (observation) level:
o —
T H
T
and the effective spectral moment:
a.= A
=3

Notice that if {;1,0®) = (0,1}, then (s,,3) = (1, A).
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Standard assumption

Gaussian case: effective level and spectral moment

Proposition {DB, Duval 2020)
Under { A0}, denote (x) = T{A(0,1) = x), it holds

@ls) | Va_ $2107h a2
7] - 2T | (27272

E[G (X, u)] = e 2%,

: AT S ET
E[C]T(X, )] = v (s.) '; T||1 + %

RICT(X, u)] = 9 (5.).

> We get asymptotically normal estimators of s, and a

Cor, (X v)(27)*?

. =1 = —~
ST = CQ_T X,u au T = = - E
(Gr(X.u)) & Gor oxpl— L))

where (| Ty| = |T2|, iU T2 C T, T1 N T2 =0} with unknown limit variance.
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Standard assumption

@ Boils down to estimate the limite variance of E;; (X, u)

@ Sub-windows estimation procedure: consistent under strong assumptions
(see Plante et al. (2010}, Bulinski et al. (2012})

Decompese T in M3 distinet sub-rectangles VU 1 < i < My,

: i i : i
9,150 i e i 25
e - > E v ---- ---
n Pi—1
i Lua fE oLz 0| i Leow| g L |
( MN () () ! & Eliiy) B T Hia E
oy [ —— £ v -
M2 £ > & )(Mz. 14 )
i i1 i fi—1
meran |-+ n| mozai—n| ez
o G B G2
where £ ‘( My = "V[N o ’)(X_.u). I I .-
i i i i i
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Standard assumption

Effective level estimation procedure for the limit variance

(A1) Correlation function t — p(t} is decreasing and p(£)| < (14 |[£]) 7,
= 2.

Theorem (DB, Duval, 2020)

Let X a Gaussian random field satisfying (AQ) and (A1}, Then, it holds that

=2 E 2 :
Te; ) ok TG oy T, V)

Sketch of proof:
i) Show that W(XZ, (,,)) —+0as 71 R

ii) Key points 1) estimators are identically distributed,
2 dist (VMU i -J”)J) o0, as N o oo
which permit to establish the desired result.

iii} Using the following result:
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K Por excursion sets
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LK curvatures for perturbed model

Effective level estimation procedure for the limit variance

Proposition {DB, Duval, 2020}

Let X a Gaussian random field satisfying (AQ) and (A1)
Set

G=(X plio
Let T and T' be such that |T| = |T'| and dist(T. T’} + .
Then, it holds that,
E[ﬁz{c Sul ! T]‘f’z(G‘ SU2 1 T)£2(G' 5“3! T.r)ﬁ'z(G‘ su43 Tr}]
(503 J2(50a )0 Y500 )| T * 4 0| T ),

where

L2(G 50, T) = |T|CT(X, 1) and <i(s,) = G(X, u).
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Standard assumption

Effective level estimation procedure for the limit variance

Elements to prove this auxiliary result

1 It8-Wiener chaos decomposition for L2 (Nourdin and Peccati, 2012)
2G50 T) = Z%f H(G(1)) ct,
g0 ' T

where H, is the g-th Hermite polynomial, the chaotic coefficients:
So(s.) = v(s.) and 3,(5,) = ¢(s.)Hy—1(s.), such that

g —1)!
Vet sy
q1z

.Hl] |'x.; E 1 and ||.\'.:£q||cxz E T3

3

(see, e.g., Szegd (1959)).
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Standard assumption

Effective level estimation procedure for the limit variance

Elements to prove this auxiliary result

1 It8-Wiener chaos decomposition for L2 (Nourdin and Peccati, 2012)
2G50 T) = Z%f H(G(1)) ct,
g0 ' T

where H, is the g-th Hermite polynomial, the chaotic coefficients:
So(s.) = v(s.) and 3,(5,) = ¢(s.)Hy—1(s.), such that

/(g — 1)!

