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FOR DOMAIN D C R% . LET THERE BE A w:D — [0,00) .

CONSIDER THE SPACE

L? = L2 (D) = {u D—R | / da:<oo}

L2 15 THE HILBERT SPACE WITH INNER PRODUCT NORM

(u, v) = /Du(x)v(:v)w(a:) dz, |u|®:= (u,u)

AS AN EXAMPLE CONSIDER A PARAMETER SPACE d>1 GINEN BY
D =[-1,1]% wWITH A w(z) =274,
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INTERESTED IN CONSTRUCTING APPROXIMATIONS Of f € L2 .

FOR COMPUTATIONAL FEASIBILITY. APPROXIMATIONS MUST ARISE FROM A FINITE-
DIMENSIONAL SUBSPACE OF L.
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MATHEMATICAL SETOUP

BEST POSSIBLE APPROXIMATION OF f € L2, IS THE ORTHOGONAL PROJECTION ONTO V

N
fn (z) := Z (fsvi) vi ()
g —
COEFFICIENTS BASIS TERMS
NORMALISED

| LEGENDRE POLYNOWIALS
A‘ e N

AS AN EXAMPLE CONSIDER A PARAMETER SPACE 4= 1
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BEST POSSIBLE APPROXIMATION OF f € L2, IS THE ORTHOGONAL PROJECTION ONTO V

Y

v () = (f,vi)v; (z)

=1
COEFFICIENTS  BASIS TERMS

COEFFICIENTS Of THE APPROXIMATION NEED TO BE DETERMINED

(f,vi) = /D f (@) vi (2)w (z) da

M
~ Y f(z)vi(z) A = ¢
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M
REQUIRES A QUADRATURE RULE OfF THE fORM (xjv Aj )jzl. IN \D WE KNOW THAT GAUSS

QUADRATURE POINTS ARE OPTIMAL.
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MOLTIVARIATE EXTENSION
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Polynomial chaos extends across dimension (2D)
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Polynomial chaos extends across dimension (2D)

ONCE WE HAVE A POLYNOMIAL...
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Polynomial chaos extends across dimension (2D)
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Polynomial chaos extends across dimension (many D)
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Curse of dimensionality

Computationally prohibitive to resort to interpolation grids /
quadrature rules in high dimensions.

Need a simpler approach that is not wedding to any particular
multi-index set.

One approach is to frame this as a least squares problem.



Polynomial least squares

Polynomial ridge approximations
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POLYNOMIAL LEAST SQUARES

DEFINE AN M x N MATRIX A AND A VECTOR f € RY wiTH ENTRIES

1
mvn (zm,)

WE ARE INTERESTED IN SOLNING

FOCUS IS ON THE OVERDETERMINED CASE WHERE M > N, wHERE WE ASSUME THAT A
HAS FOLL COLOMN RANK.

T wiLL 3E OSEFUOL TO DEFINE G = ATA.




Polynomial least squares

Structured vs randomised points
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Polynomial least squares

Structured vs randomised points

Can show that as G — I we will reach the best approximation. This has
the consequence of yielding a well conditioned A.

The difficulty for multivariate polynomial spaces is to identify
M ~ N that can satisfy this.

The key insight over the last few years has been the use of biased
sampling strategies to remove the instabilities that arise when
approximating.



Polynomial least squares

Structured vs randomised points

We introduce a bias sampling strategy that moves us from this




BIRSED SAMPLING

COHEN ET AL. (2013) INFORM VS THAT If WE CAN IDENTIFY THE q(x) THAT CAN MINIMISE

THEN WE HAVE A BOUND ON M > N AND WE wjLL ENSURE THAT G — 1 WITH
. BELOW EXAMPLE ON MOLTIVARIATE POLYNOWMIAL.
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Polynomial ridge least squares

Data-driven dimension reduction

The curse of dimensionality



APPROXIMATE COMPLEX MODEL WITH A POLYNOWIAL.

f(x) =~ p(x)




APPROXIMATE COMPLEX MODEL WITH A POLYNOWIAL.
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APPROXIMATE COMPLEX MODEL WITH A POLYNOMIAL RIDGE FUNCTION.

f(x) =~p (MT:B)
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APPROXIMATE COMPLEX MODEL WITH A POLYNOMIAL RIDGE FUNCTION.

f(x)=~p (MTCE)

MERka’ .’BERd

k<<d

THIS YIELDS A POLYNOVIAL DEFINED OVER A SURBSPACE
IN K DIMENSIONS. CHEAPER TO APPROXIMATE!




