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Why conditional quantiles?

Quantiles

Quantile is widely used as a risk measure (VaR). Recall: for X a
random variable (a risk) with distribution function FX ,

qα(X ) = VaRα(X ) = inf{t / FX (t) ≥ α} = F −1
X (α),

RiskMetrics popularized the use of VaR as a risk measure
(1994).

Basel Committee : Internal approach to capital management
using VaR (1996),

Many natural examples where conditional quantiles are relevant:
some variables are better known than others, you may estimate
quantiles of the later knowing the first ones.
Quantile Oriented Sensitivity Analysis (QOSA).
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Why conditional quantiles?

A financial example

Consider four assets: iShares Core U.S. Aggregate Bond ETF,
PowerShares DB Commodity Index Tracking Fund, WisdomTree
Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial
Average ETF.
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Why conditional quantiles?

A financial example

Consider four assets: iShares Core U.S. Aggregate Bond ETF,
PowerShares DB Commodity Index Tracking Fund, WisdomTree
Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial
Average ETF.

How to use the knowledge of the 4 variables in order to estimate
risk measures for WisdomTree Japan Hedged Equity Fund.
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Why conditional quantiles?

A spatial example

Source: Geographic Information Technology Training Alliance.
How to estimate risk measures related to X (s) knowing Xs1,...,sp ?
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Quantile Oriented Sensitivity indices

Uncertainty

Model

f : Rd → R

x = (x1, . . . , xd) 7→ y = f (x)

with

f : mathematical or numerical model,

x: uncertain input parameters,

y : model’s output.

E.g. f is the Profit & Loss amount at time t = 1, the xi ’s are
different lines of insurance portfolio (automobile claims, home
insurance, asset management, ...).
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Quantile Oriented Sensitivity indices

Uncertainty

Model

f : Rd → R

x = (x1, . . . , xd) 7→ y = f (x)

The uncertainty on the input parameters is modelled by a
probability distribution P on Rd and we get

Y = f (X1, . . . ,Xd)

with the vector X = (X1, . . . ,Xd) distributed as P.

Sensitivity Analysis (SA)

The study of how uncertainty in the output of a model (numerical
or otherwise) can be apportioned to different sources of
uncertainty in the model’s inputs (Saltelli et al. (2004) e.g.).
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Quantile Oriented Sensitivity indices

Sobol indices

Independent Xi ’s. Defined by Sobol (1993)1.

Si =
var (E[Y |Xi ])

var(Y )

Si =
var(Y ) − E (var[Y |Xi ])

var(Y )

Si =
E
[
(Y − E[Y ])2

]
− E

(
E
[
(Y − E[Y |Xi ])

2 |Xi

])

E
[
(Y − E[Y ])2

]

Si =
min

θ
E
[
(Y − θ)2

]
− E

(
min

θ
E
[
(Y − θ)2 |Xi

])

min
θ

E
[
(Y − θ)2

]

1 Ilya M Sobol (1993). In: Mathematical Modelling and Computational

Experiments
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Quantile Oriented Sensitivity indices

Quantile oriented sensitivity analysis

QOSA: Quantile Oriented Sensitivity Analysis index: (Fort et al.
2016)

Sα
i =

min
θ∈R

E [ψα(Y , θ)] − E

[
min
θ∈R

E [ψα (Y , θ) |Xi ]

]

min
θ∈R

E [ψα(Y , θ)]

Sα
i =

E [ψα (Y , qα(Y ))] − E [ψα (Y , qα(Y |Xi))]

E [ψα(Y , qα(Y ))]

with the contrast function ψα : (y , θ) 7→ (y − θ)(α− 1y≤θ),
α ∈ [0, 1].
Remark ψ is related to quantiles:

qα(Y ) = arg min
θ∈R

E(ψα(Y , θ)).
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Quantile Oriented Sensitivity indices

Quantile oriented sensitivity analysis

QOSA: Quantile Oriented Sensitivity Analysis index: (Fort et al.
2016)

Sα
i =

E [ψα (Y , qα(Y ))] − E [ψα (Y , qα(Y |Xi))]