[[Fall% <1 and ||3g]les < cq g=1,

(see, e.g., Szegd (1959)).
2 Diagram formula (Taqqu {1977)) to compute/control
B[Hiy (G(11))Hip (G(12))His (G (13)) Hio (G (1))]

Key point: dist{T. T') — no.
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Standard assumption

Comments

@ To proof is lengthly and relies on technical computations.

@ Corjecture: Should remain valid to get the consistency for the empirical
variance of the Euler characteristic.

Possible uses

@ Test “ Hg : X is Gaussian field.” (strength: does not rely on the
estimation of the covariance function)

@ Asymptotic interval for p := E[X(0}]

@ Test to compare two images of excursion sets
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@ Test to compare two images of excursion sets
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Figure: Synthetic (first row) and real digital (second row) mammograms studies.
Group (F) (left), Group {FG) (center) and Group (D) (right). Image size: 251 x 251.

(F) Almost entirely adipose breasts;
{FG) Scattered fibro-glandular dense breasts;
{D) Heterogeneously dense breasts.
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Can we compare the excursion sets of 2 images?

We observe Ev(uv) and Ez{uz), where Y and Z are Gaussian fields satisfying

(.A0) and (A1)

with possibly different mean, variance, spectral moment or correlation function.

Is it allowed to compare their LK? J

Ho : S”Y(Y) = S”Z(Z) H 5¢ry{y) = 5“2(2)‘

Let g1 g such that F( N(0,1)] < ¢1- ) =1— 3. The test

Fay_ o

1
Y iv.e

Dring = 1{

E.'ry .T_E.u7, T

has asymptotic level « and is consistent.
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K Por excursion sets
Inferencs

Standard assumption
Testing

LK curvatures for perturbed model

Importance of the effective levef

L4

W A 1w
Imzgz 1.F5 ITae 1D
Lo, &

e L 174} & ar]
W B B
Imzgz 1.FG ITage 1.0

. . . . . ,
1200 iy g ) EEX) i L0
Lavzls

Figure: Synthetic digital mammograms. Left: Estimated s, (group (F) in blue,
(FG) green, (D) red). Right: Excursion sets for a fixed level v = 2200 (first
row) and for the three adaptive levels &, such that [5;| < 10 ? (second row).
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WWe now test

A
Hy = 55, (Y) = 5:,(2) versus Hy = s, (Y) # 5:,(2), J

for Y.Z € {1.F 1.FG, 1.D}, where Uy and iz are the adaptive levels such that

85| < 1072, i.e., the associated Cg 7(&) = 0.

1.F versus 1.FG | 1.F versus 1.D  1.FG versus 1.D
0.98h8 0.9511 0.0642

Table: p—values for the synthetic digital mammograms study.
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We now consider 1000 different not—adaptive values of v in a grid G;

YueG, Hy:s(Y)=s.(2) versus Hy = 5,(Y) # su(Z). J

for Y. Z images of this synthetic mammograms data-set.

Intra-classes analysis Inter-classes analysis Inter-classes analysis

R T aw o an s ow o wr e du w o # s an RD e

Figure: Synthetic digital mammaograms study. Estimation of &, for 1000 different values of

u £ G and couples of images: 2.F and 3.F (first panel); 1.F versus 5.0t {second panel); 1.F and
3.FG (third panel). In bold marked points we represent the cases where the test rejects Hy for
a significant level o — 0.2, Group (F) is displayed using blue curves, (FG) green curves and
(D) red ones.
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LK curvatures for perturbed model

© LK curvatures for perturbed model
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Inferencs
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LK curvatures for perturbed model

LK curvatures of E(u) of perturbed Gaussian model

Definition {Perturbed Gaussian field)

Let X be a random variable such that E[X] = 0 and E[|X|*] < | oc.

