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Introduction and Motivation

Introduction

Aim

Develop Bayesian emulation methodology which can handle
computer simulators (or functions) with structured (partial)
discontinuities, for use within decision support tasks.
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discontinuities, for use within decision support tasks.

Limitations to use of computer models include:

Long simulator evaluation times.

Complex structure of the models and underlying stochasticity.

High-dimensional input and output spaces.

Many sources of uncertainty.
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Introduction

Aim

Develop Bayesian emulation methodology which can handle
computer simulators (or functions) with structured (partial)
discontinuities, for use within decision support tasks.

Limitations to use of computer models include:

Long simulator evaluation times.

Complex structure of the models and underlying stochasticity.

High-dimensional input and output spaces.

Many sources of uncertainty.

Structured Discontinuities

Simulators may possess a set of structured discontinuities.

These are poorly handled by standard emulation methodology,
e.g. Gaussian Processes [Kennedy and O’Hagan, 2001].
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Introduction and Motivation

Motivation

Well Placement Optimisation in the petroleum industry

Maximise the Net Present Value (NPV) as a function of well
location which possesses structured discontinuities with respect
to the partial fault boundaries.
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Introduction and Motivation

Motivation

Well Placement Optimisation in the petroleum industry

Maximise the Net Present Value (NPV) as a function of well
location which possesses structured discontinuities with respect
to the partial fault boundaries.

TNO OLYMPUS Field Development Optimisation Challenge
[ISAPP, 2018]

Aim is to encourage research and development of technology for
optimising production systems under uncertainty.

Optimisation under uncertainty uses ensembles of models.

Current industry approaches use computationally expensive
optimisation algorithms [Tanaka et al., 2018].

Decision support incorporating emulators has the ability to
fully explore the decision space.
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Introduction and Motivation

Transformed TNO OLYMPUS Map
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Bayesian Emulation of Functions with Structured Discontinuities

Bayesian Emulation [Vernon et al., 2010]

Bayesian Emulation

A Bayesian emulator is a stochastic belief specification for a
deterministic function that provides a fast and efficient statistical
approximation, yielding predictions for as yet unevaluated
parameter settings and a corresponding statement of the
uncertainty.
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parameter settings and a corresponding statement of the
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Emulator Equation

f(x) =
∑
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Bayesian Emulation

A Bayesian emulator is a stochastic belief specification for a
deterministic function that provides a fast and efficient statistical
approximation, yielding predictions for as yet unevaluated
parameter settings and a corresponding statement of the
uncertainty.

Emulator Equation

f(x) =
∑

j βjgj(xA) + u(xA) + w(x)

The squared exponential covariance function for x ∈ R
p:

Cov[u(xA), u(x
′
A)] = σ2

u exp
{

− (xA − x
′
A)

TΣ−1
pD (xA − x

′
A)

}
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Bayesian Emulation [Vernon et al., 2010]

Bayesian Emulation

A Bayesian emulator is a stochastic belief specification for a
deterministic function that provides a fast and efficient statistical
approximation, yielding predictions for as yet unevaluated
parameter settings and a corresponding statement of the
uncertainty.

Emulator Equation

f(x) =
∑

j βjgj(xA) + u(xA) + w(x)

The squared exponential covariance function for x ∈ R
p:

Cov[u(xA), u(x
′
A)] = σ2

u exp

{

−
‖xA − x

′
A‖

2

θ2

}
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Bayesian Emulation of Functions with Structured Discontinuities

Bayesian Emulation with Structured Discontinuities

Challenges emulating functions with discontinuities

Diagnostics will be severely violated in the vicinity of the
discontinuity.
Emulator parameter estimation may produce strange results leading
to global issues.

J. Owen (Durham University) Bayesian Emulation with Structured Discontinuities April 28, 2021 8 / 40



Bayesian Emulation of Functions with Structured Discontinuities

Bayesian Emulation with Structured Discontinuities

Challenges emulating functions with discontinuities

Diagnostics will be severely violated in the vicinity of the
discontinuity.
Emulator parameter estimation may produce strange results leading
to global issues.

