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Prelude
How this all started.

In the 2000s there was a focused interest in the idea of 
quantifying the uncertainty in computational models, 
given their increasing relevance across multiple 
sectors, and the increasing availability of compute.
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Boundary conditions,
Empirical values,

Coefficients,
Geometry parameters

Performance,
Efficiency,

Maximum stress,
Lift-to-drag ratios,

Pressure loss
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Mathematical setup

For domain           , let there be a weight function .
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Generate points for model 
evaluation

Mathematical setup

For domain           , let there be a weight function .

Consider the space

IS THE HILBERT SPACE WITH INNER PRODUCT NORM

AS AN EXAMPLE CONSIDER a parameter space given by       

With a uniform weight function . 
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Generate points for model 
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Mathematical setup

Interested in constructing approximations of        .      

For computational feasibility, approximations must arise from a finite-
dimensional subspace of    .

”Finite-dimensional subspace”

Let Be such an  -orthonormal

Basis for   —>  

With dimension 
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Mathematical setup

Best possible approximation of         is the orthogonal projection onto     

coefficients Basis terms

AS AN EXAMPLE CONSIDER a parameter space

given by       With a uniform weight function . 

. We can take the basis terms to be —>   

Normalised 

Legendre polynomials
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Mathematical setup

Best possible approximation of         is the orthogonal projection onto     

coefficients Basis terms

Coefficients of the approximation need to be determined

Requires a quadrature rule of the form            . In 1D we know that gauss 

quadrature points are optimal.
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Multivariate extension

Let                    denote a multi-index. We then define 

Intuitive way to present polynomial spaces in many dimensions is to 

1. Identify a set of multi-indices;

2. Define a polynomial space as span of monomials

&
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Polynomial chaos extends across dimension (2D)

Probability distribution

polynomial 
chaos

TENSOR GRID

Generate points for model 
evaluation

Evaluate model at the points 
and fit a polynomial

Physics-based “complex model”



polynomial 
chaos

Evaluate model at the points 
and fit a polynomial

Once we have a polynomial…

Can easily compute:

1. Mean, variance, skewness and kurtosis.
2. Probabilities of output.
3. Sensitivity indices (such as Sobol’).
4. Gradients (useful for optimisation).
5. Criterion for design of experiment.

Prelude
Polynomial chaos extends across dimension (2D)



Probability distribution

polynomial 
chaos

TENSOR GRID

Generate points for model 
evaluation

Evaluate model at the points 
and fit a polynomial

Prelude
Polynomial chaos extends across dimension (2D)

Physics-based “complex model”



polynomial 
chaos

Generate points for model 
evaluation

Evaluate model at the points 
and fit a polynomial

Probability distribution

Sparse GRID

To reduce number 
of model 

evaluations

Prelude
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Physics-based “complex model”



Prelude
Polynomial chaos extends across dimension (many D)

Probability distribution

Boundary conditions,
Empirical values,

Coefficients,
Geometry parameters

Performance,
Efficiency,

Maximum stress,
Lift-to-drag ratios,

Pressure loss

Physics-based “complex model”



Prelude
Curse of dimensionality

Computationally prohibitive to resort to interpolation grids / 
quadrature rules in high dimensions.

Need a simpler approach that is not wedding to any particular 
multi-index set.

One approach is to frame this as a least squares problem. 
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Polynomial least squares

define an         matrix    and a vector         with entries  

&

We are interested in solving

Focus is on the overdetermined case where        , where we assume that 

Has full column rank. 

It will be useful to define            . 
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For randomised points and
&



Least squares
Polynomial least squares
Structured vs randomised points

For Gauss-Legendre points and
&



Can show that as               we will reach the best approximation. This has 
the consequence of yielding a well conditioned     . 

The difficulty for multivariate polynomial spaces is to identify 
that can satisfy this.

The key insight over the last few years has been the use of biased 
sampling strategies to remove the instabilities that arise when 
approximating.

Polynomial least squares
Structured vs randomised points



Polynomial least squares
Structured vs randomised points

&

&

We introduce a bias sampling strategy that moves us from this

to



Biased sampling

Cohen et al. (2013) inform us that if we can identify the      that can minimise  

Then we have a bound on         and we will ensure that        with 
high probability. Below example on multivariate polynomial.

Random Biased 
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RUNNING TIME 
(1 MIN FOR 1 eval)

The curse of dimensionality

Polynomial ridge least squares
Data-driven dimension reduction
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Probability distribution PHYSICS-BASED
“Complex model”

Generate points for model 
evaluation

Approximate Complex model with a polynomial.

Approximate Complex model with a polynomial ridge function.

This yields a polynomial defined over a subspace
In K dimensions. Cheaper to approximate!



Polynomial ridge least squares
Data-driven dimension reduction

Iterate through the geometry-mesh-solver loop to generate a 
random design of experiment database.

...Designs

1
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efficiency
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0.74 0.61 0.31 0.16 91.4

... ......
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Iterate through the geometry-mesh-solver loop to generate a 
random design of experiment database.