Let g be a Gaussian random field defined on R? with €3 trajectories.

We assume that g is
@ stationary, isotropic with E[g(0)] = 0, Varg(0) = o7
@ its covariance function r(t) = Cov(g(0}, g(t)) satisfies

[r(8)] = O(||t]| ™), for some & >2 as [t = <.

with X independent of g.

Let € = 0. We consider the following perturbed field

Ft) — g(t)+eX, te R,

40 / a8



LK curvatures for perturbed model

curvatures of E(u) of perturbed Gaussian model

r(s) —oZe <1517 for o, — 2, s — 100/21° in a domain of size 210 x 210 pixels,
with ¢ =1 and X ~ t{» = 5). First row: A realization of Gaussian random field g
(left) and the two associated excursion sets for 4 = 0 (center) and v =1 (right).
Second row: The assaciated realization of a perturbed Gaussian random field £ (left)
and two excursion sets for v = 0 {center) and u = 1 {right):
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Inferencs
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LK curvatures of E(u) of perturbed Gaussian model

Proposition {DB, Estrade, Rossi 2020)
Then, for smalf ¢ = 0, it holds that

: 2T[X? u
31T eE, )] = G e, v) (1+ 2[ (e (£) _2))
1. «F E[X?] u [#7T)
'?C”g’“)(“ 23 ”2(5)) )

(e 25 ) oo (0 G+ )

|0T|1.
2|T|

TG T )] - Gie o+ G g u)

ERRTIv Cilg.ou) U w3 T |y 3 |37 |1
I LIXT (—lzrrg Ha (%) | Coig. u])\ 7] ) I o(c (1 I Tl ))
[

B[ T(F, u)] = G (g, u) + <2 I x’]; Co (g, v) + O(2),

where Ho(v) = v* — 1, for y € R and ) is the second spectral moment of g.
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LK curvatures for perturbed model

curvatures of E(u) of perturbed Gaussian model

o NS '\
R R 3
gt L L ] L b a
& £ + o v H Ll H E ] £ - 3 " H B § “ 1 * 1 i ? H 3 4
Lewdis. Lewzu Lazzu
. ) . . . . 2 —w?|s |2
Figure: Perturbed Gaussian random field with covariance (s} mLe " ,for oy = 2,

© — 10021 in a domain of size 2'% x 29 pixels, with X ~ t(¢ — 5) and ¢ — 1.

Theoretical w1 » G (F, v} are drawn in black plain lines.
Theoretical v +— C7 (g, u) in blue dashed lines.

Theoretical v » Cﬁ"fr(f‘ u) and C{;.T{f. u)in {left and center panels).

Averaged values on M = 100 sample simulations of & 7(f, ) as a function of the level u by
using red stars and empirical intervals.
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K Por excursion sets
Inference
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Testing

LK curvatures for perturbed model
Quantitative asymptotics for C; " (f, u)
We are interested in the asymptotic distribution as T 7" R* of
Vi) = 1T (&7 ) —5IGT (7 0)))

(@« (S (o (52 ()

=: Zi(u) | Ry(u).

Theorem (DB, Estarde, Rossi 2020)

1. For any fixed small € > 0 and T  R®, it holds that
dw(Z7(u). ©. (i) — O ((log | )71/ ,

where the constant involved in the O-notation depends neither on € nor on u
and dw fs the Wasserstein distance between random variables.

2. Forc —+0and T 7 R? Let T™) — NT and ey such that
limy . Men = 0. Then it holds that,

i (¥ 1y (8). N (0, v())) — ©

What about the r.v. ©.{u) and the asymptotic variance v{u)? .
“as fag



LK curvatures for perturbed mode

What about the r.v. ©.(u) and the asymptotic variance v(u)?

v{1) From the Gaussian case, we can get

Uz

1 L) 1
g [ Ao g e
with p(t} := corr(g(0), g(t)) = r(t)/o7.

©.{u) isarw.

