Introduction	Elliptic distributions	Random forest estimation	Conclusions
00000000000	00000000000000	000000000000000000000000000000000000000	00

References 00

On the Estimation of conditional quantiles.

Véronique Maume-Deschamps contains joint works with Kevin Elie-Dit-Cosaque, Didier Rullière and Antoine Usseglio-Carleve.

Mascotnum 2021 meeting

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References

Plan

Introduction

- Why conditional quantiles?
- Quantile Oriented Sensitivity indices
- Computing / estimating conditional quantiles
- 2 Elliptic distributions
 - Definitions
 - Quantile regression
 - High level quantiles
- 3 Random forest estimation
 - Trees, forests
 - Random forests estimations
 - QOSA estimation
 - Simulation studies

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
0000000000				

Plan

Introduction

- Why conditional quantiles?
- Quantile Oriented Sensitivity indices
- Computing / estimating conditional quantiles

2 Elliptic distributions

3 Random forest estimation

4 Conclusions

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Why conditional qua	ntiles?			
Quantiles				

Quantile is widely used as a risk measure (VaR). Recall: for X a random variable (a risk) with distribution function F_X ,

- $q_{\alpha}(X) = \operatorname{VaR}_{\alpha}(X) = \inf\{t \ / \ F_X(t) \ge \alpha\} = F_X^{-1}(\alpha),$
- RiskMetrics popularized the use of VaR as a risk measure (1994).
- Basel Committee : Internal approach to capital management using VaR (1996),

Many natural examples where conditional quantiles are relevant: some variables are better known than others, you may estimate quantiles of the later knowing the first ones. Quantile Oriented Sensitivity Analysis (QOSA).

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Why conditional qua	ntiles?			
A financia	al example			

Consider four assets: iShares Core U.S. Aggregate Bond ETF, PowerShares DB Commodity Index Tracking Fund, WisdomTree Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial Average ETF.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Why conditional qua	ntiles?			
A financia	l example			

Consider four assets: iShares Core U.S. Aggregate Bond ETF, PowerShares DB Commodity Index Tracking Fund, WisdomTree Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial Average ETF.

How to use the knowledge of the 4 variables in order to estimate risk measures for WisdomTree Japan Hedged Equity Fund.

Introduction	Elliptic distributions
0000000000	

Random forest estimation

Conclusions

References

Why conditional quantiles?

A spatial example

Source: Geographic Information Technology Training Alliance. How to estimate risk measures related to X(s) knowing $X_{s_1,...,s_p}$?

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Quantile Oriented Sens	itivity indices			
Uncertainty	/			

Model

$$f: \begin{vmatrix} \mathbb{R}^d & \to & \mathbb{R} \\ \mathbf{x} = (x_1, \dots, x_d) & \mapsto & y = f(\mathbf{x}) \end{vmatrix}$$

with

- f: mathematical or numerical model,
- x: uncertain input parameters,
- y: model's output.

E.g. f is the Profit & Loss amount at time t = 1, the x_i 's are different lines of insurance portfolio (automobile claims, home insurance, asset management, ...).

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Quantile Oriented S	ensitivity indices			
Uncertain	itv			

Model

The uncertainty on the input parameters is modelled by a probability distribution $\mathbb P$ on $\mathbb R^d$ and we get

$$Y = f(X_1, \ldots, X_d)$$

with the vector $\mathbf{X} = (X_1, \dots, X_d)$ distributed as \mathbb{P} .

Sensitivity Analysis (SA)

The study of how uncertainty in the output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model's inputs (Saltelli et al. (2004) e.g.).

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Quantile Oriented S	ensitivity indices			
Sobol ind	ices			

Independent X_i 's. Defined by Sobol (1993)¹.

$$S_{i} = \frac{\operatorname{var}\left(\mathbb{E}[Y|X_{i}]\right)}{\operatorname{var}(Y)}$$

$$S_{i} = \frac{\operatorname{var}(Y) - \mathbb{E}\left(\operatorname{var}[Y|X_{i}]\right)}{\operatorname{var}(Y)}$$

$$S_{i} = \frac{\mathbb{E}\left[\left(Y - \mathbb{E}[Y]\right)^{2}\right] - \mathbb{E}\left(\mathbb{E}\left[\left(Y - \mathbb{E}[Y|X_{i}]\right)^{2} | X_{i}\right]\right)}{\mathbb{E}\left[\left(Y - \mathbb{E}[Y]\right)^{2}\right]}$$

$$S_{i} = \frac{\min_{\theta} \mathbb{E}\left[\left(Y - \theta\right)^{2}\right] - \mathbb{E}\left(\min_{\theta} \mathbb{E}\left[\left(Y - \theta\right)^{2} | X_{i}\right]\right)}{\min_{\theta} \mathbb{E}\left[\left(Y - \theta\right)^{2}\right]}$$

¹ Ilya M Sobol (1993). In: Mathematical Modelling and Computational Experiments

Elliptic distributions

Random forest estimation

Conclusions

References

Quantile Oriented Sensitivity indices

Quantile oriented sensitivity analysis

QOSA: Quantile Oriented Sensitivity Analysis index: (Fort *et al.* 2016)

$$S_{i}^{\alpha} = \frac{\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\psi_{\alpha}(\boldsymbol{Y}, \theta)\right] - \mathbb{E}\left[\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\psi_{\alpha}\left(\boldsymbol{Y}, \theta\right) | X_{i}\right]\right]}{\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\psi_{\alpha}(\boldsymbol{Y}, \theta)\right]}$$

$$S_{i}^{\alpha} = \frac{\mathbb{E}\left[\psi_{\alpha}\left(Y, q_{\alpha}(Y)\right)\right] - \mathbb{E}\left[\psi_{\alpha}\left(Y, q_{\alpha}(Y|X_{i})\right)\right]}{\mathbb{E}\left[\psi_{\alpha}(Y, q_{\alpha}(Y))\right]}$$

with the contrast function $\psi_{\alpha} : (y, \theta) \mapsto (y - \theta)(\alpha - \mathbf{1}_{y \leq \theta}), \alpha \in [0, 1].$ Remark ψ is related to quantiles:

$$q_{lpha}(Y) = rgmin_{ heta \in \mathbb{R}} \mathbb{E}(\psi_{lpha}(Y, heta)).$$

Elliptic distributions

Quantile Oriented Sensitivity indices

Quantile oriented sensitivity analysis

QOSA: Quantile Oriented Sensitivity Analysis index: (Fort *et al.* 2016)

$$\mathcal{S}_{i}^{lpha} = rac{\mathbb{E}\left[\psi_{lpha}\left(Y, q_{lpha}(Y)
ight)
ight] - \mathbb{E}\left[\psi_{lpha}\left(Y, q_{lpha}(Y|X_{i})
ight)
ight]}{\mathbb{E}\left[\psi_{lpha}(Y, q_{lpha}(Y))
ight]}$$

Properties:

- $0 \leq S_i^{\alpha} \leq 1$
- $S_i^{\alpha} = 0 \iff Y$ and X_i are independent
- $S_i^{\alpha} = 1 \iff Y$ is X_i measurable

Application example: Y is the observed ozone concentration, **X** contains several variables such as: day type, deterministic prevision of ozone concentration, temperature, humidity ... Which of these variables have influence on the quantiles of Y?

