Global sensitivity analysis for some stochastic epidemic compartmental models

Henri Mermoz KOUYE Supervisors: Gildas MAZO, Clémentine PRIEUR, Elisabeta VERGU.





Laboratoire MaIAGE, Jouy-en-Josas INRAE, Université Paris Saclay

April 28, 2021

MascotNum Meeting 2021

Global sensitivity analysis

April 28, 2021 1 / 29

# Outline

### Introduction

- Stochastic compartmental models
- Modelling by a markovian process
- Sensitivity analysis challenge
- Our approach
- Model description by graphs
- Model representations

Application to a SARS-CoV-2 model

### Conclusion and Perspectives

| MascotNum | Meeting 2021 |  |
|-----------|--------------|--|
|-----------|--------------|--|

イロト イヨト イヨト イヨ

# Compartmental modelling

 A compartmental model is composed with compartments and arrows.

< □ > < □ > < □ > < □ > < □ >

# Compartmental modelling

 A compartmental model is composed with compartments and arrows.

Compartmental models are widely used:



- Medicine, Physics, Chemistry, Ecology etc.
- Epidemiology: spreading of disease among a population (humans, animals, plants)

Figure 2: An example of compartmental model in medicine



Figure 3: An example of epidemic model : SIR model

イロト イボト イラト イラ

# Continuous-time Markov chain

Consider a process  $W = \{W(t); t \ge 0\}$  that counts the number of individuals in the different compartments for a closed population of constant size N.

- State space & composed of tuples of integers.
- Each type of transition is associated with a rate function depending on states and parameters of the studied phenomenon

Denote  $\Theta$  the parameter space. W The SIR model example: is parameterized by  $\theta \in \Theta$ . Write  $W(\theta; \cdot) = \{W(\theta; t), t \ge 0\}$  s  $\frac{g_{x} \cdot g_{x} \cdot f}{1}$  r

to highlight this parameterization. Parameters:  $\theta = (\beta, \gamma) \in (\mathbb{R}_+)^2$ 

For each  $\theta$ ,  $W(\theta; \cdot)$  is assumed to be a continuous-time Markov chain (CTMC) with a generator that depends on rate functions. ► The SIR process  $W(\theta; \cdot) = \{(S(t), I(t), R(t)); t \ge 0\}$  with generator Q:

$$Q_{(s,i,r),(s-1,i+1,r)} = \frac{\beta}{N} s \cdot i$$
$$Q_{(s,i,r),(s,i-1,r+1)} = \gamma \cdot i$$

イロト イボト イラト イラト

Consider a stochastic model  $\mathcal{M}: \theta \mapsto G(\theta; \cdot)$  with  $G(\theta; \cdot)$  a random variable for each  $\theta$ .

### Methods in the literature

- 1. Methods for scalar output stochastic models (Mazo 2021; Hart, Alexanderian, and Gremaud 2017)
- Meta-modelling based approaches (Zhu and Sudret 2021; Etore et al. 2020; Jimenez, Le Maitre, and O. M. Knio 2017; Le Maitre and O. Knio 2015; Marrel et al. 2012)
- 3. Da Veiga 2021, Fort, Klein, and Lagnoux 2020 considered stochastic simulators as probability distribution function valued computer codes.

In this work, the stochastic models are under the form  $\theta \mapsto F(W(\theta; \cdot))$  where F is a functional with scalar or functional values.

< □ > < □ > < □ > < □ > < □ >

Assume X is a random variable on  $\Theta$ . Consider a stochastic model with parameters sampled by X and output denoted Y.

- A. **Objective:** to perform sensitivity analysis using existing methods without using meta-models.
- B. **Approach:** our approach aims to write Y as a deterministic function f of X and a random variable Z such that:
  - $Y \stackrel{\mathcal{L}}{=} f(X, Z)$
  - X and Z are independent
  - f and Z distribution are explicit.
- $\boldsymbol{Z}$  stands for the intrinsic randomness.

(日) (同) (日) (日)

### Introduction

# Model description by graphs

- Directed graphs
- Process description
- Model representations
- Application to a SARS-CoV-2 model

#### Conclusion and Perspectives

イロト イヨト イヨト イヨト

Consider any compartmental model. Assume that:

- each compartment is a vertex
- arrows between compartments are edges

Denote V the set of vertices and E the set of edges. Any compartmental model can be considered as a directed graph  $\mathscr{G} = (V, E)$ .