— whose conditional distribution given {X = x} is centered Gaussian
with variance v{u — e x).

— its probability density function h. can be expanded for small ¢ = 0, as

H[X?] T3 vi(u)?
2 |:E viu)?
1 v (w)

| —
2 vy

By} — faenly) + (faep(¥) — 2fagn (v) — faep (1))

( #e2) 1 B | 106
where f2.o{y) are Bimodal Exponential Power density functions.
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.:. ,"-‘. -

JII I it - i
_."I | | II . oy .-"(\‘-_ . *
B 11 1 S —
Figure: Histogram for the study of density /. of 77 when X is t-distributed,
for v = 1.5 (first row) and v =3 (second row), based on 300 Monte-Carlo
independent simulations. In particular we chose e = 0.5 (first column}, « = 0.3

{second column) and ¢ = 0.1 (third column). Resulting theoretical . density is
drawn by using red plain line.
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LK curvatures for perturbed model

Conclusion and Discussion

Literature and contribution

We propose a unified framework and unbiased estimators
Limitation: Difficult to get {joint) “CLT" results

We only observe Ex(u)

Testing and inference usually require the knowledge of X (estimation of the
covariance function / of marginal distribution)

Removed the assumption of centering and unit variance

Perspectives:

Control of variance of the pixelization error to pass Central limit Theorems
{with C. Duval)

LK for Gaussian mixtures with a view towards inference for spatial extremes
{with A. Estrade and T. Opitz)

Synthetic morphological indicators using these geometric features.
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K Por excursion sets
Inferencs

Standard assumption
Testing

LK curvatures for perturbed model

We presented some results from :

i Abaach, Biermé, DB Testing marginal symmetry of digital noise images
through the perimeter of excursion sets, Preprint, 2021.

[ DB, Duval, Statistics for Gaussian Random Fields with Unknown Location
and Scale using Lipschitz-Killing Curvatures,
Scandinavian Journal of Statistics, 2020.

L DB, Estrade, Rossi On the excursion area of perturbed Gaussian fields,
ESAIM: PS5, 2020.

[ Biermé, DB, Duval, Estrade, Lipschitz-Killing curvatures of excursion sets
for two dimensional random fields, Electronic Journal of Statistics, 2019.

E DB, Estrade, Ledn, A test of Gaussianity based on the Euler characteristic
of excursion sets, Electronic Journal of Statistics, 2017.

Thank you very much for your attention!
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Central limit theorem for C(-jﬂlT‘(_X: y), d > 1

Let 71 and T2 be two cubes in R s.t. |T1| — |T2| and dist(T1. T2) = 0
and let uy and w2 belong to R (1 = w2 or vy = ).

Theorem (DB, Estrade & Ledn, 2017)
Let

. STy S
ZM = TR T (X ) — BIGET (X u)]), fori=1,2.

Then, under the same hypothesis as above,

(M) (NI distib - V() 0
(2. 20"} 2= (0,( D Vi

Note that dr'st[TIENJ, Tz(N"'] PRNEH

W —trms

Also a joint CLT holds for a large domain T*! and various levels (see next
slide).
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Central limit theorem for C(-jﬂlT(X_, u), d >1

Theorem (DB, Estrade & Ledn, 2017)

Let T be a cube in R and let vy and u» befong to R. For any integer N = 0,
we introduce

¢ el oy - B N u)). fori 1,2,
Then

(N} (M) distrib . Vi) Vith. i)
(gl 62 ) oy (D‘ (V(ul,uz) V{u2)

where V{uy, t2) is given by
Vg, un) — j}?,;(G(ul, ua, t) D(t) A C{n)Clua)) dt + (27A) di2 glmax{e, u2))
with

Glug, e, £} = Z[1ny, aa(X(0]) Ly, aaa{X (D) del{X(0}} del{ X" (1)} | X'(0) = X'(t) = 0].
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Asymptotic variance of Euler characteristic, d > 1