E [ψα(Y , qα(Y ))]

Properties:

0 ≤ Sα
i ≤ 1

Sα
i = 0 ⇐⇒ Y and Xi are independent

Sα
i = 1 ⇐⇒ Y is Xi measurable

Application example: Y is the observed ozone concentration, X
contains several variables such as: day type, deterministic prevision
of ozone concentration, temperature, humidity ... Which of these
variables have influence on the quantiles of Y ?
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Quantile Oriented Sensitivity indices

Estimating QOSA

Estimating Sobol’ index may avoid the estimation of the
conditional distribution by using var (E[Y |Xi ]) = Cov(Y ,Y ′) with

Y ′ = f (X′), X′ = (X ′
1, . . . ,X

′
i−1,Xi ,X

′
i+1, . . . ,X

′
n)

X ′
j independent copy of Xj .

The estimation of QOSA’ index requires to estimate the
conditional distribution Y |Xi .

Kernel methods2 optimal window width difficult to calibrate,
requires a large number of calls to the costly function f .

Random Forest method Less calls to f , time consuming
nevertheless.

2 Véronique Maume-Deschamps and Ibrahima Niang (2018). In: Statistics &

Probability Letters

Thomas Browne et al. (2017). In: hal.archives-ouvertes.fr
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Computing / estimating conditional quantiles

Gaussian case

Assume (Y ,X) is Gaussian with expectation µ = (µY , µX) and
covariance matrix

Σ =

(
σ2

Y ΣT
Y X

ΣY X ΣX

)

If ΣX is invertible, then Y |X follows a normal law with expectation
µY |X = µY + ΣT

Y XΣ−1
X (X − µX) and variance

σ2
Y |X = σ2

Y − ΣY XT Σ−1
X ΣY X.

Then, the conditional quantiles are easily computable:

qα
Y |X = µY |X + φ−1(α)σY |X.
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Computing / estimating conditional quantiles

Quantile regression

Approximate the conditional quantile by3:

q̂α(X2|X1) = β∗T X1 + β∗
0

where β∗ and β∗
0 are the solutions of the following minimization

problem:

(β∗, β∗
0) = arg min

β∈RN ,β0∈R

E[ψα(X2, β
T X1 + β0)]

Recall:
ψα(x , θ) = (x − θ)(α− 1x≤θ)

and
qα(X2|X1) = arg min

θ∈R

E(ψα(X2, θ)|X1).

3 R. Koenker and G. Jr. Bassett (1978). In: Econometrica
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Computing / estimating conditional quantiles

Other methods

Random Forest,

Neural networks,

Nearest neighbors.

A survey with various methods is proposed by Torosian et al.4

4 Léonard Torossian et al. (2020). In: Reliability Engineering & System

Safety
16 / 79



Introduction Elliptic distributions Random forest estimation Conclusions References

Plan

1 Introduction

2 Elliptic distributions
Definitions
Quantile regression
High level quantiles

3 Random forest estimation

4 Conclusions

17 / 79



Introduction Elliptic distributions Random forest estimation Conclusions References

Definitions

Consistent Elliptic distributions

Definition

A Rd random vector X has a consistent elliptic distribution if it
writes5:

X
d
= µ+ ǫN (0,Σ)

with ǫ a positive random variable, independent of the underlying
normal vector. This means that, a consistent elliptical distribution
is a normal distribution with random variance ǫ2Σ.

5 Y. Kano (1994). In: Journal of Multivariate Analysis
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Definitions

An equivalent definition

X
d
= µ+ ǫN (0,Σ) rewrites as6

X
d
= µ+ RΛU(d)

where ΛΛT = Σ, U(d) is a d−dimensional random vector uniformly

distributed on Sd−1, R
d
= χdǫ, R and U(d) are independent.

R is called the radius of X, χ2
d is a χ-squared distribution,

independent of ǫ and of the underlying Gaussian process.
X is said to be a consistent (R, d)−elliptical random vector with
parameters µ and Σ.