Solution: Embed the input parameter space in higher dimensions

Define the embedding function v(x) with the form chosen to
characterise the discontinuities, e.g. torn along the discontinuities.
Embed x ∈ X ⊂ R

p in higher dimensional space
v = v(x) ∈ V ⊂ R

q, where q > p.
Emulation proceeds but with input v(x) and variance matrix, ΣqD.
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Bayesian Emulation with Structured Discontinuities

Challenges emulating functions with discontinuities

Diagnostics will be severely violated in the vicinity of the
discontinuity.
Emulator parameter estimation may produce strange results leading
to global issues.

Solution: Embed the input parameter space in higher dimensions

Define the embedding function v(x) with the form chosen to
characterise the discontinuities, e.g. torn along the discontinuities.
Embed x ∈ X ⊂ R

p in higher dimensional space
v = v(x) ∈ V ⊂ R

q, where q > p.
Emulation proceeds but with input v(x) and variance matrix, ΣqD.

The squared exponential covariance function is modified to:

Cov[u(v), u(v′)] = σ2
u exp

{

− (v − v
′)TΣ−1

qD (v − v
′)
}
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Bayesian Emulation of Functions with Structured Discontinuities

2D Example – Setup

Let (x, y) ∈ [0, 2]× [0, 2].

f(x, y) = 0.4 sin(5x) + 0.4 cos(5y)

+ 1.2(x− 1)2✶{x>1}✶{y>1.25}

− 0.6(x− 0.6)2✶{x>0.6}✶{y<0.75}

Define the embedding function for z = v(x, y) to be:

v(x, y) =



















0 if y ≥ 1.25

0.6 (x− (0.6 + 0.8 (y − 0.75)))2 ·
✶{x>0.6+0.8(y−0.75)} if 0.75 ≤ y < 1.25

−0.6 (x− 0.6)2 · ✶{x>0.6} if y < 0.75

Σ3D =





θ2 0 0
0 θ2 0
0 0 θ2




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Bayesian Emulation of Functions with Structured Discontinuities

2D Example – True Function
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Bayesian Emulation of Functions with Structured Discontinuities

2D Example – Embedding Surface
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Bayesian Emulation of Functions with Structured Discontinuities

2D Example – Emulator Expectation
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Bayesian Emulation of Functions with Structured Discontinuities

2D Example – Emulator Variance
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Bayesian Emulation of Functions with Structured Discontinuities

2D Example – Embedding Surface
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Bayesian Emulation of Functions with Structured Discontinuities

Embedding a 2D input parameter space in 3D

Let x = ( xy ) ∈ X ⊂ R
2 and Σ2D =

(

θ2 0
0 θ2

)

for all x ∈ X .

Define the embedding v = v(x) =
( x

y
v(x,y)

)

∈ V ⊂ R
3.

Consider a point x0 = (x0, y0) ∈ X .
The partial derivatives are: vx = ∂v

∂x

∣

∣

x=x0

and vy = ∂v
∂y

∣

∣

x=x0

,

and can be used to construct the tangent plane at v(x0, y0).
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)
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The partial derivatives are: vx = ∂v

∂x

∣

∣

x=x0

and vy = ∂v
∂y

∣

∣

x=x0

,

and can be used to construct the tangent plane at v(x0, y0).

Aim

Construct Σ3D which induces Σ2D, using the tangent plane to
approximate v(x, y).
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Embedding a 2D input parameter space in 3D

Let x = ( xy ) ∈ X ⊂ R
2 and Σ2D =

(

θ2 0
0 θ2

)

for all x ∈ X .

Define the embedding v = v(x) =
( x

y
v(x,y)

)

∈ V ⊂ R
3.

Consider a point x0 = (x0, y0) ∈ X .
The partial derivatives are: vx = ∂v

∂x

∣

∣

x=x0

and vy = ∂v
∂y

∣

∣

x=x0

,

and can be used to construct the tangent plane at v(x0, y0).

Aim

Construct Σ3D which induces Σ2D, using the tangent plane to
approximate v(x, y).