Iterate through the geometry-mesh-solver loop to generate a
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Iterate through the geometry-mesh-solver loop to generate a
random design of experiment database.
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Polynomial ridge least squares

Data-driven dimension reduction

If WE PROJECT THIS INPOT DATA RANDOMLY...
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Data-driven dimension reduction

If WE PROJECT THIS INPOT DATA RANDOMLY...

AGAIN
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Data-driven dimension reduction

If WE PROJECT THIS INPOT DATA RANDOMLY...

AND AGAIN




Polynomial ridge least squares

Data-driven dimension reduction

from equadratures import

space = Subspaces(method=‘variable-projection’, sample points=X, sample outputs=y)

M = sspace.get subspace()
subspace poly = space.get subspace polynomial ()
subspace poly.get mean and variance()




Polynomial ridge least squares

Data-driven dimension reduction

If WE PROJECT THIS INPUT DATA USING THE COMPUTED SUBSPACE...
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Data-driven dimension reduction

If WE PROJECT THIS INPUT DATA USING THE COMPUTED SUBSPACE...




Polynomial ridge least squares

Data-driven dimension reduction

If WE PROJECT THIS INPUT DATA USING THE COMPUTED SUBSPACE...

CAN THEN FfIT A
POLYNOMIAL OVER THIS
PROJECTION

D (MT:B)




Polynomial ridge least squares

Data-driven dimension reduction

RECALL., ONCE WE HAVE A POLYNOMWIAL...

If WE PROJECT THIS INPUT DATA U

CAN THEN fIT A CAN EASILY COMPUTE;
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5. CRITERION FOR DESIGN OF EXPERIMENT.



Polynomial ridge least squares

Data-driven dimension reduction

SPLITTING THE SPACE
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Data-driven dimension reduction

SPLITTING THE SPACE

r=Ix

r=(MM"+NN" )z  ORTHOGONAL COMPLEVENT




Capability

Data-driven dimension reduction

SPLITTING THE SPACE

r = Ix
r=(MM"+NN" )z  ORTHOGONAL COMPLEVENT
r=MM'2z + NNz

B R

ACTIVE INACTIVE
SUBPACE SOBPACE

N

CAN WE EXPLOIT THIS SPACE
FOR DESIGN?




Polynomial ridge least squares

Applications - browse over the QR codes with your device

Fan blade Temperature Fan blade
design with probe design at
multiple design. multiple

objectives. operating

points.



Polynomial ridge least squares

Data-driven dimension reduction

SPLITTING THE SPACE

r = Ix
r=(MM"+NN" )z  ORTHOGONAL COMPLEVENT
r=MM'2z + NNz

B R

ACTIVE INACTIVE
SUBPACE SOBPACE

>

CAN WE EXPLOIT THIS SPACE
FOR SETTING MANUFACTURING TOLERANCES?
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Blade Envelopes Part I: Concept and
Inverse Design

Methodology
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There was so much to
explore, we wrote a two-
part pre-print on the
subject (on arXiv in a
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week)!

Central idea is to

generate samples for
both scalar- and vector-
valued objectives from
their inactive subspaces.

Blades manufactured through flank and point mulling will likely
extubit geometric vanability. Gauging the aerodynamic repercus-
sions of such variability, prior to manufacturing a component, is
challenging enough, let alone trying to predict what the amplified
impact of any in-service degradation will be. While rules of
thumb that govern the tolerance band can be devised based on
expected boundary layer characteristics at known regions and
levels of degradation, it remains a challenge to translate these
insights into quantitative bounds for manufacturing. In this work,
we tackle this challenge by leveraging ideas from dimension
reduction to construct low-dimensional representations of aero-
dynamic performance metrics. These low-dimensional models
can identify a subspace which contains designs that are invariant
in performance—the inactive subspace. By sampling within
this subspace, we design techniques for drafting manufacturing
tolerances and for quantifying whether a scanned component
should be used or scrapped. We introduce the blade envelope
as a visual and computational manufacturing guide for a blade.
In this paper, the first of two parts, we discuss its underlying
concept and detail its computational methodology, assuming one
is interested only in the single objective of ensuring that the loss
of all manufactured blades remains constant. To demonstrate
the wtility of our ideas we devise a series of computational
experiments with the Von Karman Institute's LS89 turbine blade.