6 S. Cambanis, S. Huang, and G. Simons (1981). In: Journal of Multivariate

Analysis
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Definitions

Properties of elliptic distributions

Sub-vectors of elliptical vectors are elliptical, more precisely,
Let X = (X1,X2) be a consistent (R, d)−elliptical random
vector with parameters µ and Σ. X1 and X2 are d1 and
d2−dimensional subvectors of X. Let us write Σ :

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

Then X1 and X2 are respectively (R, d1)− and
(R, d2)−elliptical with parameters µ1, Σ11 and µ2, Σ22,
respectively.

Conditional distributions of elliptical vectors are also elliptical.

Linear combinations of coordinates / sub-vectors of elliptic
distributions are also elliptic.
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Definitions

Properties of elliptic distributions

Sub-vectors of elliptical vectors are elliptical,

Conditional distributions of elliptical vectors are also elliptical.
More precisely,
X2|(X1 = x1) is still elliptical, with radius R∗ given by:

R∗ d
= R

√
1 − β|

(
R
√
βU(d) = C−1

11 (x1 − µ1)
)
,

where C11 is the root of Σ11, and β ∼ Beta(d1
2 ,

d2
2 ).

Linear combinations of coordinates / sub-vectors of elliptic
distributions are also elliptic.
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Definitions

Examples

Normal distributions: ǫ = 1.

Student distributions: with ν degrees of freedom: ǫ
d
=
√

ν
χ2

d

.

Slash distributions: ǫ
d
= P(1, a).

Laplace distibution: ǫ
d
=
√

E(λ).

Many other.
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Definitions

Examples

Normal distributions: ǫ = 1.

Student distributions: with ν degrees of freedom: ǫ
d
=
√

ν
χ2

d

.

Slash distributions: ǫ
d
= P(1, a).

Laplace distibution: ǫ
d
=
√

E(λ).

Many other.
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Definitions

Conditional quantiles

We are interested in conditional quantiles for elliptical distributions.
We have seen that conditional elliptical distribution are still
elliptical. Assume a X is a (R, 1) elliptical random vector with
parameters µ and σ2 ∈ R+, then

X = µ+ σRU(1)

where U(1) = −1 or 1 with probability 1
2 . Thus, for α > 1

2 ,

qα(X ) = µ+ σΦ−1
R (2α− 1)

where ΦR is the distribution function of R.
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Definitions

Conditional quantiles

Proposition

Let X = (X1,X2) a (R,N + 1)−elliptical random vector with
parameters µ and Σ. Write

Σ =

(
Σ11 Σ12

ΣT
12 Σ22

)
.

Then for α ≥ 1
2 ,

qα (X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R∗ (2α− 1)

with

{
µ2|1 = µ2 + ΣT

12Σ−1
11 (x1 − µ1)

Σ2|1 = Σ22 − ΣT
12Σ−1

11 Σ12

Problem: the distribution of R∗ is hardly accessible.
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Quantile regression

Quantile Regression for elliptic distributions

Write α′ for 2α− 1.

Theorem

Let X = (X1,X2) be an elliptical distribution, the optimal quantile
regression β∗ is given by :

β∗ = Σ−1
11 Σ12

The Quantile Regression Predictor with level α ∈ [1
2 , 1] is given by:

q̂α(X2|X1 = x1) = µ2|1 +
√

Σ2|1Φ−1
R (α′)

It satisfies

q̂α(X2|X1) ∼ E1

(
µ2 + Σ2|1Φ−1

R (α′),ΣT
12Σ−1

11 Σ12,R
)
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Quantile regression

How good is the quantile regression?

Gaussian case
{

qα(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α′)

q̂α(X2|X1 = x1) = µ2|1 + σ2|1Φ−1(α′)

The Quantile Regression Predictor is exactly the conditional
quantile.
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High level quantiles

Extreme approximations

In case α ∼ 1, alternative methods have to be proposed. More
precisely, we found an equivalent of Φ−1

R∗ (α′).
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High level quantiles

Some asymptotic relationships

Theorem

Under some technical assumptions, their exist 0 < ℓ < +∞ and
η ∈ R such that :

[
Φ−1

R

(
1 − 1

ℓ
1−α

+2(1−ℓ)

)] 1
η ∼

α→1
Φ−1

R∗ (α)

This allows to approximate the conditional quantiles.
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High level quantiles

Examples

Property

The Gaussian, Student and Slash distributions satisfy the previous
assumptions, with coefficients η and ℓ given in the table below.