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Quantile Oriented S	ensitivity indices			
Estimatin	g QOSA			

Estimating Sobol' index may avoid the estimation of the conditional distribution by using var $(\mathbb{E}[Y|X_i]) = Cov(Y, Y')$ with

$$Y' = f(\mathbf{X}'), \ \mathbf{X}' = (X'_1, \dots, X'_{i-1}, \mathbf{X}'_i, X'_{i+1}, \dots, X'_n)$$

 X'_i independent copy of X_j .

The estimation of QOSA' index requires to estimate the conditional distribution $Y|X_i$.

- Kernel methods² optimal window width difficult to calibrate, requires a large number of calls to the costly function *f*.
- Random Forest method Less calls to *f*, time consuming nevertheless.

²Véronique Maume-Deschamps and Ibrahima Niang (2018). In: *Statistics & Probability Letters*

Thomas Browne et al. (2017). In: hal.archives-ouvertes.fr

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Computing / estima	ting conditional quantiles			
Gaussian	case			

Assume (Y, \mathbf{X}) is Gaussian with expectation $\mu = (\mu_Y, \mu_{\mathbf{X}})$ and covariance matrix

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{\boldsymbol{Y}}^2 & \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}}^T \\ \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}} & \boldsymbol{\Sigma}_{\boldsymbol{X}} \end{pmatrix}$$

If $\Sigma_{\mathbf{X}}$ is invertible, then $Y|\mathbf{X}$ follows a normal law with expectation $\mu_{Y|\mathbf{X}} = \mu_Y + \Sigma_{Y\mathbf{X}}^T \Sigma_{\mathbf{X}}^{-1} (\mathbf{X} - \mu_{\mathbf{X}})$ and variance $\sigma_{Y|\mathbf{X}}^2 = \sigma_Y^2 - \Sigma Y \mathbf{X}^T \Sigma_{\mathbf{X}}^{-1} \Sigma_{Y\mathbf{X}}$. Then, the conditional quantiles are easily computable:

$$q_{Y|\mathbf{X}}^{\alpha} = \mu_{Y|\mathbf{X}} + \phi^{-1}(\alpha)\sigma_{Y|\mathbf{X}}.$$

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
000000000000000000000000000000000000000				
Computing / estima	ting conditional quantiles			
Quantile	regression			

Approximate the conditional quantile by³:

 $\hat{q}_{\alpha}(X_2|\mathbf{X}_1) = \beta^{*T}\mathbf{X}_1 + \beta_0^*$

where β^* and β^*_0 are the solutions of the following minimization problem:

$$(\beta^*, \beta_0^*) = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^N, \beta_0 \in \mathbb{R}} \mathbb{E}[\psi_{\alpha}(X_2, \beta^T \mathbf{X}_1 + \beta_0)]$$

Recall:

$$\psi_{\alpha}(\mathbf{x},\theta) = (\mathbf{x}-\theta)(\alpha - \mathbf{1}_{\mathbf{x}\leq\theta})$$

and

$$q_{\alpha}(X_2|\mathbf{X}_1) = rgmin_{\theta \in \mathbb{R}} \mathbb{E}(\psi_{\alpha}(X_2, \theta)|\mathbf{X}_1).$$

³ R. Koenker and G. Jr. Bassett (1978). In: Econometrica

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
0000000000				
Computing / estimating	g conditional quantiles			
Other meti	noas			

- Random Forest,
- Neural networks,
- Nearest neighbors.

A survey with various methods is proposed by Torosian et al.⁴

⁴ Léonard Torossian et al. (2020). In: *Reliability Engineering & System Safety*

roduction	Elliptic distributions	Random forest estimation	Conclusions	References
	000000000000000000000000000000000000000			

Plan

Int

1 Introduction

2 Elliptic distributions

- Definitions
- Quantile regression
- High level quantiles
- 3 Random forest estimation

4 Conclusions

Elliptic distributions

Random forest estimation

Conclusions

References

Definitions

Consistent Elliptic distributions

Definition

A \mathbb{R}^d random vector **X** has a consistent elliptic distribution if it writes⁵:

$$\mathbf{X} \stackrel{d}{=} \mu + \epsilon \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

with ϵ a positive random variable, independent of the underlying normal vector. This means that, a consistent elliptical distribution is a normal distribution with random variance $\epsilon^2 \Sigma$.

⁵ Y. Kano (1994). In: Journal of Multivariate Analysis

Elliptic distributions

Random forest estimation

Conclusions

References

Definitions

An equivalent definition

$$\mathbf{X} \stackrel{d}{=} \mu + \epsilon \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$
 rewrites as⁶

$$\mathbf{X} \stackrel{d}{=} \mu + R \Lambda U^{(d)}$$

where $\Lambda\Lambda^{T} = \Sigma$, $U^{(d)}$ is a *d*-dimensional random vector uniformly distributed on \mathcal{S}^{d-1} , $R \stackrel{d}{=} \chi_{d}\epsilon$, R and $U^{(d)}$ are independent. *R* is called the radius of **X**, χ_{d}^{2} is a χ -squared distribution, independent of ϵ and of the underlying Gaussian process. **X** is said to be a consistent (R, d)-elliptical random vector with parameters μ and Σ .

⁶S. Cambanis, S. Huang, and G. Simons (1981). In: *Journal of Multivariate Analysis*

ntroduction	Elliptic distributions	Random forest estimation	Conclusions	References
0000000000	000000000000000000000000000000000000000			
Definitions				

Properties of elliptic distributions

 Sub-vectors of elliptical vectors are elliptical, more precisely, Let X = (X₁, X₂) be a consistent (R, d)-elliptical random vector with parameters μ and Σ. X₁ and X₂ are d₁ and d₂-dimensional subvectors of X. Let us write Σ :

$$\Sigma = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Then X_1 and X_2 are respectively (R, d_1) - and (R, d_2) -elliptical with parameters μ_1 , Σ_{11} and μ_2 , Σ_{22} , respectively.

- Conditional distributions of elliptical vectors are also elliptical.
- Linear combinations of coordinates / sub-vectors of elliptic distributions are also elliptic.

Definitions

Properties of elliptic distributions

- Sub-vectors of elliptical vectors are elliptical,
- Conditional distributions of elliptical vectors are also elliptical. More precisely,

 $\mathbf{X}_2|(\mathbf{X}_1 = x_1)$ is still elliptical, with radius R^* given by:

$$R^* \stackrel{d}{=} R\sqrt{1-\beta} | \left(R\sqrt{\beta} U^{(d)} = C_{11}^{-1}(x_1 - \mu_1)
ight),$$

where C_{11} is the root of Σ_{11} , and $\beta \sim Beta(\frac{d_1}{2}, \frac{d_2}{2})$.

• Linear combinations of coordinates / sub-vectors of elliptic distributions are also elliptic.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00	00
Definitions				
Examples				

• Normal distributions: $\epsilon = 1$.

Danialé comparence

- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi_{d}^{2}}}$.
- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.
- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.
- Many other.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Definitions				
Examples				

- Normal distributions: $\epsilon = 1$.
- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi^2_{-}}}$.