Work in the orthonormal w-basis defined by the tangent plane:

w1 ∝ vxex + vyey + (v2x + v2y)ez

w2 ∝ −vyex + vxey

w3 ∝ −vxex − vyey + ez

J. Owen (Durham University) Bayesian Emulation with Structured Discontinuities April 28, 2021 15 / 40



Bayesian Emulation of Functions with Structured Discontinuities

Embedding a 2D input parameter space in 3D

Proposed form of Σ3D by SVD:

Σ3D = α2
1w1w

T
1 + α2

2w2w
T
2 + α2

3w3w
T
3
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Bayesian Emulation of Functions with Structured Discontinuities

Embedding a 2D input parameter space in 3D

Proposed form of Σ3D by SVD:

Σ3D = α2
1w1w

T
1 + α2

2w2w
T
2 + α2

3w3w
T
3

Let u =
(

x
y
z

)

be in the tangent plane of v(x) at x0 where

u = Ax =
(

1 0
0 1
vx vy

)

( xy ). Recentre at x0 = 0 and u0 = v(x0) = 0.

Mahalanobis distance preservation requires: xTΣ−1
2Dx = u

TΣ−1
3Du.
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Embedding a 2D input parameter space in 3D

Proposed form of Σ3D by SVD:

Σ3D = α2
1w1w

T
1 + α2

2w2w
T
2 + α2

3w3w
T
3

Let u =
(

x
y
z

)

be in the tangent plane of v(x) at x0 where

u = Ax =
(

1 0
0 1
vx vy

)

( xy ). Recentre at x0 = 0 and u0 = v(x0) = 0.

Mahalanobis distance preservation requires: xTΣ−1
2Dx = u

TΣ−1
3Du.

=⇒ Σ−1
2D = ATΣ−1

3DA

=⇒

(

1

θ2
0

0 1

θ2

)

=
1 + r2

α2
1r

2

(

v2x vxvy

vxvy v2y

)

+
1

α2
2r

2

(

v2y −vxvy

−vxvy v2x

)

where r2 = v2x + v2y
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Bayesian Emulation of Functions with Structured Discontinuities

Embedding a 2D input parameter space in 3D

Proposed form of Σ3D by SVD:

Σ3D = α2
1w1w

T
1 + α2

2w2w
T
2 + α2

3w3w
T
3

Let u =
(

x
y
z

)

be in the tangent plane of v(x) at x0 where

u = Ax =
(

1 0
0 1
vx vy

)

( xy ). Recentre at x0 = 0 and u0 = v(x0) = 0.

Mahalanobis distance preservation requires: xTΣ−1
2Dx = u

TΣ−1
3Du.

Σ3D =





















θ2+
α2
3v

2
x

1 + r2
α2
3vxvy

1 + r2
vx



θ2−
α2
3

1 + r2





α2
3vxvy

1 + r2
θ2+

α2
3v

2
y

1 + r2
vy



θ2−
α2
3

1 + r2





vx



θ2−
α2
3

1 + r2



 vy



θ2−
α2
3

1 + r2



 θ2r2+
α2
3

1 + r2




















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Bayesian Emulation of Functions with Structured Discontinuities

Non-Stationary Emulators

It is clear that the form of Σ3D is not constant over the 3D
input space for general embedding functions, v(x, y).

We need to construct non-stationary emulators since
Σ3D(x).

Non-stationary emulators of [Dunlop et al., 2018] are
employed to accommodate for this.
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Bayesian Emulation of Functions with Structured Discontinuities

Non-Stationary Emulators

It is clear that the form of Σ3D is not constant over the 3D
input space for general embedding functions, v(x, y).

We need to construct non-stationary emulators since
Σ3D(x).

Non-stationary emulators of [Dunlop et al., 2018] are
employed to accommodate for this.