Distribution η ℓ

Gaussian 1 1

Student, ν > 0 N
ν

+ 1
Γ( ν+N+1

2 )Γ( ν

2 )
Γ( ν+N

2 )Γ( ν+1
2 )

(
1 + q1

ν

) N+ν

2 ν
N
2

+1

ν+N

Slash, a > 0 N
a

+ 1
Γ( N+1+a

2 )q
N+a

2
1

Γ( N+a
2 )(N+a)χ2

N+a
(q1)2

a
2

−1
Γ( 1+a

2 )
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High level quantiles

Estimations

Under additional assumptions (heavy tail + order two condition),
estimations of the parameters ℓ, η, γ + asymptotic normality of
the estimators are given7.

7 Antoine Usseglio-Carleve (2018). In: Electronic Journal of Statistics
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High level quantiles

Financial example

These four values are the first available every day ⇒ anticipate the
behaviour of the return of WisdomTree Japan Hedged Equity Fund
X2.
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High level quantiles

Financial example

The sample size is 2520. The first 2519 days (from January 3,
2007 to December 5, 2016) = learning sample, and we focus on
the 2520th day: x1 = (−0.0185%,−0.4464%, 0.9614%, 0.1405%).
Estimate quantiles of X2|X1 = x1.
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High level quantiles

Financial example

The sample size is 2520. The first 2519 days (from January 3,
2007 to December 5, 2016) = learning sample, and we focus on
the 2520th day: x1 = (−0.0185%,−0.4464%, 0.9614%, 0.1405%).
Estimate quantiles of X2|X1 = x1.
Data exploration:

the daily returns can be considered as independent.

the marginals seem symmetrical.

the measured tail index is approximately the same for the
marginals.

Could be assumed to be elliptical.
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High level quantiles

Conclusion / perspectives for part I.

Regression methods are not satisfactory for non gaussian
distributions.

Framework adapted to a large class of risk measures (TVaR,
Lp quantile, Haezendonck-Goovaerts risk measures).

New technics needed in the high dimension case (N large).

More details in references below8.

Mixed approaches for non central but non extreme risk levels?

Non symetric distributions?

8 V. Maume-Deschamps, D. Rullière, and A. Usseglio-Carleve (2017a). In:
Journal of Multivariate Analysis

V. Maume-Deschamps, D. Rullière, and A. Usseglio-Carleve (2017b). In:
Methodology and Computing in Applied Probability

Antoine Usseglio-Carleve (2018). In: Electronic Journal of Statistics
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Methods for conditional quantiles estimation

Quantile regression is bad if you are far from gaussian,

Kernel methods to estimate the conditional distribution
function FY |X(t) = P(Y ≤ t|X), difficulty to adapt the
window.

Random forest methods,

Neural networks methods.

In this part, we focus on random forest methods, having in mind
that we aim at estimating QOSA indices:
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Methods for conditional quantiles estimation

In this part, we focus on random forest methods, having in mind
that we aim at estimating QOSA indices:

Sα
i =

min
θ∈R

E [ψα(Y , θ)] − E

[
min
θ∈R

E [ψα (Y , θ) |Xi ]

]

min
θ∈R

E [ψα(Y , θ)]

Sα
i =

E [ψα (Y , qα(Y ))] − E [ψα (Y , qα(Y |Xi))]

E [ψα(Y , qα(Y ))]
,

with ψα(x , θ) = (x − θ)(α− 1x≤θ).
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A remark on the definition of QOSA

ψα(x , θ): a non symetric distance.

E [ψα (Y , θ)] is a mean dispersion
measure of Y which is minimized
for θ = qα(Y ). So that QOSA in-
dices compare the dispersion of Y
around its quantile with its condi-
tional counterpart.