Derarie Student

- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.
- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.
- Many other.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Definitions				
Examples				

- Normal distributions: $\epsilon = 1$.
- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi^2_{-}}}$.
- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.

Denario Stual

- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.
- Many other.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Definitions				
Examples				

- Normal distributions: $\epsilon = 1$.
- Student distributions: with ν degrees of freedom: $\epsilon \stackrel{d}{=} \sqrt{\frac{\nu}{\chi_d^2}}$.
- Slash distributions: $\epsilon \stackrel{d}{=} \mathcal{P}(1, a)$.
- Laplace distibution: $\epsilon \stackrel{d}{=} \sqrt{\mathcal{E}(\lambda)}$.

Densili Laplace

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Definitions				
Condition	al quantiles			

We are interested in conditional quantiles for elliptical distributions. We have seen that conditional elliptical distribution are still elliptical. Assume a X is a (R, 1) elliptical random vector with parameters μ and $\sigma^2 \in \mathbb{R}^+$, then

$$X = \mu + \sigma R U^{(1)}$$

where $U^{(1)} = -1$ or 1 with probability $\frac{1}{2}$. Thus, for $\alpha > \frac{1}{2}$,

$$q_{\alpha}(X) = \mu + \sigma \Phi_R^{-1}(2\alpha - 1)$$

where Φ_R is the distribution function of *R*.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
	000000000000000000000000000000000000000			
Definitions				

Conditional quantiles

Proposition

Let $X = (X_1, X_2)$ a (R, N + 1)-elliptical random vector with parameters μ and Σ . Write

$$\Sigma = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{12}^T & \Sigma_{22} \end{pmatrix}$$

Then for $\alpha \geq \frac{1}{2}$,

$$q_{\alpha} \left(X_{2} | \mathbf{X}_{1} = \mathbf{x}_{1} \right) = \mu_{2|1} + \sqrt{\Sigma_{2|1}} \Phi_{R^{*}}^{-1} (2\alpha - 1)$$
with
$$\begin{cases}
\mu_{2|1} = \mu_{2} + \Sigma_{12}^{T} \Sigma_{11}^{-1} (\mathbf{x}_{1} - \mu_{1}) \\
\Sigma_{2|1} = \Sigma_{22} - \Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}
\end{cases}$$

Problem: the distribution of R^* is hardly accessible.

Elliptic distributions

Random forest estimation

Conclusions

References

Quantile regression

Quantile Regression for elliptic distributions

Write α' for $2\alpha - 1$.

Theorem

Let $X = (\mathbf{X}_1, X_2)$ be an elliptical distribution, the optimal quantile regression β^* is given by :

$$\beta^* = \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$$

The Quantile Regression Predictor with level $\alpha \in [\frac{1}{2}, 1]$ is given by:

$$\hat{q}_lpha(X_2|\mathbf{X}_1=\mathbf{x}_1)=\mu_{2|1}+\sqrt{\Sigma_{2|1}}\Phi_R^{-1}(lpha')$$

It satisfies

$$\hat{q}_{\alpha}(X_2|X_1) \sim \mathcal{E}_1\left(\mu_2 + \Sigma_{2|1}\Phi_R^{-1}(lpha'), \Sigma_{12}^T\Sigma_{11}^{-1}\Sigma_{12}, R\right)$$

Elliptic distributions

Random forest estimation

Conclusions

References

Quantile regression

How good is the quantile regression?

Gaussian case

$$\begin{cases} q_{\alpha}(X_{2}|\mathbf{X}_{1} = \mathbf{x}_{1}) = \mu_{2|1} + \sigma_{2|1}\Phi^{-1}(\alpha') \\ \hat{q}_{\alpha}(X_{2}|\mathbf{X}_{1} = \mathbf{x}_{1}) = \mu_{2|1} + \sigma_{2|1}\Phi^{-1}(\alpha') \end{cases}$$

The Quantile Regression Predictor is exactly the conditional quantile.

Elliptic distributions

Random forest estimation

Conclusions oo References 00

ż

Quantile regression

How good is the quantile regression?

Student case

$$\begin{cases} q_{\alpha}(X_{2}|\mathbf{X}_{1}=\mathbf{x}_{1}) = & \mu_{2|1} + \sigma_{2|1}\sqrt{\frac{\nu}{\nu+N}}\sqrt{1+\frac{1}{\nu}d_{1}}\Phi_{\nu+N}^{-1}(\alpha') \\ \hat{q}_{\alpha}(X_{2}|\mathbf{X}_{1}=\mathbf{x}_{1}) = & \mu_{2|1} + \sigma_{2|1}\Phi_{\nu}^{-1}(\alpha') \end{cases}$$

where Φ_{ν} is the distribution function of a Student law with ν degrees of freedom.

The error may be huge, especially if the Mahalanobis distance $d_1 = (\mathbf{x}_1 - \mu_1)^T \sum_{11}^{-1} (\mathbf{x}_1 - \mu_1)$ is high. The picture is for N = 5.

Student Quantile Regression

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
High level quantiles				
Extreme ap	proximations			

In case $\alpha \sim 1$, alternative methods have to be proposed. More precisely, we found an equivalent of $\Phi_{R^*}^{-1}(\alpha')$.

Elliptic distributions

Random forest estimation

Conclusions

References

High level quantiles

Some asymptotic relationships

Theorem

Under some technical assumptions, their exist $0<\ell<+\infty$ and $\eta\in\mathbb{R}$ such that :

$$\left[\Phi_R^{-1}\left(1-\frac{1}{\frac{\ell}{1-\alpha}+2(1-\ell)}\right)\right]^{\frac{1}{\eta}} \underset{\alpha \to 1}{\sim} \Phi_{R^*}^{-1}(\alpha)$$

This allows to approximate the conditional quantiles.

Introduction

Elliptic distributions

Random forest estimation

Conclusions

References

High level quantiles

Examples

Property

The Gaussian, Student and Slash distributions satisfy the previous assumptions, with coefficients η and ℓ given in the table below.

Distribution	η	l		
Gaussian	1	1		
Student, $\nu > 0$	$rac{N}{ u}+1$	$rac{\Gamma\left(rac{ u+N+1}{2} ight)\Gamma\left(rac{ u}{2} ight)}{\Gamma\left(rac{ u+N}{2} ight)\Gamma\left(rac{ u+1}{2} ight)}\left(1+rac{q_1}{ u} ight)^{rac{N+ u}{2}}rac{ u^{rac{N}{2}+1}}{ u+N}$		
Slash, <i>a</i> > 0	$\frac{N}{a} + 1$	$\frac{\Gamma\left(\frac{N+1+\vartheta}{2}\right)\eta_1^{\frac{N+\vartheta}{2}}}{\Gamma\left(\frac{N+2}{2}\right)(N+\vartheta)\chi_{N+\vartheta}^2(q_1)2^{\frac{\vartheta}{2}-1}\Gamma\left(\frac{1+\vartheta}{2}\right)}$		

Introduction 00000000000	Elliptic distributions	Random forest estimation 0000000000000000000000000	Conclusions 00	References 00
High level quantiles				
Examples				

Extremal correction in the Student case

Student Extremal Predictor

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References		
High level quantiles						
Estimations						

Under additional assumptions (heavy tail + order two condition), estimations of the parameters ℓ , η , γ + asymptotic normality of the estimators are given⁷.

