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Compartmental modelling

◮ A compartmental model is
composed with
compartments and arrows.
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Model and SA challenge

Consider a stochastic model M : θ 7−→ G (θ; ·) with G (θ; ·) a random
variable for each θ.

Methods in the literature

1. Methods for scalar output stochastic models (Mazo 2021; Hart,
Alexanderian, and Gremaud 2017)

2. Meta-modelling based approaches (Zhu and Sudret 2021; Etore
et al. 2020; Jimenez, Le Maitre, and O. M. Knio 2017; Le Maitre
and O. Knio 2015; Marrel et al. 2012)

3. Da Veiga 2021, Fort, Klein, and Lagnoux 2020 considered stochastic
simulators as probability distribution function valued computer
codes.

In this work, the stochastic models are under the form θ 7−→ F (W (θ; ·))
where F is a functional with scalar or functional values.
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Main objectives

Assume X is a random variable on Θ. Consider a stochastic model with
parameters sampled by X and output denoted Y .

A. Objective: to perform sensitivity analysis using existing methods
without using meta-models.

B. Approach: our approach aims to write Y as a deterministic
function f of X and a random variable Z such that:

• Y
L
= f (X ,Z)

• X and Z are independent

• f and Z distribution are explicit.

Z stands for the intrinsic randomness.
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Process description (1/2)

◮ Consider a closed population of constant size of N individuals.

◮ W (θ; ·) = {W (θ; t) = (Wα (θ; t))α∈V , t ≥ 0} where Wα (θ; t) is
the number of individuals in the compartment or vertex α at the
time t.

◮ The process W (θ; ·): a continuous-time Markov chain on state

space E = {w ∈ {0, · · · ,N}|V| :
∑|V|

i=1 wi = N} where |V| denotes
the number of vertices.

The SIR model example

S I R

β
N
· S · I γ · I

V = {S , I ,R}
E = {(S , I ), (I ,R)}

• E = {w = (s, i , r) :
s + i + r = N}

• θ = (β, γ) ∈ R+ × R+

• W (θ, ·) =
{(S(t), I (t),R(t)) ; t ≥ 0}
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Process description (2/2)

◮ Assume w ∈ E . The transitions of type α→ β are under the form:
w → w + uα,β , where uα,β ∈ {−1, 0, 1}|V|

◮ To each transition of type α→ β corresponds a function
gα,β : (θ,w) 7→ gα,β(θ,w) such that every transition w → w + uα,β
occurs at rate gα,β(θ,w)

The transitions of type α→ β are simply denoted by the edge
(α, β) ∈ E.

The SIR model example:

S I R

β
N
· S · I γ · I

g(S,I )(θ, (s, i , r)) =
β

N
· s · i

u(S,I ) = (−1, 1, 0)

g(I ,R)(θ, (s, i , r)) = γ · i

u(I ,R) = (0,−1, 1)
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Gillespie representation (1/2)

Let α, β be two vertices.

Denote λ(t) =
∑

(α,β)∈E

g(α,β) (θ,W (θ, t))

and p(α,β) =
g(α,β) (θ,W (θ, t))

λ(t)

Gillespie Algorithm

1. Set θ, t = 0, W (θ, 0) = W0

2. Repeat until extinction
• Draw τ ∼ exp (λ(t))
• Pick randomly a transition type

(α, β) in E with probability
(

p(α,β); (α, β) ∈ E
)

• W (θ, t + τ)←W (θ, t) + uα,β ;
t ← t + τ

Objective

From Gillespie algorithm, find a function fG
and Z such that: W (θ, ·) = fG (θ,Z ).

Strategy

• Modify the algorithm
to be able to input all
the random variables
as uniform variables

• A number of 2 times
the maximal number
of jumps of the
process W (θ, ·) i.i.d.
standard uniform
variables are needed.

Limitation
This is limited to the
directed acyclic graph
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Gillespie representation (2/2)

Assume the graph is acyclic and denote njumps the maximal number of
jumps.

Gillespie Algorithm

1. Set θ, t = 0, W (θ, 0) = W0

2. Draw Z as a (2,njumps)-matrix of i.i.d
standard uniform variables

3. For i = 1, · · · , njumps:
• Pick ith row of Z and set

(u1, u2)← Z [i , ]
• Compute τ ← − log (u1) /λ(t)
• Using u2, pick a transition type (α, β) in

E with probability
(

p(α,β); (α, β) ∈ E
)

• W (θ, t + τ)←W (θ, t) + uα,β ;
t ← t + τ

Pros
1. Easy construction
2. Available and

well-studied
algorithm

Cons
1. Not applicable to

general directed
graphs

2. Only for valid for
markovian processes

The SIR model example

S I R

β
N
· S · I γ · I

• Given (S(0), I (0),R(0)),
njumps = 2 · S(0) + I (0)
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Kurtz representation (1/2)

Assume G = (V,E) is a directed graph.

Theorem (Kurtz 1982,Ethier and Kurtz 1986)

For each θ ∈ Θ, the process W (θ; ·) satisfies almost surely:

∀ t ≥ 0, W (θ; t) = W (θ; 0)+
∑

(α,β)∈E

P(α,β)

(∫ t

0

gα,β (θ,W (θ; s)) ds

)

·uα,β

where {P(α,β), (α, β) ∈ E} are independent Poisson standard processes.