### The SIR model example



# Process description (1/2)

- Consider a closed population of constant size of N individuals.
- W(θ; ·) = {W(θ; t) = (W<sub>α</sub>(θ; t))<sub>α∈V</sub>, t ≥ 0} where W<sub>α</sub>(θ; t) is the number of individuals in the compartment or vertex α at the time t.
- The process W(θ; ·): a continuous-time Markov chain on state space E = {w ∈ {0, · · · , N}<sup>|V|</sup> : ∑<sup>|V|</sup><sub>i=1</sub> w<sub>i</sub> = N} where |V| denotes the number of vertices.

#### The SIR model example



(日) (同) (日) (日)

# Process description (2/2)

- Assume w ∈ E. The transitions of type α → β are under the form: w → w + u<sub>α,β</sub>, where u<sub>α,β</sub> ∈ {−1, 0, 1}<sup>|V|</sup>
- To each transition of type α → β corresponds a function g<sub>α,β</sub> : (θ, w) → g<sub>α,β</sub>(θ, w) such that every transition w → w + u<sub>α,β</sub> occurs at rate g<sub>α,β</sub>(θ, w)

The transitions of type  $\alpha \to \beta$  are simply denoted by the edge  $(\alpha, \beta) \in E$ .

### The SIR model example:

$$g_{(S,l)}(\theta, (s, i, r)) = \frac{\beta}{N} \cdot s \cdot i$$
$$u_{(S,l)} = (-1, 1, 0)$$

$$egin{aligned} g_{(I,R)}( heta,(s,i,r)) &= \gamma \cdot i \ u_{(I,R)} &= (0,-1,1) \end{aligned}$$

 $\frac{\beta}{N} \cdot S \cdot I$ 

#### Introduction

Model description by graphs

### Model representations

Gillespie representation

Kurtz representation

Sellke representation

Application to a SARS-CoV-2 model

### Conclusion and Perspectives

イロト イヨト イヨト イヨ

# Gillespie representation (1/2)

Let 
$$\alpha, \beta$$
 be two vertices.  
Denote  $\lambda(t) = \sum_{(\alpha,\beta)\in \mathsf{E}} g_{(\alpha,\beta)}(\theta, W(\theta, t))$   
and  $\mathsf{p}_{(\alpha,\beta)} = \frac{g_{(\alpha,\beta)}(\theta, W(\theta, t))}{\lambda(t)}$ 

### Gillespie Algorithm

1. Set 
$$\theta$$
,  $t = 0$ ,  $W(\theta, 0) = W_0$ 

- 2. Repeat until extinction
  - Draw τ ∼ exp (λ(t))
  - Pick randomly a transition type (α, β) in E with probability (p(α,β); (α, β) ∈ E)
    W(θ, t + τ) ← W(θ, t) + u<sub>α,β</sub>; t ← t + τ

# Objective

From Gillespie algorithm, find a function  $f_G$  and Z such that:  $W(\theta, \cdot) = f_G(\theta, Z)$ .

# Strategy

- Modify the algorithm to be able to input all the random variables as uniform variables
- A number of 2 times the maximal number of jumps of the process W(θ, ·) i.i.d. standard uniform variables are needed.

### Limitation

This is limited to the directed acyclic graph

イロト イヨト イヨト イヨ

# Directed acyclic graphs

### Directed Acyclic Graph

A directed acyclic graph (DAG) is a directed graph with no cycle.





Figure 4: An example of DAG

Figure 5: An example of DAG in epidemiology

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Particularity of DAG in epidemiology

- Individuals cannot return to previous states
- The maximal number of jumps can be computed

# Gillespie representation (2/2)

Assume the graph is acyclic and denote  $n_{iumps}$  the maximal number of jumps. Pros

# Gillespie Algorithm

MascotNum Meeting 2021

- 1. Set  $\theta$ , t = 0,  $W(\theta, 0) = W_0$
- 2. Draw Z as a  $(2, n_{iumps})$ -matrix of i.i.d standard uniform variables
- 3. For  $i = 1, \dots, n_{\text{jumps}}$ :
  - Pick *i*th row of Z and set  $(u_1, u_2) \leftarrow Z[i,]$
  - Compute  $\tau \leftarrow -\log(u_1)/\lambda(t)$
  - Using  $u_2$ , pick a transition type  $(\alpha, \beta)$  in E with probability  $(p_{(\alpha,\beta)}; (\alpha,\beta) \in E)$
  - $W(\theta, t + \tau) \leftarrow W(\theta, t) + u_{\alpha,\beta};$  $t \leftarrow t + \tau$

- 1. Easy construction
- 2. Available and well-studied algorithm

### Cons

- 1. Not applicable to general directed graphs
- 2. Only for valid for markovian processes

< □ > < □ > < □ > < □ > < □ >

# The SIR model example



 Given (S(0), I(0), R(0)),  $n_{\rm iumps} = 2 \cdot S(0) + I(0)$ 

Assume  $\mathscr{G} = (V, E)$  is a directed graph.