...Designs

1

2

350

...

-0.32 0.52 0.81 -0.19

0.55 0.37 -0.49 -0.33

93.1

92.8

0.74 0.61 0.31 0.16 91.4

... ...

sample_points=X sample_outputs=y

...

efficiency

Polynomial ridge least squares
Data-driven dimension reduction



If we project this input data randomly…

Low efficiencies

High efficiencies
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If we project this input data randomly…

And Again

Low efficiencies

High efficiencies

Polynomial ridge least squares
Data-driven dimension reduction



from equadratures import *

space = Subspaces(method=‘variable-projection’, sample_points=X, sample_outputs=y)
M = sspace.get_subspace()
subspace_poly = space.get_subspace_polynomial()
subspace_poly.get_mean_and_variance()

We solve the following problem using hokanson & Constantine (2018) via the method
Of separable non-linear least-squares.

Polynomial ridge least squares
Data-driven dimension reduction



If we project this input data using the computed subspace…

Low efficiencies

High efficiencies
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If we project this input data using the computed subspace…

Low efficiencies

High efficiencies

Side view

Polynomial ridge least squares
Data-driven dimension reduction



Low efficiencies
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Low efficiencies

High efficiencies

If we project this input data using the computed subspace…

Can then fit a 
Polynomial over this
Projection

Recall, Once we have a polynomial…

Can easily compute:

1. Mean, variance, skewness and kurtosis.
2. Probabilities of output.
3. Sensitivity indices (such as Sobol’).
4. Gradients (useful for optimisation).
5. Criterion for design of experiment.

Polynomial ridge least squares
Data-driven dimension reduction
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Probability distribution PHYSICS-BASED
“Complex model”

Splitting the space

Active 
subpace

InActive 
subpace

Capability
Data-driven dimension reduction

Orthogonal complement

Can we exploit this space 
For design?



Fan blade 
design with 
multiple 
objectives.

Temperature 
probe
design.

Fan blade 
design at 
multiple 
operating 
points.

Polynomial ridge least squares
Applications – browse over the QR codes with your device



Probability distribution PHYSICS-BASED
“Complex model”

Splitting the space

Active 
subpace

InActive 
subpace

Orthogonal complement

Can we exploit this space 
For setting manufacturing tolerances?

Polynomial ridge least squares
Data-driven dimension reduction



There was so much to 
explore, we wrote a two-
part pre-print on the 
subject (on arXiv in a 
week)!

Central idea is to 
generate samples for 
both scalar- and vector-
valued objectives from 
their inactive subspaces.
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from equadratures import *
from scipy.linalg import null_space

space = Subspaces(method=‘variable-projection’, sample_points=X, sample_outputs=y)
M = sspace.get_subspace() # M is a 25 by 2 matrix
N = null_space(M.T) # returns a 25 by 23 matrix

Polynomial ridge least squares
Data-driven dimension reduction



Can 3D print this and use it to make more well-informed design and manufacturing decisions.

Polynomial ridge least squares
Data-driven dimension reduction



Input parameters

COMPUTATIONAL FLUID DYNAMICS
(REYNOLDS AVERAGED NAVIER STOKES)

50 Hicks-Henne bump 
functions

VELOCITY or Pressure at
Each node

(Its a Vector!)

Output parameters

Polynomial ridge least squares
CFD flow-field estimation application



Can we use polynomial ridge least squares to estimate the spatial field of static 
pressure, given a small database of CFD evaluations?

Different designs
Velocity, pressure, 
turbulence fields

Cp

0 1 2 3-1-2-3

Polynomial ridge least squares
CFD flow-field estimation application



But, before we look into that, one can use a convolution neural network to approach 
this (from literature it seems that this is what all the cool kids are doing).

Encoder network de
co

de
r 

ne
tw

or
k

Convolution blocks

Feature vector

Polynomial ridge least squares
CFD flow-field estimation application



But there is some physical insight, if we exploit. Each node exhibits a ridge-like structure.

Polynomial ridge least squares
CFD flow-field estimation application



We can exploit this ridge-like structure to rapidly predict flow-fields.

Contours: approximation

Isolines: CFDThis design

Summary 
plots

Uncertainty 
bounds

Polynomial ridge least squares
CFD flow-field estimation application



Accuracy competitive with CNN! 

ERROR IN VELOCITY PREDICTION (LOG-scale)

-5 0-1-4

Polynomial ridges State-of-the-art cNn

-3 -2

Polynomial ridge least squares
CFD flow-field estimation application



Provides more physical insight compared to CNN’s. 

Example: predicting turbulent viscosity ratio:

Design with high 
turbulent mixing

Design with low 
turbulent mixing

Polynomial ridge least squares
CFD flow-field estimation application



Concluding thoughts



Tremendous body of work dedicated to polynomial least squares over 
the past decade with a key focus on biased sampling approaches and 
tractable computational strategies.

In cases where physical problems admit ridge like structure, 
polynomial ridge approximations can be very powerful, and can abate 
the curse of dimensionality.

Polynomial approximations
Conclusions
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