Other indices have been proposed by Kucherenko et al. in order to
assess the impact of Y over quantiles, but their interpretation is
questionnable:

k̄α
i ,1 = E [|qα (Y ) − qα (Y | Xi)|] k̄α

i ,2 = E
[
(qα (Y ) − qα (Y | Xi))

2
]
.
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A remark on the definition of QOSA

Comparison on the toy model: Y = X1 − X2 with Xi  E(1).
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A remark on the definition of QOSA

Normalized versions

Kα
i ,1 =

k̄α
i ,1

d∑
j=1

k̄α
j,1

and Kα
i ,2 =

k̄α
i ,2

d∑
j=1

k̄α
j,2

.
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Trees, forests

Random Forests

Agregate several CART’s to reduce the estimation variance

Training sample: Dn =
(
Xi ,Y i

)
, i = 1, . . . , n

Θℓ, ℓ = 1, . . . , k are independent random variables which
determine how a tree is constructed (bootstrap on Dn and
which variables are considered for the splits of each node), Θℓ

is assumed to be independent of Dn.

An(x; Θℓ,Dn): the leaf that is obtained when dropping x
down the tree.

Nn(x,Θℓ,Dn): the number of points which are in
An(x; Θℓ,Dn).

Nb
n (x,Θℓ,Dn): the number of points of the bootstrapped

sample, which are in An(x; Θℓ,Dn).
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Random forests estimations

Random forest conditional distributions functions
estimation

Methods with random forest are often using the bootstrap sample,
consider the random variable Bj (Θℓ,Dn) as the number of times
that the observation

(
Xj ,Y j

)
has been drawn from the original

dataset for the ℓ-th tree construction. Consider the weights:

ωn,i(x,Θ) =
1

k

k∑

j=1

1Xi ∈An(x,Θj ,Dn)

Nn(x,Θj ,Dn)
,

ωb
n,i (x,Θ) =

1

k

k∑

ℓ=1

Bi (Θℓ,Dn) 1Xi ∈An(x;Θℓ,Dn)

Nb
n (x; Θℓ,Dn)

,

and the corresponding estimations of F (y |X = x):

F̂ b
n (y |X = x) =

n∑

i=1

ωb
n,i (x) 1{Y i6y}.
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Random forests estimations

Random forest conditional quantiles estimation

Once the conditional distribution function is estimated, the
conditional quantiles are estimated straightforwardly:

q̂α(Y |X) = inf{t ∈ R, F̂n(t|X) ≥ α}.

With standard arguments, the consistency of F̂n(t|X) leads to the
consistency of q̂α(Y |X), provided that for all x, the conditional
y 7→ F (y |X = x) is continuous and increasing.
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Random forests estimations

Consistency of random forests

Results by Scornet, Biau, Vert (2015) in a linear model context:

Y = m(X ) + ε with ε N (0, σ2) and m(X ) =
d∑

i=1

mi(Xi).

mn (x,Θ) =
n∑

i=1

ωn,i (x,Θ) Y i ,

ωn,i as before. Under various assumptions including tree size wrt n
and a forest correlation control, for X U [0, 1]d ,

E[(mn(X) − m(X))2] −→ 0, with mn = EΘ(mn,k).

No results for m(x)

Results for fully grown trees and for limited grown trees.
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Random forests estimations

Consistency of conditional distribution

Assume Y = f (X) + ε, with ε a centred random variable,
independent on X.
In Meinshausen (2006)10, convergence results for F̂ (y |X = x) for a
simplified random forest model. The ωn,i(x)’s are considered as
constant (while they are random variables - depending on Θ, Xi ,
Y i , i = 1, . . . , n)
+ various assumptions including tree growth and some regularity
on F (y |X = x).

10 Nicolai Meinshausen (2006). In: Journal of Machine Learning Research
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Random forests estimations

Consistency: assumptions

Conditions

Relations between k (number of trees) and Nb
n (x; Θ,Dn) (number

of bootstrap observations in a leaf node):

1 k = O (nα) , with α > 0.