1 INTRODUCTION
Manufacturing vanations and in-service degradation have
a sizeable impact on aerodynamic performance of a jet engine
(see Figure 1). Gauging the acrodynamic repercussions of such
variability prior to manufacturing a component is challenging
enough, let alone trying to predict what the amplified impact of
any in-service degradation might be. In a bid to reduce losses
and mitigate the risks in Figure 1, designers today pursue a
two-pronged approach. First, components are being designed
Lo operate over a range of conditions (and uncertainties therein)
via both robust optimization techniques [ 10, 1 1] as well as more
traditional design guides such as loss buckets—i.e., loss across
a range of positive and negative incidence angles [4]. In parallel,
there has been a growing research effort to assess 3D manufac-

* Ackdress all coerespondence to Chun Yu Wong, cyw28@can.ac.uk
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Fig. 1. Impacts associated with manufacturing variations in a jet en-
gine; see [1-0].

turing variations and in-service degradation by optically scanning
(via GOM) the manufactured blades, meshing them, and running
them through a flow solver [ 7]. Both approaches, while useful
in extracting acrodynamic inference, are limiting. One of the key
bottlenecks is the cost of evaluating flow quantities of interest via
computational fluid dynamics (CFD), as the dimensionality of
the space of manufactured geometries is too large to fully explore,
even with an appropriately tailored design of experiments (DoE).
To reduce the dimensionality, some authors [, 1 7] use princi-
pal components analysis (PCA) to extract a few manufacturing
maodes, which correspond to modes of largest manufacturing de-
viation observed in the scanned blades. One drawback of this
approach 1s that the PCA model is not performance-based, 1.e.
the mode of greatest geometric variability need not correspond to
the mode of greatest performance scatter, a point raised by Dow
and Wang [ 7]. Additionally, GOM scans can only be carried out
on cold and manufactured components, ignoring the uncertainty
on performance associated with in-service operating conditions.
Finally, through neither of these paths are we offering manufactur-
ing engineers a set of pedigree rules or guides on manufacturing
for an individual component, prior to actually manufacturing the
component. This motivates some of the advances in this paper.
We argue that challenges associated with both manufacturing van-

Copyright © 2020 by ASME

Blade envelopes offer a set of data-driven tolerance guidelines
for manufactured components based on aerodynamic analysis.
In part I of this two-part paper, a workflow for the formulation
of blade envelopes is described and demonstrated. In part 1, this
workflow is extended to accommmodate multiple objectives. This
allows engineers to prescribe manufacturing guidelines that take
into account multiple performance criteria.

The quality of a manufactured blade can be correlated with
features derived from the distribution of primal flow quantities
over the surface. We show that these distributions can be ac-
counted for in the blade envelope using vector-valued models
denived from discrete surface flow measurements. Our methods
result in a set of vaniables that allow flexible and independent con-
trol over multiple flow characteristics and performance metrics,
similar in spinit to inverse design methods. The augmentations to
the blade envelope workflow presented in this paper are demon-
strated on the LS89 turbine blade, focusing on the control of loss,
mass flow and the isentropic Mach number distribution.

1 INTRODUCTION

In the first part of this two-part paper [!]. we defined the
concept of a blade envelope, a visual and computational guideline
yielding automatic scrap-or-use decisions of manufactured turbo-
machinery components. Using the theory of inactive subspaces, a
range of geometric designs that are invariant in loss is identified,
and geometries from this invariant region can be generated with
no additional computational fluid dynamics (CFD) solves. From
this, the decision to scrap or keep a measured component reduces
down to the computation of the Mahalanobis distance from an