⁷ Antoine Usseglio-Carleve (2018). In: Electronic Journal of Statistics

Elliptic distributions

Random forest estimation

Conclusions

References

High level quantiles

Financial example

These four values are the first available every day \Rightarrow anticipate the behaviour of the return of WisdomTree Japan Hedged Equity Fund X_2 .
Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
High level quantiles				
Financial (example			

The sample size is 2520. The first 2519 days (from January 3, 2007 to December 5, 2016) = learning sample, and we focus on the 2520th day: $\mathbf{x}_1 = (-0.0185\%, -0.4464\%, 0.9614\%, 0.1405\%)$. Estimate quantiles of $X_2 | \mathbf{X}_1 = \mathbf{x}_1$.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
High level quantiles				
Financial	example			

The sample size is 2520. The first 2519 days (from January 3, 2007 to December 5, 2016) = learning sample, and we focus on the 2520th day: $\mathbf{x}_1 = (-0.0185\%, -0.4464\%, 0.9614\%, 0.1405\%)$. Estimate quantiles of $X_2 | \mathbf{X}_1 = \mathbf{x}_1$. Data exploration:

- the daily returns can be considered as independent.
- the marginals seem symmetrical.
- the measured tail index is approximately the same for the marginals.

Could be assumed to be elliptical.

Introduction 00000000000	Elliptic distributions	Random forest estimation	Conclusions 00	References 00
High level quantiles				
Financial	evample			

E.g., for $\alpha = 0.999$, the estimated VaR is 3.1%.

High level quantiles

Conclusion / perspectives for part I.

- Regression methods are not satisfactory for non gaussian distributions.
- Framework adapted to a large class of risk measures (TVaR, *L^p* quantile, Haezendonck-Goovaerts risk measures).
- New technics needed in the high dimension case (N large).
- More details in references below⁸.
- Mixed approaches for non central but non extreme risk levels?
- Non symetric distributions?

V. Maume-Deschamps, D. Rullière, and A. Usseglio-Carleve (2017b). In: Methodology and Computing in Applied Probability Antoine Usseglio-Carleve (2018). In: Electronic Journal of Statistics

 $^{^{8}}$ V. Maume-Deschamps, D. Rullière, and A. Usseglio-Carleve (2017a). In: Journal of Multivariate Analysis

Introduction
00000000000

Elliptic distributions

Random forest estimation

Conclusions

References

Plan

Introduction

2 Elliptic distributions

3 Random forest estimation

- Trees, forests
- Random forests estimations
- QOSA estimation
- Simulation studies

Methods for conditional quantiles estimation

- Quantile regression is bad if you are far from gaussian,
- Kernel methods to estimate the conditional distribution function $F_{Y|X}(t) = \mathbb{P}(Y \le t|X)$, difficulty to adapt the window.
- Random forest methods,
- Neural networks methods.

In this part, we focus on random forest methods, having in mind that we aim at estimating QOSA indices:

Methods for conditional quantiles estimation

In this part, we focus on random forest methods, having in mind that we aim at estimating QOSA indices:

$$S_{i}^{\alpha} = \frac{\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\psi_{\alpha}(Y, \theta)\right] - \mathbb{E}\left[\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\psi_{\alpha}(Y, \theta) | X_{i}\right]\right]}{\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\psi_{\alpha}(Y, \theta)\right]}$$

$$S_{i}^{\alpha} = \frac{\mathbb{E}\left[\psi_{\alpha}\left(Y, q_{\alpha}(Y)\right)\right] - \mathbb{E}\left[\psi_{\alpha}\left(Y, q_{\alpha}(Y|X_{i})\right)\right]}{\mathbb{E}\left[\psi_{\alpha}(Y, q_{\alpha}(Y))\right]},$$

with $\psi_{\alpha}(x,\theta) = (x-\theta)(\alpha - \mathbf{1}_{x \leq \theta}).$

Elliptic distributions

Random forest estimation

Conclusions

References

A remark on the definition of QOSA

 $\psi_{\alpha}(\mathbf{x}, \theta)$: a non symetric distance.

 $\mathbb{E} [\psi_{\alpha} (Y, \theta)]$ is a mean dispersion measure of Y which is minimized for $\theta = q^{\alpha}(Y)$. So that QOSA indices compare the dispersion of Y around its quantile with its conditional counterpart.

pintball function, theta=2, alpha=0.8

Other indices have been proposed by Kucherenko *et al.* in order to assess the impact of Y over quantiles, but their interpretation is questionnable:

$$\bar{k}_{i,1}^{\alpha} = \mathbb{E}\left[\left|q^{\alpha}\left(Y\right) - q^{\alpha}\left(Y|X_{i}\right)\right|\right] \ \bar{k}_{i,2}^{\alpha} = \mathbb{E}\left[\left(q^{\alpha}\left(Y\right) - q^{\alpha}\left(Y|X_{i}\right)\right)^{2}\right].$$

Elliptic distributions

Random forest estimation

Conclusions

References

A remark on the definition of QOSA

Comparison on the toy model: $Y = X_1 - X_2$ with $X_i \rightsquigarrow \mathcal{E}(1)$.

Elliptic distributions

Random forest estimation

Conclusions

References

A remark on the definition of QOSA

Normalized versions

Introduction 00000000000	Elliptic distributions	Random forest estimation	Conclusions 00	References 00
Trees, forests				
Recall CA	PT			

Classification And Regression Tree⁹. Input variables: $\mathbf{X} = (X_1, \dots, X_d)$, Output variable: Y.

- Tree: constant piecewise predictor, obtained by binary recursive partitioning.
- Separate the data from the current node, by looking for the split reducing the most the heterogeneity of Y at the two child nodes.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
Trees, forests				
Random E	orocto			

Agregate several CART's to reduce the estimation variance

- Training sample: $\mathcal{D}_n = (\mathbf{X}^i, Y^i), i = 1, \dots, n$
- Θ_ℓ, ℓ = 1,..., k are independent random variables which determine how a tree is constructed (bootstrap on D_n and which variables are considered for the splits of each node), Θ_ℓ is assumed to be independent of D_n.
- A_n(x; Θ_ℓ, D_n): the leaf that is obtained when dropping x down the tree.
- $N_n(\mathbf{x}, \Theta_{\ell}, \mathcal{D}_n)$: the number of points which are in $A_n(\mathbf{x}; \Theta_{\ell}, \mathcal{D}_n)$.
- *N*^b_n(**x**, Θ_ℓ, D_n): the number of points of the bootstrapped sample, which are in *A*_n(**x**; Θ_ℓ, D_n).