The SIR model example:

(S(t), I (t),R(t)) = (S(0), I (0),R(0))+

P(S,I )

(∫ t

0

β

N
· S(z) · I (z)dz

)

·(−1, 1, 0)+P(I ,R)

(∫ t

0

γ · I (z)dz

)

·(0,−1, 1)
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Kurtz representation (2/2)

Kurtz representation (Navarro Jimenez, Le Maitre, and O. M. Knio 2016)

Assume X a random variable on the parameter space Θ. There exist fK
and Z ′ such that:

W (X , ·)
L
= fK




·,X ;

(
P(α,β), (α, β) ∈ E

)

︸ ︷︷ ︸

Z ′




 .

where {P(α,β), (α, β) ∈ E} are independent Poisson standard processes.

Z ′ stands for the intrinsic randomness of the model.

Pros
• Applicable to any directed graph

Cons
• Not applicable to non-markovian processes
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Sellke representation (2/3)

Objective: By generalizing Sellke construction, construct a stochastic
process W ′(θ; ·) = {W ′(θ; t) = (W ′

α(θ; t))α∈V, t ≥ 0}, θ ∈ Θ

• Root process W ′
α(θ, ·)

α

Let α be a root and Qα,i ,
i = 1, . . . , nα be i.i.d.
exponential variables.

W ′
α(θ, t) =

∑

i∈α

1Qα,i>ζα(θ,t)

where

ζα(θ, t) =

∫ t

0

ψα(θ,W
′(θ, s)) ds.

Qα,i , i = 1, . . . , nα are called
”resistance thresholds”.

• Non-root process W ′
β(θ, ·)

Let β be a non-root vertex.
Duration mechanism:

β

Path choice mechanism:

β

W ′
β(θ, ·) is entirely function of

θ, the resistance thresholds,
the sojourn time variables and
uniform variables.
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Sellke representation (3/3)

Assumption: All the sojourn time variables are independent with
exponential distributions.

Theorem
1. There exist fS and Z such that:

∀ t ≥ 0, ∀ θ ∈ Θ, W ′(θ; t) = fS (t, θ,Z )

2. Assume X is a random variable on the parameter space Θ. Under
the assumption above:

W (X , ·)
L
= fS (·,X ,Z )

such that X and Z are independent.

Pros
• Adaptable to markovian and non-markovian processes

Cons
• Only applicable to directed acyclic graphs
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SARS-CoV-2 model

Consider the following model for the spread of SARS-CoV-2 among a
population with constant size N (Knock et al. 2021).

S E A R

SI H

D

β
N
· S · (A+ SI ) γE · E · p(E ,A)

γE · E · (1− p(E ,A))

γA · A

γSI · SI · p(SI ,R)

γSI · SI · p(SI ,H)

γSI · SI · p(SI ,D)

γH · H · p(H,R)

γH · H · (1− p(H,R))
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Sensitivity analysis (1/4)

The process W (θ, ·) depends on unknown parameters
θ =

(
β, γE , γA, γSI , γH , p(E ,A), pSI , p(H,R)

)
where

pSI = (p(SI ,R), p(SI ,H), p(SI ,D))

◮ Model output: Dtot the total number of deaths during the epidemic.

◮ Computed indices: Sobol’ indices

◮ Method: pick-freeze

◮ Number of explorations: n = 1500

◮ N = 1003 including 1000 susceptible and 3 exposed individuals at
t = 0

◮ Uncertain parameter variation intervals are set according to Knock
et al. 2021
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Sensitivity analysis (2/4)

0.00

0.25

0.50

0.75

1.00

beta gamma_E p_E_A gamma_A gamma_SI p_SI gamma_H p_H_R Z

Gillespie Main effect

Kurtz Main effect

Sellke Main effect

Figure 7: Main effects of parameters for Dtot

Conclusions

• Main effects show the importance of probabilities pSI and p(E ,A)

• These probabilities influence the amount of individuals that will end
up in the compartment D
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Sensitivity analysis (3/4)

0.00
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beta gamma_E p_E_A gamma_A gamma_SI p_SI gamma_H p_H_R Z

Main effet

Total effect

Figure 8: Main and Total effects of parameters for Dtot simulated by Sellke
representation

Conclusions

• The total effects highlight the interactions of Z with the model
parameters
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Sensitivity analysis (4/4)
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Gillespie Total effect

Kurtz Total effect

Sellke Total effect

Figure 9: Total effects of parameters for Dtot

Conclusions

• Total effects point out the impact of pSI , p(E ,A), β and Z .

• Significant differences can be observed in total effects of the
parameters in the two representations.
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Conclusion and Perspectives

Conclusion
Our approach:
◮ Provides additional information: intrinsic randomness contribution

and its interactions with model parameters
◮ Is adaptable to most compartmental models used in epidemiology.

Perspectives

◮ Is the sensitivity analysis independent of the representations of the
model?

◮ Comparison with representation-free methods based on sensitivity
analysis of probability measures of the outputs.

MascotNum Meeting 2021 Global sensitivity analysis April 28, 2021 27 / 29



Thanks for your attention !
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