Theorem (Kurtz 1982,Ethier and Kurtz 1986) For each  $\theta \in \Theta$ , the process  $W(\theta; \cdot)$  satisfies almost surely:

$$\forall t \geq 0, \quad W(\theta; t) = W(\theta; 0) + \sum_{(\alpha, \beta) \in \mathsf{E}} P_{(\alpha, \beta)} \left( \int_0^t g_{\alpha, \beta} \left( \theta, W(\theta; s) \right) \mathrm{d}s \right) \cdot u_{\alpha, \beta}$$

where  $\{P_{(\alpha,\beta)}, (\alpha,\beta) \in E\}$  are independent Poisson standard processes. The SIR model example:

$$(S(t), I(t), R(t)) = (S(0), I(0), R(0)) + P_{(S,I)} \left( \int_0^t \frac{\beta}{N} \cdot S(z) \cdot I(z) dz \right) \cdot (-1, 1, 0) + P_{(I,R)} \left( \int_0^t \gamma \cdot I(z) dz \right) \cdot (0, -1, 1)$$

イロト イボト イヨト イヨ

Kurtz representation (Navarro Jimenez, Le Maitre, and O. M. Knio 2016) Assume X a random variable on the parameter space  $\Theta$ . There exist  $f_K$  and Z' such that:

$$W(X,\cdot) \stackrel{\mathcal{L}}{=} f_{\mathcal{K}}\left(\cdot, X; \underbrace{\left(P_{(\alpha,\beta)}, (\alpha,\beta) \in \mathsf{E}\right)}_{Z'}\right).$$

where  $\{P_{(\alpha,\beta)}, (\alpha,\beta) \in \mathsf{E}\}$  are independent Poisson standard processes.

Z' stands for the intrinsic randomness of the model.

#### Pros

• Applicable to any directed graph

#### Cons

• Not applicable to non-markovian processes

< □ > < 同 > < 回 > < 回 >

# Sellke representation (1/3)

Sellke 1983 introduced this construction detailed on the simple SIR model :  $S \xrightarrow{\frac{S}{N}S*I} I \xrightarrow{\gamma I} R$ 



Figure 6: Example of evolution of infection pressure

Infection transition depends on:

• 
$$P(t) = \frac{\beta}{N} \int_0^t I(u) \mathrm{d}u$$

# Sellke representation (1/3)

Sellke 1983 introduced this construction detailed on the simple SIR model :  $S \xrightarrow{\frac{S}{N}S \times I} I \xrightarrow{\gamma I} R$ 



Infection transition depends on:

• 
$$P(t) = \frac{\beta}{N} \int_0^t I(u) \mathrm{d}u$$

 Q<sub>1</sub>, Q<sub>2</sub>, ··· individual "resistance thresholds". As long as Q<sub>i</sub> > P(t), the *i*th individual is susceptible.

# Sellke representation (1/3)

Sellke 1983 introduced this construction detailed on the simple SIR model :  $S \xrightarrow{\frac{S}{N}S \times I} I \xrightarrow{\gamma I} R$ 



Figure 6: Example of evolution of infection pressure

Infection transition depends on:

• 
$$P(t) = \frac{\beta}{N} \int_0^t I(u) \mathrm{d}u$$

 Q<sub>1</sub>, Q<sub>2</sub>, ... individual "resistance thresholds". As long as Q<sub>i</sub> > P(t), the *i*th individual is susceptible.

(4) (2) (4)

 Recovery transition: based on the sojourn time mechanism.