Elliptic distributions

Random forest estimation

Conclusions

References

Random forests estimations

Random forest conditional distributions functions estimation

Methods with random forest are often using the bootstrap sample, consider the random variable $B_j(\Theta_\ell, \mathcal{D}_n)$ as the number of times that the observation (\mathbf{X}^j, Y^j) has been drawn from the original dataset for the ℓ -th tree construction. Consider the weights:

$$\omega_{n,i}(\mathbf{x},\Theta) = \frac{1}{k} \sum_{j=1}^{k} \frac{\mathbf{1}_{\mathbf{X}^{i} \in A_{n}(\mathbf{x},\Theta_{j},\mathcal{D}_{n})}}{N_{n}(\mathbf{x},\Theta_{j},\mathcal{D}_{n})},$$
$$\omega_{n,i}^{b}(\mathbf{x},\Theta) = \frac{1}{k} \sum_{\ell=1}^{k} \frac{B_{i}(\Theta_{\ell},\mathcal{D}_{n}) \mathbf{1}_{\mathbf{X}^{i} \in A_{n}(\mathbf{x};\Theta_{\ell},\mathcal{D}_{n})}}{N_{n}^{b}(\mathbf{x};\Theta_{\ell},\mathcal{D}_{n})},$$

and the corresponding estimations of $F(y|\mathbf{X} = \mathbf{x})$:

$$\hat{F}_{n}^{b}(\mathbf{y}|\mathbf{X}=\mathbf{x}) = \sum_{i=1}^{n} \omega_{n,i}^{b}(\mathbf{x}) \mathbf{1}_{\{\mathbf{Y}^{i} \leq \mathbf{y}\}}.$$

Elliptic distributions

Random forest estimation

Conclusions

References

Random forests estimations

Random forest conditional quantiles estimation

Once the conditional distribution function is estimated, the conditional quantiles are estimated straightforwardly:

$$\hat{q}_{\alpha}(Y|\mathbf{X}) = \inf\{t \in \mathbb{R}, \hat{F}_n(t|\mathbf{X}) \geq \alpha\}.$$

With standard arguments, the consistency of $\hat{F}_n(t|\mathbf{X})$ leads to the consistency of $\hat{q}_{\alpha}(Y|\mathbf{X})$, provided that for all \mathbf{x} , the conditional $y \mapsto F(y|\mathbf{X} = \mathbf{x})$ is continuous and increasing.

Elliptic distributions

Random forest estimation

Conclusions

References

Random forests estimations

Consistency of random forests

Results by Scornet, Biau, Vert (2015) in a linear model context:

$$Y = m(X) + \varepsilon$$
 with $\varepsilon \rightsquigarrow \mathcal{N}(0, \sigma^2)$ and $m(X) = \sum_{i=1}^d m_i(X_i)$.

$$m_n(\mathbf{x},\Theta) = \sum_{i=1}^n \omega_{n,i}(\mathbf{x},\Theta) Y^i,$$

 $\omega_{n,i}$ as before. Under various assumptions including tree size wrt n and a forest correlation control, for $\mathbf{X} \rightsquigarrow \mathcal{U}[0,1]^d$,

$$\mathbb{E}[(m_n(\mathbf{X}) - m(\mathbf{X}))^2] \longrightarrow 0, \text{ with } m_n = \mathbb{E}_{\Theta}(m_{n,k}).$$

- No results for $m(\mathbf{x})$
- Results for fully grown trees and for limited grown trees.

Random forests estimations

Consistency of conditional distribution

Assume $Y = f(\mathbf{X}) + \varepsilon$, with ε a centred random variable, independent on \mathbf{X} . In Meinshausen $(2006)^{10}$, convergence results for $\widehat{F}(y|\mathbf{X} = \mathbf{x})$ for a simplified random forest model. The $\omega_{n,i}(\mathbf{x})$'s are considered as constant (while they are random variables - depending on Θ , \mathbf{X}^{i} , Y^{i} , i = 1, ..., n)

+ various assumptions including tree growth and some regularity on $F(y|\mathbf{X} = \mathbf{x})$.

¹⁰ Nicolai Meinshausen (2006). In: Journal of Machine Learning Research

Elliptic distributions

Random forest estimation

Conclusions

References

Random forests estimations

Consistency: assumptions

Conditions

Relations between k (number of trees) and $N_n^b(\mathbf{x}; \Theta, \mathcal{D}_n)$ (number of bootstrap observations in a leaf node):

$$\mathbf{0} \ \mathbf{k} = \mathcal{O}\left(\mathbf{n}^{\alpha}\right), \text{ with } \alpha > \mathbf{0}.$$

 $^{a}f\left(n
ight)=\Omega\left(g\left(n
ight)
ight)\iff \exists k>0, \exists n_{0}>0\mid orall n\geqslant n_{0}\quad \left|f\left(n
ight)
ight|\geqslant k\cdot\left|g\left(n
ight)
ight|$

Elliptic distributions

Random forest estimation

Conclusions

References

Random forests estimations

Consistency: assumptions

Conditions

Relations between k (number of trees) and $N_n^b(\mathbf{x}; \Theta, \mathcal{D}_n)$ (number of bootstrap observations in a leaf node):

$$\begin{array}{l} \bullet \quad k = \mathcal{O}\left(n^{\alpha}\right), \text{ with } \alpha > 0. \\ \hline \bullet \quad & \forall \mathbf{x}, \quad \mathbb{E}\left[N_{n}^{b}\left(\mathbf{x}; \Theta, \mathcal{D}_{n}\right)\right] = \Omega\left(\sqrt{n}\left(\ln\left(n\right)\right)^{\beta}\right), \text{ with } \beta > 1, \text{ and} \\ \quad & \forall \mathbf{x}, \quad CV\left(N_{n}^{b}(\mathbf{x}; \Theta, \mathcal{D}_{n})\right) = \mathcal{O}\left(\frac{1}{n^{(1+\alpha)/2}\left(\ln\left(n\right)\right)^{\gamma/2}}\right), \text{ with } \gamma > 1.^{a} \end{array}$$

 $^{a}\mathrm{CV}\left(X\right) = \sigma_{X}/\mathbb{E}(X)$

Elliptic distributions

Random forest estimation

Conclusions

References

Random forests estimations

Consistency: assumptions

Conditions

Relations between k (number of trees) and $N_n^b(\mathbf{x}; \Theta, \mathcal{D}_n)$ (number of bootstrap observations in a leaf node):

$$\mathbf{0} \ \mathbf{k} = \mathcal{O}(\mathbf{n}^{\alpha}), \text{ with } \alpha > \mathbf{0}.$$

2
$$\forall \mathbf{x}, \quad \mathbb{E}\left[N_n^b(\mathbf{x}; \Theta, \mathcal{D}_n)\right] = \Omega\left(\sqrt{n}\left(\ln(n)\right)^{\beta}\right), \text{ with } \beta > 1, \text{ and}$$

$$\forall \mathbf{x}, \quad CV(N_n^b(\mathbf{x}; \Theta, \mathcal{D}_n)) = \mathcal{O}\left(\frac{1}{n^{(1+\alpha)/2} \left(\ln{(n)}\right)^{\gamma/2}}\right), \text{ with } \gamma > 1.^{\epsilon}$$

The variations of function $F(y|\mathbf{X} = \cdot)$ is small on the trees' leaves: $\forall \mathbf{x}, \forall y,$

$$\sup_{\mathbf{z},\mathbf{z}'\in A_n(\mathbf{x},\Theta_j)}\left|F\left(y\,|\,\mathbf{z}\right)-F\left(y\,|\,\mathbf{z}'\right)\right|\underset{n\to\infty}{\overset{a.s.}{\longrightarrow}}0.$$