2 ∀x, Nb
n (x; Θ,Dn) = Ω

(√
n (ln (n))

β
)
, with β > 1, a.s.a

or

af (n) = Ω (g (n)) ⇐⇒ ∃k > 0, ∃n0 > 0 | ∀n > n0 |f (n)| > k · |g (n)|
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Random forests estimations

Consistency: assumptions

Conditions

Relations between k (number of trees) and Nb
n (x; Θ,Dn) (number

of bootstrap observations in a leaf node):

1 k = O (nα) , with α > 0.

2 ∀x, E
[
Nb

n (x; Θ,Dn)
]

= Ω
(√

n (ln (n))
β
)
, with β > 1, and

∀x, CV
(
Nb

n (x; Θ,Dn)
)

= O
(

1

n(1+α)/2 (ln (n))
γ/2

)
, with γ > 1.a

aCV (X) = σX /E(X)

54 / 79



Introduction Elliptic distributions Random forest estimation Conclusions References

Random forests estimations

Consistency: assumptions

Conditions

Relations between k (number of trees) and Nb
n (x; Θ,Dn) (number

of bootstrap observations in a leaf node):

1 k = O (nα) , with α > 0.

2 ∀x, E
[
Nb

n (x; Θ,Dn)
]

= Ω
(√

n (ln (n))
β
)
, with β > 1, and

∀x, CV
(
Nb

n (x; Θ,Dn)
)

= O
(

1

n(1+α)/2 (ln (n))
γ/2

)
, with γ > 1.a

The variations of function F (y |X = ·) is small on the trees’ leaves:
∀x,∀y ,

sup
z,z′∈An(x,Θj )

|F (y | z) − F (y | z′)| a.s.−→
n→∞

0.

aCV (X) = σX /E(X)
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Random forests estimations

Consistency: result11

Theorem

Assume the 3 conditions above are verified and F (·|X = x) is
continuous and increasing, ∀x ∈ Rd . Let Fn be either F̂ b

n or F̂n,

sup
y∈R

|Fn (y | X = x) − F (y | X = x)| a.s.−→
n→∞

0

Idea of the proof: The main idea is to use an auxiliary sample: let
(Xi⋄,Y i⋄, i = 1, . . . n) be a second sample, independent from
(Xi ,Y i , i = 1, . . . , n) and consider the weights and the
corresponding estimation of F (y |X = x):

ω⋄
n,i(x,Θ) =

1

k

k∑

j=1

1Xi⋄∈An(x,Θj ,Dn)

Nn(x,Θj ,Dn)
, F ⋄

n (y |X = x) =
n∑

i=1

ω⋄
i (x) 1{Y i⋄6y}.

11 Kevin Elie-Dit-Cosaque and Véronique Maume-Deschamps (2020). In:
hal.archives-ouvertes.fr
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Random forests estimations

The two samples method.

We prove:

1 |Fn (y | X = x) − F ⋄
n (y | X = x)| a.s.−→

n→∞
0, uses a Hoeffding like

inequality + Vapnik-Chervonenkis classes12 (proximity of N⋄

and Nb),

2 |F ⋄
n (y | X = x) − F (y | X = x)| a.s.−→

n→∞
0, uses

Vapnik-Chervonenkis classes again.

3 use a Dini argument to conclude with the supy∈R.

12 V. N. Vapnik and A. Ya. Chervonenkis (1971). In: Theory of Probability

and its Applications
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QOSA estimation

Estimation strategies for the QOSA indices

Recall:

Sα
i = 1 − E [ψα (Y , qα(Y |Xi))]

E [ψα(Y , qα(Y ))]
= 1 −

E

[
min
θ∈R

E [ψα (Y , θ)| Xi ]

]

E [ψα(Y , qα(Y ))]
.

Training sample: Dn =
(
Xj ,Y j

)
j=1,...,n, the denominator is easily

estimated with P̂1 =
1

n

n∑

j=1

ψα

(
Y j , q̂α(Y )

)
.