In order to make T A~ RY, we introduce
TW = INt : £t T} with T a fixed cube in R”.
Theorem (DB, Estrade & Ledn, 2017}

Let X be Gaussian, stationary, isotropic, of class C*{R) and with "fast decay
of the covariance",

lim Var
MN— | =

() u). T
(‘DD(T ;;j)(l(fz) T )) _ V(u) < (0,-}—-’)(:-)

with V() = / (Gl 1) DEE) — Clu, AP) e + (2m0)~"2 g(ur) and
f=
Clu) = (2n) @ W2 T2, (h)e 22

(i) — B L[ 00y (X(0)) | det(X“{0)] ],
Glu.t) = H[1, . 2(X(0), X(t)) det{X"' (0} X" () / X'(0) = X'(¢) =0,

D(t) = Priop i (0-0) = (27) T der(32hy — " (1)2) 12,
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Asymptotic variance of Euler characteristic

In the case d = 1, we have an explicit formula for V{u)

black triangles:
red dots:

AL

i)
114
1

[[R5]

.

numerical evaluation of V()
empirical variance Var (W)
based on 300 Monte-Carlo simulations

X Gaussian with r(z) = e v, |T =200

4713



Testing HO {X is Gaussian}

i Based on two levels ty # tz and using

Ci (X, t2) Ho U2 L0d-d)

oxw KNOWN.

Rujm 1=
i Let 0« uy < w2 and Ty and To two rectangles in R? , dist{ Ty, T2} > 0 and
71— T2l >0, define T/ — (Nt :te T}, fori 1,2
Consider the test statistic

C w,(X t)
(X.tn)

Ru:[:u;.N =
U TH\'I

iii. Then, under HO it holds that
— J .
'V!| Tl(N}| (R”l;”2-N - RUI_-IQ) m N (0 Z(uh ”2)):

where T (w1, t2) < oc.
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Testing HO {X is Gaussian}

i Based on two levels ty # tz and using

Ci (X, t2) Ho U2 L0d-d)

oxw KNOWN.

Rujm 1=
i Let 0« uy < w2 and Ty and To two rectangles in R? , dist{ Ty, T2} > 0 and
71— T2l >0, define T/ — (Nt :te T}, fori 1,2
Consider the test statistic

C w,(X t)
(X.tn)

Ru:[:u;.N =
U TH\'I

iii. Then, under HO it holds that
— J .
'V!| Tl(N}| (R”l;”2-N - RUI_-IQ) m N (0 Z(uh ”2)):

where T (w1, t2) < oc.

Build 2 test with asymptotic level a: 1{ —re—

Y ﬁ('ﬁ,'-':l:“2:""_R"I..--"’z):)Q&—”}
Y g
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Testing HO {X is Gaussian}
H1(k): 3k =3, X is Student(k)

H1 Us ([.'2 - [.'1)
K = =11
vt Uy ( k — 2—|—u,)

[T T T T S SRR e oM ¥ XNy oR oW

Er sl b B e, 7

of

D D B
Lusgans ol amker 1 ETE

Student random field with unit variance and different degrees of freedom.
k —Power of the test with 11y = 1 and w1 = 2 (left) or w2 = 3 (right).

For k too large or itz ~ uy: the test fails, indeed

Rugon (H1) — Ruy.us (HO) (1 +0 (i (z: - 1))) :
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Testing HO {X is Gaussian}

o Consistency is hard to establish theoretically
o Different alternative: power of Gaussian field

o Real data example (2D digital mammograms)®

Almeost entraly adizoss breasts Scaktered hzrcglanduiar dense Dreasts Il terogenecusly dense treasts

4 . . .
3Collaboration with Z. Li, GE Healthcare France, department Mammography.
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Real data example (2D digital mammograms)

\We consider a recent 3D solid breast texture model inspired by the morphology of
medium and small scale fibro—glandular and adipose tissue observed in clinical breast
computed tomography (bCT) images?.