 $^{a}\mathrm{CV}\left(X
ight)=\sigma_{X}/\mathbb{E}(X)$

ntroduction

Elliptic distributions

Random forests estimations

Consistency: result¹¹

Theorem

Assume the 3 conditions above are verified and $F(\cdot | \mathbf{X} = \mathbf{x})$ is continuous and increasing, $\forall \mathbf{x} \in \mathbb{R}^d$. Let F_n be either \hat{F}_n^b or \hat{F}_n ,

$$\sup_{y \in \mathbb{R}} |F_n(y|\mathbf{X} = \mathbf{x}) - F(y|\mathbf{X} = \mathbf{x})| \xrightarrow[n \to \infty]{a.s.} 0$$

Idea of the proof: The main idea is to use an auxiliary sample: let $(\mathbf{X}^{i\diamond}, Y^{i\diamond}, i = 1, ..., n)$ be a second sample, independent from $(\mathbf{X}^i, Y^i, i = 1, ..., n)$ and consider the weights and the corresponding estimation of $F(y|\mathbf{X} = \mathbf{x})$:

$$\omega_{n,i}^{\diamond}(\mathbf{x},\Theta) = \frac{1}{k} \sum_{j=1}^{k} \frac{\mathbf{1}_{\mathbf{X}^{i\diamond} \in \mathcal{A}_{n}(\mathbf{x},\Theta_{j},\mathcal{D}_{n})}}{N_{n}(\mathbf{x},\Theta_{j},\mathcal{D}_{n})}, \ F_{n}^{\diamond}(y|\mathbf{X}=\mathbf{x}) = \sum_{i=1}^{n} \omega_{i}^{\diamond}(\mathbf{x}) \mathbf{1}_{\{Y^{i\diamond} \leqslant y\}}.$$

¹¹ Kevin Elie-Dit-Cosaque and Véronique Maume-Deschamps (2020). In: *hal.archives-ouvertes.fr*

Elliptic distributions

Random forest estimation

Conclusions

References

Random forests estimations

The two samples method.

We prove:

- $|F_n(y|\mathbf{X} = \mathbf{x}) F_n^{\diamond}(y|\mathbf{X} = \mathbf{x})| \xrightarrow[n \to \infty]{a.s.} 0$, uses a Hoeffding like inequality + Vapnik-Chervonenkis classes¹² (proximity of N^{\diamond} and N^b),
- **2** $|F_n^{\diamond}(y|\mathbf{X} = \mathbf{x}) F(y|\mathbf{X} = \mathbf{x})| \xrightarrow[n \to \infty]{a.s.} 0$, uses Vapnik-Chervonenkis classes again.
- **3** use a Dini argument to conclude with the $\sup_{y \in \mathbb{R}}$.

¹² V. N. Vapnik and A. Ya. Chervonenkis (1971). In: Theory of Probability and its Applications

Elliptic distributions

Random forest estimation

Conclusions

References

٠

QOSA estimation

Estimation strategies for the QOSA indices

Recall:

$$S_{i}^{lpha} = 1 - rac{\mathbb{E}\left[\psi_{lpha}\left(Y, q^{lpha}(Y|X_{i})
ight)
ight]}{\mathbb{E}\left[\psi_{lpha}(Y, q^{lpha}(Y))
ight]} = 1 - rac{\mathbb{E}\left[\min_{ heta \in \mathbb{R}} \mathbb{E}\left[\psi_{lpha}\left(Y, heta
ight)|X_{i}
ight]
ight]}{\mathbb{E}\left[\psi_{lpha}(Y, q^{lpha}(Y))
ight]}$$

Training sample: $\mathcal{D}_n = (\mathbf{X}^j, Y^j)_{j=1,...,n}$, the denominator is easily estimated with $\widehat{P}_1 = \frac{1}{n} \sum_{j=1}^n \psi_\alpha \left(Y^j, \widehat{q}^\alpha(Y) \right).$

Two strategies to estimate the numerator:

- Quantile based estimators $\mathbb{E}\left[\psi_{\alpha}\left(Y, q^{\alpha}(Y|X_{i})\right)\right]$,
- Minimum based estimators $\mathbb{E}\left[\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\psi_{\alpha}\left(Y,\theta\right) | X_{i}\right]\right]$.

Elliptic distributions

Random forest estimation

Conclusions

References

QOSA estimation

Quantile based estimators

Methods based on **two** training samples:

 $\begin{aligned} \mathcal{D}_{n}^{\star} &= \left(\mathbf{X}^{\star j}, Y^{\star j}\right)_{j=1,...,n} \text{ for computing the index,} \\ \mathcal{D}_{n} &= \left(\mathbf{X}^{j}, Y^{j}\right)_{j=1,...,n} \text{ for estimating the conditional quantile.} \\ \widehat{R}_{i} &= \frac{1}{n} \sum_{i=1}^{n} \psi_{\alpha} \left(Y^{\star j}, \widehat{q}^{\alpha} \left(Y | X_{i} = X_{i}^{\star j}\right)\right) \end{aligned}$

Construct the forest with $\mathcal{D}_n^i = (X_i^j, Y^j)_{i=1,...,n}$ from \mathcal{D}_n .

Quantile estimation with a weighted approach: $\widehat{R}_{i}^{1,b}$ or $\widehat{R}_{i}^{1,o}$

$$F_{k,n}^{b}(y|X_{i} = x_{i}) = \sum_{j=1}^{n} w_{n,j}^{b}(x_{i}) \mathbf{1}_{\{Y^{j} \leq y\}}$$
$$\hat{q}^{\alpha}(Y|X_{i} = x_{i}) = \inf \{Y^{p}, \ p = 1, \dots, n : F_{k,n}^{b}(Y^{p}|X_{i} = x_{i}) \geq \alpha \}$$

2 Quantile estimation within a leaf: $\hat{R}_i^{2,b}$ or $\hat{R}_i^{2,o}$.

Elliptic distributions

Random forest estimation

Conclusions

References

QOSA estimation

Quantile based estimators

Methods based on two training samples:

 $\mathcal{D}_{n}^{\star} = (\mathbf{X}^{\star j}, Y^{\star j})_{j=1,...,n} \text{ for computing the index,}$ $\mathcal{D}_{n} = (\mathbf{X}^{j}, Y^{j})_{j=1,...,n} \text{ for estimating the conditional quantile.}$ $\widehat{R}_{i} = \frac{1}{n} \sum_{i=1}^{n} \psi_{\alpha} \left(Y^{\star j}, \widehat{q}^{\alpha} \left(Y | X_{i} = X_{i}^{\star j} \right) \right)$

Construct the forest with $\mathcal{D}_n^i = (X_i^j, Y^j)_{i=1,...,n}$ from \mathcal{D}_n .