Quadratic Form, where v = v(x) and Σ(x) = Σ3D(x)

Q(v,v′) = (v − v
′)T

(

Σ(x) + Σ(x′)

2

)

(v − v
′)

Non-Stationary Squared Exponential Covariance Function

Cov[u(v), u(v′)] = σ2
u

2
3

2 |Σ(x)|
1

4 |Σ(x′)|
1

4

|Σ(x) + Σ(x′)|
1

2

exp {−Q(v,v′)}
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Bayesian Emulation of Functions with Structured Discontinuities

2D Emulator Variance NOT using embedding correction
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Bayesian Emulation of Functions with Structured Discontinuities

2D Emulator Variance using embedding correction
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Bayesian Emulation of Functions with Structured Discontinuities

2D Emulator Expectation NOT using embedding correction
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Bayesian Emulation of Functions with Structured Discontinuities

2D Emulator Expectation using embedding correction
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Bayesian Emulation of Functions with Structured Discontinuities

2D Example – True Function
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TNO OLYMPUS Well Placement Optimisation Challenge

Well Placement Optimisation

Aim

Design a well placement strategy including each well location,
trajectory and type, as well as the number of wells and drilling
sequence, for the TNO OLYMPUS oil reservoir model which
maximises the expected NPV over the field lifetime, under the
uncertainty captured by the 50 geological realisations.
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TNO OLYMPUS Well Placement Optimisation Challenge

Well Placement Optimisation

Aim

Design a well placement strategy including each well location,
trajectory and type, as well as the number of wells and drilling
sequence, for the TNO OLYMPUS oil reservoir model which
maximises the expected NPV over the field lifetime, under the
uncertainty captured by the 50 geological realisations.

Objective Function

NPVj(x) =

Nt
∑

i=1

Rj(x, ti)

(1 + d)
ti
τ

E[NPV](x) ≈ NPV(x)

=
1

n

n
∑

j=1

NPVj(x)

Rj(x, ti) = Qj,op(x, ti) · rop −Qj,wp(x, ti) · rwp −Qj,wi(x, ti) · rwi

− Pj(x, ti)−Dj(x, ti)
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TNO OLYMPUS Well Placement Optimisation Challenge

Transformed TNO OLYMPUS Map
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TNO OLYMPUS Well Placement Optimisation Challenge

OLYMPUS Model Ensemble – Oil Content Maps
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TNO OLYMPUS Well Placement Optimisation Challenge

OLYMPUS – Embedding Surface
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TNO OLYMPUS Well Placement Optimisation Challenge

OLYMPUS – Embedding Surface
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TNO OLYMPUS Well Placement Optimisation Challenge

OLYMPUS – Embedding Surface
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TNO OLYMPUS Well Placement Optimisation Challenge

Covariance Matrix for Vertical Slices through the Location
Parameter Space
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TNO OLYMPUS Well Placement Optimisation Challenge

Covariance Matrix for Vertical Slices through the Location
Parameter Space
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TNO OLYMPUS Well Placement Optimisation Challenge

Design for Well 1 Wave 1

Oil reservoir engineering insight suggests the first well should
be a producer.

An initial 41 point design is constructed by sequentially
selecting points which minimises the average emulator
variance over the input parameter space.

This is based on an emulator for functions with structured
discontinuities.

An additional 6 points are added in 3 pairs to explore the
existence and magnitude of the (partial) discontinuities.

Ghost runs with zero NPV are manually added in the water
region surrounding the field to pin down the oil-water
boundary or the location parameter space.
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TNO OLYMPUS Well Placement Optimisation Challenge

NPV Emulator Expectation for Well 1 Wave 1
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TNO OLYMPUS Well Placement Optimisation Challenge

NPV Emulator Expectation plus 2 SD for Well 1 Wave 1
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TNO OLYMPUS Well Placement Optimisation Challenge

NPV Emulator Standard Deviation for Well 1 Wave 1
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TNO OLYMPUS Well Placement Optimisation Challenge

NPV Emulator Expectation for Well 1 Wave 2
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Conclusion

Conclusion

The proposed emulation methodology is able to handle
general forms of structured partial discontinuities whilst
still maintaining a flexible choice of emulator form.

These emulators have been successfully demonstrated to help
choose well locations for the TNO OLYMPUS Challenge.

Emulators which can handle structured partial discontinuities
can be incorporated within our sequential decision support
strategy for the full well placement optimisation problem.

An efficient strategy is to simultaneously choose locations
for groups of wells. For example, 3 wells represents a 6D
problem requiring an embedding of the location parameter
space in 9D.

The embedded emulator methodology is fully generalisable
and transferable to many scientific and industrial
applications possessing such structured discontinuities.
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