4 (SIL) >

# Sellke representation (2/3)

**Objective:** By generalizing Sellke construction, construct a stochastic process  $W'(\theta; \cdot) = \{W'(\theta; t) = (W'_{\alpha}(\theta; t))_{\alpha \in V}, t \ge 0\}, \theta \in \Theta$ 

• Root process  $W'_{\alpha}(\theta, \cdot)$ 

Let  $\alpha$  be a root and  $Q_{\alpha,i}$ ,  $i = 1, \dots, n_{\alpha}$  be i.i.d. exponential variables.

$$\mathcal{W}'_lpha( heta,t) = \sum_{i\inlpha} \mathbb{1}_{\mathcal{Q}_{lpha,i} > \zeta_lpha( heta,t)}$$

where

$$\zeta_{lpha}( heta,t) = \int_0^t \psi_{lpha}( heta, W'( heta,s)) \, \mathrm{d}s.$$

 $Q_{\alpha,i}, i = 1, \dots, n_{\alpha}$  are called "resistance thresholds".

• Non-root process  $W'_{\beta}(\theta, \cdot)$ Let  $\beta$  be a non-root vertex. **Duration mechanism:** Path choice mechanism:  $W'_{\beta}(\theta, \cdot)$  is entirely function of  $\theta$ , the resistance thresholds,

the sojourn time variables and uniform variables.

< □ > < □ > < □ > < □ > < □ >

# Sellke representation (3/3)

**Assumption:** All the sojourn time variables are independent with exponential distributions.

Theorem

1. There exist  $f_S$  and Z such that:

 $\forall t \geq 0, \forall \theta \in \Theta, \quad W'(\theta; t) = f_S(t, \theta, Z)$ 

2. Assume X is a random variable on the parameter space Θ. Under the assumption above:

$$W(\mathbf{X},\cdot) \stackrel{\mathcal{L}}{=} f_{S}(\cdot,\mathbf{X},Z)$$

such that X and Z are independent.

Pros

• Adaptable to markovian and non-markovian processes

Cons

• Only applicable to directed acyclic graphs

MascotNum Meeting 2021

< □ > < □ > < □ > < □ > < □ >

#### Introduction

Model description by graphs

Model representations

Application to a SARS-CoV-2 model

**Conclusion and Perspectives** 

イロト イヨト イヨト イヨト

# SARS-CoV-2 model

Consider the following model for the spread of SARS-CoV-2 among a population with constant size N (Knock et al. 2021).



The process  $W(\theta, \cdot)$  depends on unknown parameters  $\theta = (\beta, \gamma_E, \gamma_A, \gamma_{SI}, \gamma_H, p_{(E,A)}, p_{SI}, p_{(H,R)})$  where  $p_{SI} = (p_{(SI,R)}, p_{(SI,H)}, p_{(SI,D)})$ 

- Model output:  $D_{tot}$  the total number of deaths during the epidemic.
- Computed indices: Sobol' indices
- Method: pick-freeze
- Number of explorations: n = 1500
- ▶ N = 1003 including 1000 susceptible and 3 exposed individuals at t = 0
- Uncertain parameter variation intervals are set according to Knock et al. 2021

< □ > < □ > < □ > < □ > < □ >

# Sensitivity analysis (2/4)



Figure 7: Main effects of parameters for D<sub>tot</sub>

### Conclusions

- Main effects show the importance of probabilities  $p_{SI}$  and  $p_{(E,A)}$
- These probabilities influence the amount of individuals that will end up in the compartment *D*

# Sensitivity analysis (3/4)



Figure 8: Main and Total effects of parameters for  $D_{tot}$  simulated by Sellke representation

### Conclusions

• The total effects highlight the interactions of Z with the model parameters

| MascotNum | Meeting 2021 |
|-----------|--------------|
|-----------|--------------|

イロト イヨト イヨト イヨ

# Sensitivity analysis (4/4)



Figure 9: Total effects of parameters for  $D_{tot}$ 

### Conclusions

- Total effects point out the impact of  $p_{SI}$ ,  $p_{(E,A)}$ ,  $\beta$  and Z.
- Significant differences can be observed in total effects of the parameters in the two representations.

MascotNum Meeting 2021

Global sensitivity analysis

#### Introduction

Model description by graphs

Model representations

Application to a SARS-CoV-2 model

Conclusion and Perspectives

MascotNum Meeting 2021

イロト イヨト イヨト イヨト

### Conclusion

Our approach:

- Provides additional information: intrinsic randomness contribution and its interactions with model parameters
- ▶ Is adaptable to most compartmental models used in epidemiology.

### Perspectives

- Is the sensitivity analysis independent of the representations of the model?
- Comparison with representation-free methods based on sensitivity analysis of probability measures of the outputs.

