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Motivation

Here, going to deal with emulation/calibration problems where:

1 Output dimension ℓ high

2 True model f (x) expensive, so number of model runs n low (n << ℓ)

3 Don’t see ‘good enough’ match between real world and model

Aim: use emulator to explore input space, find output as consistent with
the real world as possible.
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Example - CanAM4 air temperature (TA)

ℓ = 2368, n ∼ 60
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Example - FAMOUS/HadCM3
Observations, ensemble
15,000 years, n = 16
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Motivation

Have several options with high dimensional output:

◮ Emulate summary / several summaries
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Motivation

Have several options with high dimensional output:

◮ Emulate summary / several summaries

◮ Emulate all outputs

◮ Emulate projection onto low-dimensional basis
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Outline

1 Emulation, calibration

2 Dimension reduction

3 Pros, cons, examples

4 Summary
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Gaussian process emulation

◮ Have design X = (x1, . . . , xn) in parameter space X ⊂ R
p.

◮ Run model f (·) at X, gives ℓ× n matrix of model output:

F = (f (x1), . . . , f (xn))

◮ Fit Gaussian process to output:

fi (x)|F,β, φ ∼ GP(mi (x),Ki (x, x)), i = 1, . . . , ℓ,

for mean function mi (x), covariance function Ki (x, x).

◮ Possibly includes nugget so doesn’t interpolate data exactly.

◮ At any point x′, can evaluate expectation, variance.
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Calibration

z = f (x∗) + e+ η

◮ f (·) - computer model representing real-world system, e.g. climate,
ice sheet evolution, heartbeats, spread of infectious diseases, . . .

◮ z - observations of the real-world system

◮ e - observation error (imperfect observations)

◮ η - model discrepancy/inadequacy

◮ x∗ - the ‘best’ setting of the input parameters, x ∈ X ⊂ R
p

◮ Generally replace f (·) with our GP emulator for speed.
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Calibration

z = f (x∗) + e+ η

◮ f (·) - computer model representing real-world system, e.g. climate,
ice sheet evolution, heartbeats, spread of infectious diseases, . . .

◮ z - observations of the real-world system

◮ e - observation error (imperfect observations)

◮ η - model discrepancy/inadequacy

◮ x∗ - the ‘best’ setting of the input parameters, x ∈ X ⊂ R
p

◮ Generally replace f (·) with our GP emulator for speed.

◮ Identifiability issue between x∗ and η: when see a difference between
z, F, don’t know whether problem is due to choice of x, or
discrepancy - need to explore X
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Calibration/history matching

◮ Bayesian calibration (Kennedy & O’Hagan 2001): constructs
posterior distribution for best input, x∗: π(x∗|F, z).

◮ History matching (Craig et al. 1996): rules out regions of parameter
space that are not consistent with observations using implausibility:

I(x) = (z− E[f (x)])T (Var[f (x)] +Σe +Ση)
−1(z− E[f (x)])

◮ Points that are not ruled out are said to be in ‘Not Ruled Out Yet’
(NROY) space, the space of not implausible points:

XNROY = {x ∈ X |I(x) < T},

where T often 32 in 1D, χ2
ℓ,0.995 in ℓD.

◮ Can perform multiple waves, iteratively refocussing in the current
NROY space.
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Example∗
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Basis approach for large ℓ

◮ Calculate SVD/PCA/EOF across the (centred) ensemble Fµ 7−→ Γ.
Project output fields onto the leading q directions of this basis Build
univariate Gaussian process emulators for these coefficients (or any
other model e.g. regression - techniques going to discuss are invariant
to emulator on coefficients!) Key - get prediction + uncertainty,
proxy for expensive computer model Calibrate by comparing these to
projected observations, or map back to original field Why is this bad
in each of our examples?
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Basis approach for large ℓ

◮ Calculate SVD/PCA/EOF across the (centred) ensemble Fµ 7−→ Γ.

◮ Project output fields onto the leading q directions of Γ.
At x: ℓ outputs → q coefficients via projection∗:

c(x) = PW(f (x)− µ), PW = (ΓTq W
−1Γq)

−1ΓTq W
−1.

◮ Build Gaussian process emulators for each set of coefficients :

ci (x) ∼ GP(mi (x),Ki (x, x)), i = 1, . . . , q.

◮ Can then map back to original field:

E[f (x)] = ΓqE[c(x)], Var[f (x)] = ΓqVar[c(x)]Γ
T
q .

∗wrt some positive definite W
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Choosing basis

Basis choice needs to satisfy a few rules:

◮ q << ℓ

◮ Possible to build emulators - so need some element of explaining
variability in data

◮ Ability to represent z in the subspace (e.g. check RW(Γq, z))
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Choosing basis

Basis choice needs to satisfy a few rules:

◮ q << ℓ

◮ Possible to build emulators - so need some element of explaining
variability in data

◮ Ability to represent z in the subspace (e.g. check RW(Γq, z))

Reconstruction error:

For basis B, positive definite matrix W, define†:

RW(B, z) = ‖z− r(z)‖W = (z− r(B, z))TW−1(z− r(B, z)),

r(B, z) = B(BTW−1B)−1BTW−1z.