Two strategies to estimate the numerator:

Quantile based estimators E [ψα (Y , qα(Y |Xi))],

Minimum based estimators E

[
min
θ∈R

E [ψα (Y , θ)| Xi ]

]
.
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QOSA estimation

Quantile based estimators

Methods based on two training samples:
D⋆

n =
(
X⋆j ,Y ⋆j

)
j=1,...,n for computing the index,

Dn =
(
Xj ,Y j

)
j=1,...,n for estimating the conditional quantile.

R̂i =
1

n

n∑

j=1

ψα

(
Y ⋆j , q̂α

(
Y | Xi = X ⋆j

i

))

Construct the forest with Di
n =

(
X j

i ,Y
j
)

j=1,...,n
from Dn.

1 Quantile estimation with a weighted approach: R̂1,b
i or R̂1,o

i

F b
k,n (y | Xi = xi) =

n∑
j=1

wb
n,j (xi) 1{Y j6y}

q̂α (Y | Xi = xi) = inf
{

Y p, p = 1, . . . , n : F b
k,n (Y p| Xi = xi) > α

}

2 Quantile estimation within a leaf: R̂2,b
i or R̂2,o

i .
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QOSA estimation

Quantile based estimators

Methods based on two training samples:
D⋆

n =
(
X⋆j ,Y ⋆j

)
j=1,...,n for computing the index,

Dn =
(
Xj ,Y j

)
j=1,...,n for estimating the conditional quantile.

R̂i =
1

n

n∑

j=1

ψα

(
Y ⋆j , q̂α

(
Y | Xi = X ⋆j

i

))

Construct the forest with Di
n =

(
X j

i ,Y
j
)

j=1,...,n
from Dn.

1 Quantile estimation with a weighted approach: R̂1,b
i or R̂1,o

i

2 Quantile estimation within a leaf: R̂2,b
i or R̂2,o

i .

For one tree, q̂b,α
ℓ (Y | Xi = xi) on the leaf containing xi . On

the forest:

q̂α (Y | Xi = xi) =
1

k

k∑

ℓ=1

q̂b,α
ℓ (Y | Xi = xi) .
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QOSA estimation

Minimum based estimators

Minimum estimation with a weighted approach:
Dn =

(
Xj ,Y j

)
j=1,...,n and

(
X⋆j
)

j=1,...,n, i.e. requires 1.5 training
samples.

Estimate E

[
min
θ∈R

E [ψα (Y , θ)| Xi ]

]
with

1

n

n∑

m=1

min
p=1,...,n

n∑

j=1

wb
n,j (X ⋆m

i )ψα

(
Y j ,Y p

)

=⇒ Q̂1,b
i or Q̂1,o

i .
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QOSA estimation

Minimum based estimators

Minimum estimation within a leaf: Dn =
(
Xj ,Y j

)
j=1,...,n. Estimate

E [minθ∈R E [ψα (Y , θ)| Xi ]] with

1

k

k∑

ℓ=1




1

Nℓ
leaves

Nℓ
leaves∑

m=1


 min

p∈Lb
ℓ,m

∑

j∈Lb
ℓ,m

ψα

(
Y j ,Y p

)

|Lb
ℓ,m|







=⇒ Q̂2,b
i or Q̂2,o

i .
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QOSA estimation

Leaf size issue

We use R̂1
i =

1

n

∑n
j=1 ψα

(
Y j , q̂α

(
Y | Xi = X j

i

))
as score.

In the cross validation process, among a grid of possible sizes,
construct a forest with leaf size realizing the minimal score.
Using the Out of Bag (OoB) sample.

1 For a given observation (X j
i ,Y

j) from Di
n, consider the set of

trees built with the bootstrap samples not containing this
observation (it is Out of Bag).

2 Aggregate the estimations from these trees to make the OoB

estimation: q̂b,α
oob

(
Y | Xi = X j

i

)
of qα

(
Y | Xi = X j

i

)
.

3 Calculate the OoB score:

ÔOB
b

i =
1

n

n∑

j=1

ψα

(
Y j , q̂b,α

oob

(
Y | Xi = X j

i

))
.