< □ > < 同 > < 回 > < Ξ > < Ξ

# Thanks for your attention !

MascotNum Meeting 2021

Global sensitivity analysis

April 28, 2021 28 / 29

メロト メロト メヨト メヨ

# Bibliography

- [Da 21] Sébastien Da Veiga. Kernel-based ANOVA decomposition and Shapley effects Application to global sensitivity analysis. 2021. arXiv: 2101.05487 [math.ST].
- [EK86] Stewart N. Ethier and Thomas G. Kurtz. Markov processes characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: John Wiley & Sons Inc., 1986, pp. x+534. ISBN: 0-471-08186-8.
- [Eto+20] Pierre Etore et al. "Global Sensitivity Analysis for Models Described by Stochastic Differential Equations". en. In: Methodology and Computing in Applied Probability 22.2 (June 2020), pp. 803–831. ISSN: 1387-5841, ISTA-7713. DOI: 10.1007/s11009-019-09732-6. URL: http://link.springer.com/10.1007/s11009-019-09732-6 (Vieta on 02/23/2021).
- [FKL20] Jean-Claude Fort, Thierry Klein, and Agnès Lagnoux. Global sensitivity analysis and Wasserstein spaces. 2020. arXiv: 2007.12378 [math.ST].
- [HAG17] J. L. Hart, A. Alexanderian, and P. A. Gremaud. "Efficient Computation of Sobol' Indices for Stochastic Models". In: SIAM Journal on Scientific Computing 39.4 (2017), AI514-AI530. DOI: 10.1137/16M106193X.eprint: https://doi.org/10.1137/16M106193X. URL: https://doi.org/10.1137/16M106193X.
- [JLK17] M. Navario Jimenez, O. P. Le Maitre, and O. M. Knio. "Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations". In: SIAM/ASA Journal on Uncertainty Quantification 5.1 (2017), pp. 378-402. DOI: 10.1137/1601061989. eprint: https://doi.org/10.1137/1601061989. URL: https://doi.org/10.1137/1601061989.
- [Kno+21] Edward S. Knock et al. "The 2020 SARS-CoV-2 epidemic in England: key epidemiological drivers and impact of interventions". In: medRxiv (2021). DOI: 10.1101/2021.01.11.21249564. epinit: https://www.medrxiv.org/content/early/2021/01/13/2021.01.11.21249564.full.pdf.URL: https://www.medrxiv.org/content/early/2021/01/13/2021.01.11.21249564.
- [Kur82] Thomas G. Kurtz. "Representation and approximation of counting processes". In: Advances in Filtering and Optimal Stochastic Control. Ed. by Wendell H. Fleming and Luis G. Gorostiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 177–191. ISBN: 978-3540-39517-1.
- [LK15] O.P. Le Maitre and O.M. Knio. "PC analysis of stochastic differential equations driven by Wiener noise". In: Reliability Engineering & System Safety 135 (2015), pp. 107–124. ISSN: 0951-8320. DOI: https://doi.org/10.1016/j.ress.2014.11.002. URL: https://www.sciencedirect.com/science/article/pii/S0951832014002749.
- [Mar+12] Amandine Marrel et al. "Global sensitivity analysis of stochastic computer models with joint metamodels". In: Statistics and Computing 22.3 (May 2012), pp. 833–847. ISSN: 1573-1375. DOI: 10.1007/s11222-011-9274-8. URL: https://doi.org/10.1007/s11222-011-9274-8.
- [Maz21] Gildas Mazo. "Global sensitivity indices, estimators and tradeoff between explorations and repetitions for some stochastic models". working paper or preprint. Jan. 2021. URL: https://hal.archives-ouvertes.fr/hal-02113448.
- [NLK16] M. Navaro Jimenez, O. P. Le Maitre, and O. M. Knio. "Global sensitivity analysis in stochastic simulators of uncertain reaction networks". In: *The Journal of Chemical Physics* 145.24 (2016), p. 244106. DOI: 10.1063/1.4971797. eprint: https://doi.org/10.1063/1.4971797. URL: https://doi.org/10.1063/1.4971797.
- [Sel83] Thomas Sellke. "On the asymptotic distribution of the size of a stochastic epidemic". In: Journal of Applied Probability 20.2 (1983), pp. 390–394. DOI: 10.2307/3213811.
- [ZS21] X. Zhu and B. Sudret. Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models. 2021. arXiv: 2005.01309 [stat.CO].