- **Quantile estimation with a weighted approach**: $\widehat{R}_{i}^{1,b}$ or $\widehat{R}_{i}^{1,o}$
- **2** Quantile estimation within a leaf: $\widehat{R}_i^{2,b}$ or $\widehat{R}_i^{2,o}$. For one tree, $\widehat{q}_{\ell}^{b,\alpha}$ ($Y | X_i = x_i$) on the leaf containing x_i . On the forest:

$$\widehat{q}^{\alpha}\left(\left.Y\right|X_{i}=x_{i}\right)=\frac{1}{k}\sum_{\ell=1}^{k}\widehat{q}_{\ell}^{b,\alpha}\left(\left.Y\right|X_{i}=x_{i}\right).$$

Introduction	
00000000	000

Elliptic distributions

Random forest estimation

Conclusions

References

QOSA estimation

Minimum based estimators

Minimum estimation with a weighted approach:

 $\begin{aligned} \mathcal{D}_{n} &= (\mathbf{X}^{j}, Y^{j})_{j=1,...,n} \text{ and } (\mathbf{X}^{\star j})_{j=1,...,n} \text{ i.e. requires 1.5 training samples.} \\ \text{Estimate } \mathbb{E} \left[\min_{\theta \in \mathbb{R}} \mathbb{E} \left[\psi_{\alpha} \left(Y, \theta \right) | X_{i} \right] \right] \text{ with } \end{aligned}$

$$\frac{1}{n}\sum_{m=1}^{n}\min_{p=1,\dots,n}\sum_{j=1}^{n}w_{n,j}^{b}\left(X_{i}^{\star m}\right)\psi_{\alpha}\left(Y^{j},Y^{p}\right)$$

 $\implies \widehat{Q}_i^{1,b} \text{ or } \widehat{Q}_i^{1,o}.$

Elliptic distributions

Random forest estimation

Conclusions

References

QOSA estimation

Minimum based estimators

Minimum estimation within a leaf: $\mathcal{D}_n = (\mathbf{X}^j, Y^j)_{j=1,...,n}$. Estimate $\mathbb{E}[\min_{\theta \in \mathbb{R}} \mathbb{E}[\psi_{\alpha}(Y, \theta) | X_i]]$ with

$$\frac{1}{k}\sum_{\ell=1}^{k}\left[\frac{1}{N_{\textit{leaves}}^{\ell}}\sum_{m=1}^{N_{\textit{leaves}}^{\ell}}\left(\min_{\boldsymbol{p}\in\mathcal{L}_{\ell,m}^{b}}\sum_{j\in\mathcal{L}_{\ell,m}^{b}}\frac{\psi_{\alpha}\left(\boldsymbol{Y}^{j},\boldsymbol{Y}^{\boldsymbol{p}}\right)}{|\mathcal{L}_{\ell,m}^{b}|}\right)\right]$$

 $\implies \widehat{Q}_i^{2,b} \text{ or } \widehat{Q}_i^{2,o}.$

Elliptic distributions

Random forest estimation

Conclusions 00 References 00

QOSA estimation

Principles of the Cross-Validation

Preliminary studies have showned that size's leaves is crutial in the estimation \implies cross-validation strategy in order to choose the number of elements in the leaves.

- Shuffle the dataset randomly and split the dataset in k folds
- Por each unique group: Take the group as a test dataset; Take the remaining groups as a training dataset; Fit a model on the training set and evaluate it on the test set; Retain the evaluation score and discard the model
- Summarize the skill of the model using the sample of model evaluation scores

Elliptic distributions

Random forest estimation

Conclusions

References

QOSA estimation

Leaf size issue

We use
$$\widehat{R}_{i}^{1} = \frac{1}{n} \sum_{j=1}^{n} \psi_{\alpha} \left(Y^{j}, \widehat{q}^{\alpha} \left(Y | X_{i} = X_{i}^{j} \right) \right)$$
 as score.

- In the cross validation process, among a grid of possible sizes, construct a forest with leaf size realizing the minimal score.
- Using the Out of Bag (OoB) sample.
 - For a given observation (X^j_i, Y^j) from Dⁱ_n, consider the set of trees built with the bootstrap samples not containing this observation (it is *Out of Bag*).
 - **2** Aggregate the estimations from these trees to make the OoB estimation: $\hat{q}_{oob}^{b,\alpha} \left(Y | X_i = X_i^j \right)$ of $q^{\alpha} \left(Y | X_i = X_i^j \right)$.
 - O Calculate the OoB score:

$$\widehat{OOB}_{i}^{b} = \frac{1}{n} \sum_{j=1}^{n} \psi_{\alpha} \left(Y^{j}, \widehat{q}_{oob}^{b,\alpha} \left(Y | X_{i} = X_{i}^{j} \right) \right) .$$

Among a grid of possible sizes, construct a forest with leaf size realizing the minimal OoB score.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
QOSA estimation				
l eaf size i	ssue			

We use
$$\widehat{R}_{i}^{1} = \frac{1}{n} \sum_{j=1}^{n} \psi_{\alpha} \left(Y^{j}, \widehat{q}^{\alpha} \left(Y | X_{i} = X_{i}^{j} \right) \right)$$
 as score.

- In the cross validation process, among a grid of possible sizes, construct a forest with leaf size realizing the minimal score.
- Using the Out of Bag (OoB) sample. Among a grid of possible sizes, construct a forest with leaf size realizing the minimal OoB score.

Using the OoB sample is much less time consuming since, it does not require cutting out the training sample and it takes place during the forest construction process.

Introduction	Elliptic distributions	Random forest estimation ○○○○○○○○○○○○○○○●○○○○	Conclusions	References
Simulation studies				

Sum of exponential laws

case $X_i \rightsquigarrow \mathcal{E}(\lambda_i), \lambda_i \in \mathbb{R}^+$ distinct; $Y = \sum_{i=1}^n X_i$ a semi-closed form formula may be obtained by using calculations from Marceau (2014).

Simulation study for $\lambda_1 = 0.5$, $\lambda_2 = 1$, $\lambda_3 = 1.5$, $\lambda_4 = 2$.

```
sample size = 10^4,
nb trees = 100,
boxplots on 100 repetitions.
```

Elliptic distributions

Random forest estimation

Conclusions 00 References 00

Simulation studies

Sum of exponential laws

Quantile based methods

Elliptic distributions

Random forest estimation

Conclusions

References 00

Simulation studies

Sum of exponential laws

Minimum based methods

Simulation studies

Comparison with kernel methods

Consider a toy model: $Y = X_1 - X_2$ with $X_i \rightsquigarrow \mathcal{E}(1)$ independent. RMSE and run time of the random forest based estimators: with $\widehat{Q}_i^{1,o}$ and $\widehat{Q}_i^{2,o}$ as well as those based on kernel: $\widetilde{S}_i^{\alpha 13}$ and $\check{S}_i^{\alpha 14}$, sample size is 10^4 .