S -
Simulate a Generate Create a seed Assign a random  Generate the final
homogeneous Poisson Voronoi point process ellipsoid to each binary volume

point process diagrams seed point
We consider 15 simulated 2D digital images
{F)} Almost entirely adipose breasts;

{FG) Scattered fibro-glandular dense breasts;

{D) Heterogeneously dense breasts.

figsee Li, Desolneux, Muller and Carton (2016).
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Real data example (2D digital mammograms)

[ Group | Level || Image |
o 1.F 2F 3.F 4.F 5.F
0.2 84 76 248 b3 b51
F 0.1 41 41 136 613 565
0.05 27 8 K7 191 467
I 1.FG | 2.FG | 3.FG | 4FG | 5.FG
0.2 65 119 58 43 900
FC 0.1 19 71l 28 12 858
0.05 10 35 15 6 797
I 1.D 2.D 3.D 4.D 5D
02 380 | 230 | 347 | 575 | 468
D 0.1 267 164 210 411 312
0.05 190 | 126 | 142 | 288 | 242

Table: Number of p—values associated to the 1000 different values of ux & [—3, 3]

that are smaller than the significant «-levels.
In bold text the numbers larger than o x 1000 for which HO is rejected.

Remark : vp <I vp < veg
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uy Area

1 .
[T 5 perlme‘tert _
e TP'{YE =k + uy2k)

SEALL Sanie 1)z _
» i 2 exp 5

Inference: Chi square with k degrees of freedom

v » Euler characteristic
I3 uy’ﬁ
2

Aib—unIEie 2172 —_— —
—L—;—)—" 2;-'2r|'.'< = {2k + 1) exp
. ol e . "
: oA
. ok

—
.
.-"{ o
I T
/ e e
e - Ll
B : Y X
| I a - .
I | * L
I . i i ",
i i \k
. .
| - . .,
Rl A . [l S —
- frees

Chi square field with &k = 2 degrees of freedom.

Unbiased Co 7(X, u), Ci7(X,u) and G r(X, u)
Theoretical u— g (X, u), CGF (X, u) and G (X, u)

@ From (Cn‘z‘r._ Co.r] > l:f,(\T, j\T}
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Inference: Chi square with k degrees of freedom

3 1%
ik -
L. £ |
2T E o
I3 E
E £
s s Foe kg gy ey o
L 3
] ! | =
F P ' & Eoani- I
L ) £
s =
1 ¥ G- ]
3 4.
1 1 1 z 2 1 5 - [3 1 2 3 1
Lisist Leerds

Chi square field with ¥ = 2; LEFT From éz; = }?(u), RIGHT From ég:r
and by using K{u) = 5‘1’,@%’(”](”)-
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Heuristic definition of Euler characteristic for compact sets

@ EC(A) = nber of disjoint intervals in A C R

@ EC(A) = nber of connected components — nber of holes in A C R®

fA={te T : X(t) > v}, with T a rectangle in R® and v £ R, there exists
a rather tractable formula (theory of Morse functions):

o —1

EC{tc T X(tyz=u)=> > | EC(X,T.u)

k=0 face JL T

d—1
Actually, Z Z =0T as |T — o

k=0 face Je T

= “Modified” Euler characteristic EC(X, T, u) J
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Heuristic definition of Euler characteristic for compact sets

EC(X,T,u) = > (-1)1u(T,0)

£=0

pe(Touy = #{ee T X&) = u, X'(1) =0, ind (X"{1)) = d — £},

with ind stands for the number of negative eigenvalues.

. c o
Figure: (d = 1), EC(X. T,u) = #{max of X above v in T} — #{min of X above v in T}
(d —2), EC(X, T, ) — ji{local extrema of X above uin T}— 4{local saddle points of X

above vin T}
13713
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