Note that in perfect emulation case (zero emulator variance) and with
W = Σe +Ση, this is the same distance metric as in I(x).

†JMS, Williamson et al. 2019
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Choosing basis

Basis choice needs to satisfy a few rules:

◮ q << ℓ

◮ Possible to build emulators - so need some element of explaining
variability in data

◮ Ability to represent z in the subspace (e.g. check RW(Γq, z))

The terminal case:

RW(Γq, z) > T .

Natural consequence of this: choice of basis may guarantee that we rule
out f (x) = z, even if we had a perfect emulator: the ‘terminal case’.
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Choosing basis

SVD is variance-maximising, doesn’t care about z. May not be a good
choice for calibration...

Choose basis representation that allows to properly explore X , find
whether can tune inputs, avoid assigning everything to discrepancy

Can often fix by rearranging information in F (rotation) such that
important, low eigenvalue directions are ‘blended’ with variance
maximising directions†

†see JMS et al. 2019, JASA for how to choose Γq, proofs, tricks for finding. . .
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Fast history matching in ℓ dimensions

Want:

I(x) = (z− E[f (x)])T (Var[f (x)] +Σe +Ση)
−1(z− E[f (x)]).

Expensive, ℓ-dimensional matrix inversion varies with x.
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Fast history matching in ℓ dimensions

Thanks to emulator basis structure, we can rewrite this as‡:

Î(x) = (PWz− E[c(x)])T (Var[c(x)] + PW(Σe +Ση))
−1(PWz− E[c(x)]),

W = Σe +Ση,

I(x) = RW(Γq, z) + Î(x).

Fast, one-off inversion of W, then everything works in q dimensions, no
loss of information.

Hence NROY space becomes:

XNROY = {x ∈ X |Î(x) < T −RW(Γq, z)}.

‡JMS and Williamson 2020, arXiV
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Why use a basis method?

With increasing computer power, greater parallelisation, can always fit GPs
to each output individually:

fi (x)|F ∼ GP(mi (x),Ki (x, x)), i = 1, . . . , ℓ.

What benefits do we get if we *don’t* do this? (and equally, what bonus
do we get above emulating summaries?)

1 Interpretation/prior assessment

2 Efficiency (emulation, validation, calibration)

3 Coherence
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Simulating ice evolution

Ice sheet model, Glimmer-CISM General Circulation Models

7 input parameters (e.g. heat flux, basal sliding, lapse rate)

Spatio-temporal fields required for temperature and precipitation (from
low-resolution GCM, e.g. FAMOUS, 48× 37 spatial field for 15,000 years)

ℓ = 194× 150 = 29, 100 field output every 100 years
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Why use a basis method: Emulator efficiency

◮ Higher initial cost (finding basis, inverting W), but one-off

◮ Thousands of emulators (ℓ) vs a few (q)

◮ Cost of basis approach doesn’t increase much as evaluate emulators
at more x ∈ X (and will generally do millions when HM) - useful
when have multiple waves and/or multiple spatial field outputs
and/or small, hard-to-sample-from NROY space
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Why use a basis method: Coherency

Why might it be useful to be able to sample from the emulator posterior
in a physical coherent way?

◮ If using as input (e.g. boundary condition) to another model.

◮ For exceedance probabilities (several co-located grid cells contributing
to a risk of e.g. inundation, important to account for correlated
outputs).
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Why use a basis method: Coherency

Expectations look similar, but individual samples look like model output
for basis approach - not true for independently-sampled GPs unless
posterior variance → 0.
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Why use a basis method: Summary

Good:

◮ Fewer emulators to build, validate (fewer failure points, easier
diagnosis of problems)

◮ Hence much faster predictions, particularly useful when multiple waves

◮ Similar accuracy in experience

◮ Basis structure gives fast calibration, no loss of information

◮ Captures patterns/correlations/physicality from model, interpretability

◮ Emulator posterior behaves like model output

◮ Better exploitation of information in ensemble vs emulating summaries
- if expensive to run, want to extract as much signal as possible.
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Why use a basis method: Summary

Bad:

◮ Initial expense of inverting W, calculating SVD increases with ℓ

◮ Observations may lie outside subspace defined by ensemble (but
either fixable, or a problem in all cases)

◮ Basis selection/emulation can be challenging

◮ Maybe not enough degrees of freedom?

◮ Patterns don’t necessarily align ( =⇒ kernel PCA)

◮ Harder to specify ℓ× ℓ variance matrices for observation error,
discrepancy vs if these are scalars.
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Summary

◮ Given a good choice of basis, can emulate, predict, and calculate
implausibility metric efficiently, for high ℓ.

◮ Useful tool for many problems - won’t always care about what the full
output looks like, but get a lot of nice properties almost for free.

◮ Type of basis not important - as long as satisfies rules! Doesn’t need
to be SVD-based (but often a good starting point).

◮ Discrepancy clearly important, potential for identifying within this
framework.
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