In the second part, we extend blade envelopes beyond the
manufacturing stage of production, and describe how they can
be used during the design stage as well. During the shape design
of a highly-loaded turbine stage, the minimization of loss is often
accompanied with constraints to avoid trivial solutions where
the blade is unloaded. For example, in [7], the exit flow angle
is constrained to be above the baseline value to ensure sufficient
work extraction. In [7], the authors put an equality constraint on
the mass flow rate while optimizing the loss coefficient w factor

* Acldress all coerespondence to Chun Yui Wong, cyw28@can.ac.uk

1

out possible reduction in entropy generation due o reduction
in flow capacity. Prior work [, 7] has leveraged active subspaces
to construct 2D performance maps for compressor blade design.
In the latter work, multiple objectives including the pressure
ratio and flow capacity are considered by mapping contours of
different objectives onto the active subspace of efficiency. Man-
ufacturing deviations are modeled as constant excursions from
the nominal design. The main drawback of this approach is the
requirement o run further simulations to map out performance
contours in the active subspace. In this work, we incorporate
multiple acrodynamic design requirements by interpreting them
as additional constraints factored into blade envelopes.

In situations where tighter control over the performance
of the component is required, constraints on surface flow
charactenstics can be implemented. Clark [©] establishes the cor-
relation between aerodynamic features—defined via parts of the
surface isentropic Mach number distribution—and acrodynamic
performance. Control over these key features can be achieved
by factoring the isentropic Mach number distribution as an addi-
tional vector-valued objective in blade envelopes. This approach
is similar in spirit to inverse design, where a target distribution
is specified on the surface of a blade, and the blade shape 1s iter-
atively modified to give a geometry that matches the distribution.
While inverse design yields an optimal geometry that fits the
design criterion over the entire surface, our approach aims to find
designs that satisfy the target distribution in parts of the flow that
are most critical to performance. The relaxation of constraints on
other locations allow a range of designs w be specified, whose
expanse is explicitly quantified by the blade envelope. Moreover,
we can combine the control over the surface flow profile with
constraints over other scalar objectives to perform inverse design
constrained on requirements on other measures of performance.

2 COMPUTATIONAL METHODOLOGIES

Blade envelopes demarcate boundaries within the space
of manufactured geometries that correspond o confidence
mtervals of performance metrics. These envelopes are formed
from statistics derived from an acrodynamic database containing
geometries sampled from the inactive subspace with respect to a
scalar objective. Building upon this framework, we describe two

Copyright © 2020 by ASME
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Polynomial ridge least squares

Data-driven dimension reduction

from equadratures import
from scipy.linalg import

space = Subspaces(method=‘variable-projection’, sample points=X, sample outputs=y)
M = sspace.get subspace() # M 1s a 25 by 2 matrix
N = null space(M.T) # returns a 25 by 23 matrix
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Data-driven dimension reduction




Polynomial ridge least squares

CFD flow-field estimation application

COMPUTATIONAL FLOID DYNAMICS
(REYNOLDS AVERAGED NAVIER STOKES)
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Polynomial ridge least squares

CFD flow-field estimation application

Can we use polynomial ridge least squares to estimate the spatial field of static
pressure, given a small database of CFD evaluations?




Polynomial ridge least squares

CFD flow-field estimation application

But, before we look into that, one can use a convolution neural network to approach
this (from literature it seems that this is what all the cool kids are doing).

32 channels

Skip connection

—.

Input
128x128x4 Output
1. Boolean mask 64x64 1d 12?:x128x4
2. Inflow Re . Cp
3. Inflow AoA 2. u/U;
4. Inflow vi/v 3. v/U;
4, ViV

2D convolution, 4x4 kernel

2D convolution, 2x2 kernel
-3 2D deconvolution, 4x4 kernel
------ »> 2D deconvolution, 2x2 kernel

Skip connection
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SOMMARY
PLOTS
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Polynomial ridge least squares

CFD flow-field estimation application

Accuracy competitive with CNN!
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Polynomial ridge least squares

CFD flow-field estimation application

Provides more physical insight compared to CNN's.

Example: predicting turbulent viscosity ratio:




Concluding thoughts



Polynomial approximations

Conclusions

Tremendous body of work dedicated to polynomial least squares over
the past decade with a key focus on biased sampling approaches and
tractable computational strategies.

In cases where physical problems admit ridge like structure,
polynomial ridge approximations can be very powerful, and can abate
the curse of dimensionality.
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