Among a grid of possible sizes, construct a forest with leaf
size realizing the minimal OoB score.
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QOSA estimation

Leaf size issue

We use R̂1
i =

1

n

∑n
j=1 ψα

(
Y j , q̂α

(
Y | Xi = X j

i

))
as score.

In the cross validation process, among a grid of possible sizes,
construct a forest with leaf size realizing the minimal score.

Using the Out of Bag (OoB) sample. Among a grid of
possible sizes, construct a forest with leaf size realizing the
minimal OoB score.

Using the OoB sample is much less time consuming since, it does
not require cutting out the training sample and it takes place
during the forest construction process.
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Simulation studies

Sum of exponential laws

case Xi  E(λi), λi ∈ R+ distinct;
Y =

∑n
i=1 Xi a semi-closed form formula may be obtained by using

calculations from Marceau (2014).

Simulation study for λ1 = 0.5, λ2 = 1, λ3 = 1.5, λ4 = 2.

sample size = 104,

nb trees = 100,

boxplots on 100 repetitions.
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Simulation studies

Comparison with kernel methods

Consider a toy model: Y = X1 − X2 with Xi  E(1) independent.
RMSE and run time of the random forest based estimators: with
Q̂1,o

i and Q̂2,o
i as well as those based on kernel: S̃α

i
13 and Šα

i
14,

sample size is 104.
RF with Q̂

1,o
i RF with Q̂

2,o
i S̃α

i Šα
i

α = 0.1 0.007 0.009 0.061 0.020

α = 0.25 0.008 0.009 0.042 0.013

α = 0.5 0.008 0.008 0.027 0.019

α = 0.75 0.008 0.008 0.014 0.035

α = 0.99 0.006 0.006 0.013 0.084

run time 1 hr 18 min 24 sec 1 min 51 sec 1 hr 55 min

13 Véronique Maume-Deschamps and Ibrahima Niang (2018). In: Statistics &

Probability Letters
14 Thomas Browne et al. (2017). In: hal.archives-ouvertes.fr
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Simulation studies

A real dataset

Bias between the predictions from MOCAGE (Modèle de Chimie
Atmosphérique à Grande Echelle) and the observed ozone
concentration.
This dataset15 contains 10 variables with 1041 observations.
O3obs: observed ozone concentration will be explained by the 9
other variables.

JOUR: type of day (holiday vs no holi-
day)

STATION: site of observations (5 differ-
ent sites)

MOCAGE: ozone concentration pre-
dicted by a fluid mechanics model

TEMPE: officially predicted tempera-
tures

RMH2O: humidity ratio NO2: nitrogen dioxide concentration
VentMOD: wind force VentANG: wind direction
NO: nitric oxide concentration

15 Philippe Besse et al. (2007). In: Pollution atmosphérique
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Simulation studies

Conclusion / perspectives for part II.

Random forest methods usefull for conditional quantile and
QOSA estimations, but costly.

Methods implemented in Python17 (QOSA) and Julia18

(conditional distributions).

Asymptotic distributions to get confidence intervals?

To be compared with Generalized Random Forest19.

17 Kévin Elie-Dit-Cosaque (2020).
18 Benoit Fabrège and Véronique Maume-Deschamps (2020).
19 Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: The Annals

of Statistics
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Conclusions

Importance of conditional quantile estimations

Various methods exists, we have seen only few.
Specific methods available for some classes of distributions
such as elliptical distributions.
Specific attention for high level quantiles (uses extreme value
theory).

Interest of QOSA indicies

Give different informations than Sobol indices, pertinent if you
are interested in different quantile levels.
Interpretation not so easy, especially if inputs are dependent
−→ go the qosa-Shapley (mixture of Shapley effect20 and
QOSA indices (work in progress).

20 Art B Owen and Clémentine Prieur (2016). In: arXiv preprint

arXiv:1610.02080
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Thank you

Thanks for your attention.

Merci pour votre attention.
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AMIES

N’oubliez pas qu’AMIES peut vous aider dans vos

collaborations avec les entreprises
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