	RF with $\widehat{Q}_{i}^{1,o}$	RF with $\widehat{Q}_i^{2,o}$	$\widetilde{S}_{i}^{\alpha}$	\check{S}^{lpha}_i
$\alpha = 0.1$	0.007	0.009	0.061	0.020
$\alpha = 0.25$	0.008	0.009	0.042	0.013
$\alpha = 0.5$	0.008	0.008	0.027	0.019
$\alpha = 0.75$	0.008	0.008	0.014	0.035
$\alpha = 0.99$	0.006	0.006	0.013	0.084
run time	1 hr	18 min 24 sec	1 min 51 sec	1 hr 55 min

¹³Véronique Maume-Deschamps and Ibrahima Niang (2018). In: *Statistics & Probability Letters*

¹⁴ Thomas Browne et al. (2017). In: *hal.archives-ouvertes.fr*

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
00000000000	000000000000000	000000000000000000000000000000000000000	00	00
Simulation studies				
A real dat	aset			

Bias between the predictions from MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) and the observed ozone concentration. This dataset¹⁵ contains 10 variables with 1041 observations. O3obs: observed ozone concentration will be explained by the 9 other variables

JOUR: type of day (holiday vs no holi-	STATION: site of observations (5 differ-
day)	ent sites)
MOCAGE: ozone concentration pre-	TEMPE: officially predicted tempera-
dicted by a fluid mechanics model	tures
RMH2O: humidity ratio	NO2: nitrogen dioxide concentration
VentMOD: wind force	VentANG: wind direction
NO: nitric oxide concentration	

¹⁵ Philippe Besse et al. (2007). In: Pollution atmosphérique

Elliptic distributions

Random forest estimation

Conclusions 00 References 00

Simulation studies

Application on a real dataset: results

Evolution of the ranking of the QOSA indices (brut indices on the left, in %ages on the right)in function of the levels α .

Considering the central effects $leads^{16}$ to consider MOCAGE and TEMPE as the most influencial variables, then STATION and

<u>NO2. We see that for quantile levels ≥ 0.6 wind is also important.</u>

¹⁶ Philippe Besse et al. (2007). In: Pollution atmosphérique

Baptiste Broto, Francois Bachoc, and Marine Depecker (2020). In: SIAM/ASA Journal on Uncertainty Quantification

Simulation studies

Conclusion / perspectives for part II.

- Random forest methods usefull for conditional quantile and QOSA estimations, but costly.
- Methods implemented in Python¹⁷ (QOSA) and Julia¹⁸ (conditional distributions).
- Asymptotic distributions to get confidence intervals?
- To be compared with Generalized Random Forest¹⁹.

¹⁷ Kévin Elie-Dit-Cosaque (2020).

¹⁸ Benoit Fabrège and Véronique Maume-Deschamps (2020).

¹⁹Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: *The Annals of Statistics*
Introduction	Elliptic distributions	Random forest estimation	Conclusions	References
			•0	

Plan

- 2 Elliptic distributions
- 3 Random forest estimation

Introduction	Elliptic distributions	Random forest estimation	Conclusions ○●	References

Conclusions

- Importance of conditional quantile estimations
 - Various methods exists, we have seen only few.
 - Specific methods available for some classes of distributions such as elliptical distributions.
 - Specific attention for high level quantiles (uses extreme value theory).
- Interest of QOSA indicies
 - Give different informations than Sobol indices, pertinent if you are interested in different quantile levels.
 - Interpretation not so easy, especially if inputs are dependent \rightarrow go the qosa-Shapley (mixture of Shapley effect²⁰ and QOSA indices (work in progress).

²⁰ Art B Owen and Clémentine Prieur (2016). In: *arXiv preprint arXiv:1610.02080*

References I

Ē.

Ē.

- Athey, Susan, Julie Tibshirani, Stefan Wager, et al. (2019). "Generalized random forests". In: The Annals of Statistics 47.2, pp. 1148–1178.
- Besse, Philippe et al. (2007). "Comparaison de techniques de «Data Mining» pour l'adaptation statistique des prévisions d'ozone du modèle de chimie-transport MOCAGE". In: *Pollution atmosphérique* 49.195, pp. 285–292.

Breiman, Leo (2001). "Random forests". In: Machine learning 45.1, pp. 5-32.

Broto, Baptiste, Francois Bachoc, and Marine Depecker (2020). "Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution". In: *SIAM/ASA Journal on Uncertainty Quantification* 8.2, pp. 693–716.

Browne, Thomas et al. (2017). "Estimate of quantile-oriented sensitivity indices". In: hal.archives-ouvertes.fr.

- Cambanis, S., S. Huang, and G. Simons (1981). "On the theory of elliptically contoured distributions". In: Journal of Multivariate Analysis 11, pp. 368–385.
- Elie-Dit-Cosaque, Kévin (2020). qosa-indices, a python package available at: https://gitlab.com/qosa_index/qosa.
- Elie-Dit-Cosaque, Kevin and Véronique Maume-Deschamps (2020). "Random forest estimation of conditional distribution functions and conditional quantiles". In: *hal.archives-ouvertes.fr.*
- Fabrège, Benoit and Véronique Maume-Deschamps (2020). Conditional Distribution Forest: a Julia package available at https://github.com/bfabreges/ConditionalDistributionForest.jl.
- Fort, Jean-Claude, Thierry Klein, and Nabil Rachdi (2016). "New sensitivity analysis subordinated to a contrast". In: Communications in Statistics-Theory and Methods 45.15, pp. 4349–4364.

References II

- Kano, Y. (1994). "Consistency Property of Elliptical Probability Density Functions". In: Journal of Multivariate Analysis 51, pp. 139–147.
- Koenker, R. and G. Jr. Bassett (1978). "Regression Quantiles". In: Econometrica 46.1, pp. 33-50.
- Kucherenko, Sergei, Shufang Song, and Lu Wang (2019). "Quantile based global sensitivity measures". In: Reliability Engineering & System Safety 185, pp. 35–48.
- Marceau, Etienne (2013). Modélisation et évaluation quantitative des risques en actuariat: Modèles sur une période. Springer.
- Maume-Deschamps, V., D. Rullière, and A. Usseglio-Carleve (2017a). "Quantile predictions for elliptical random fields". In: Journal of Multivariate Analysis 159, pp. 1 –17.
- (2017b). "Spatial expectile predictions for elliptical random fields". In: Methodology and Computing in Applied Probability 20.2, pp. 643–671.
- Maume-Deschamps, Véronique and Ibrahima Niang (2018). "Estimation of quantile oriented sensitivity indices". In: Statistics & Probability Letters 134, pp. 122–127.
- Meinshausen, Nicolai (2006). "Quantile regression forests". In: Journal of Machine Learning Research 7.Jun, pp. 983–999.
- Owen, Art B and Clémentine Prieur (2016). "On Shapley value for measuring importance of dependent inputs". In: arXiv preprint arXiv:1610.02080.
- Saltelli, Andrea et al. (2004). Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons.

- Scornet, Erwan, Gérard Biau, and Jean-Philippe Vert (2015). "Consistency of random forests". In: The Annals of Statistics.
- Sobol, Ilya M (1993). "Sensitivity estimates for nonlinear mathematical models". In: Mathematical Modelling and Computational Experiments 1.4, pp. 407–414.
- Torossian, Léonard et al. (2020). "A review on quantile regression for stochastic computer experiments". In: Reliability Engineering & System Safety.
- Usseglio-Carleve, Antoine (2018). "Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors". In: *Electronic Journal of Statistics*.
- Vapnik, V. N. and A. Ya. Chervonenkis (1971). "On the Uniform Convergence of Relative Frequencies of Events to their Probabilities". In: Theory of Probability and its Applications 16.2, pp. 264–280.

Thanks for your attention. Merci pour votre attention.

Introduction	Elliptic distributions	Random forest estimation	Conclusions	References ○●

AMIES

N'oubliez pas qu'AMIES peut vous aider dans vos collaborations avec les entreprises

