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Proposition of a hierarchical space-time model for extreme

precipitation data
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Rainfall data

» Hourly observations at 50 rainfall stations for the years 1993 to
2014 from September to November (54542 hours)

» Moderately large dataset (50 x 54542 observations)
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Three stations in France
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» clusters of strong values over space and time,

> strong variations at very small spatial and temporal scales
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Bivariate max-stable distributions

Let (X; Y;) ~ F be independent random vectors with w.l.g. unit
Fréchet margins K(x) = exp(—1/x), x> 0. If a non-degenerate

..........

ists (Fe D(G)),

lim P(My, < nx,M,,, < ny)=G(x,y)

n—oo
then G is : Gr(kxy, kxp) = G(x,y)
o If 1 1
G(x,y) = K(x)K(y) = exp (—}) exp (—})

— ultimately, normalized maxima of X and Y are independent.
(X,Y) are said to be
Otherwise, (X,Y) are
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Dependence measures y and y
Let (X,Y) ~ Fe D(G), with Fx and Fy margins.

The x parameter The ¥ parameter
y=limy P(Fy(Y)>ulFx(X)>u) |~ _; 2logP(Fx(X)>w)
i 5 _ logP(R(0=uFy(V)=) X =limy— TogP(Fx(X)> 1, Fy (Y)>1) 1
= y—1 4= logP(Fx(X)<u) = lim,— y(u)
= limy—1 y(u)
° = X and Y are . ° = X and Y are
— y quantifies the strength of the
extremal dependence.
o = X and Y are Al ° = X and Y are Al;
— y unable to provide dependence moreover ¥ provides a measure that
information for Al case ! increases with dependence strength.
Gaussian vectors with correlation parameter p#1: y =0, ¥ = p.
For , x(v) = x (same dependence structure
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Our rainfall data: extremal dependence measure |
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Our rainfall data: extremal dependence measure |l
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Space-time setup

Bacro, J.N., Gaetan, C., Opitz, T., Toulemonde, G. (2020). "Hierarchica
space-time modeling of exceedances with an application to rainfall data",
JASA.
> {Z(x),x€ D}, space-time process where x=(s,1), DcR? xR,
> s space coordinate
> ¢ time coordinate
> Types of concern when dealing with extreme values of the
processes:

> accurate inference for marginal distributions
> assessment of the space-time dependence of the extreme values
Possibly asymptotically independent

» What Extreme means for a process? no unique definition
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Exceedances

> Model for tail behaviour of Z(x) by fixing a "high” threshold u
and focusing only on the (left-censored) values above u

( )

X

— We explicitly model the original event data



Marginal modelling: Generalized Pareto (GP) distribution

» Distribution for (censored) exceedances : the GP distribution

~~ asymptotic justification for u— 7 (upper endpoint)

)"

+

= H(ysy),  y=z0

> A different look at the GP distribution (when ¢ >0): GP
distribution

1§

Pr(Z(x)—u<ylZ(x) > u)

V|G~ Exp(G), G~Gamma(l/¢,w/¢) =V ~GP(; & ).
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Hierarchical space-time process with GP marginals

formulation for exceedances (following an idea of
Bortot and Gaetan, 2014)

Y(x):=(Z(x) - u) {Z(x) > u}
> latent space-time process with Gamma marginals

~Gamma(a, B)

- Y()I[G(x), Y(x) > 0] ~ Exp(G(x))

P(Y(x)>0]G(x)) = exp(~xG(x))

where x >0 is a parameter controlling the rate of upcrossings
of the threshold.

joint space-time structure of the zero part and the positive part
in the distribution of Y(x)



Multivariate distribution over the threshold

Exploiting a direct connection between probabilities for Y () and
Zc(+), we obtain:

Pr(Z(x) > u) = E[Pr(Z(x) > u| G(x))] = Lg(x) (x)

~ Data z=(z1,...,2,)" ; for z=u,

Pr(Z(x1) > z1,...,Z(xp) > 2y) = Le(z2— (u—x))

— Multivariate densities can be evaluated as soon as %¢ is
known.

> Notation for with z;>uand 2o > u :
PI“(Z(X,') =< Zl',Z(x]') =< Zj) = H(Zl',Zj)



Which space-time process G(-) with Gamma marginals?

Based on
(Huser and Davison, 2014) (Wolpert and Ickstadt, 1998)

A +

Space
> The describes the spatial influence zone of a storm
» The ellipse (storm) moves through space with a w

> The of astormis 6 >0
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Which space-time process G(-) with Gamma marginals?

We propose to model the space-time process {G(x),x€ 2} as a
of a I'(-) (Wolpert and
Ickstadt, 1998)

Glx) = fA T(dX') = T(Ay).

with T'(.) a Gamma RF defined on the space-time domain
2=R?*xR,
such that
* for any set A, I'(A) := [,I'(dx) ~Gamma(a(A), f);
* for any sets Aj, Az such that AjnA, =@, T'(A;) and I'(Ay) are
random variables.
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Extremal dependence of Z(-):
Asymptotic Independence

C
2 >0

2¢cp—C2 -

Yxx =0 and ¥, »

Co C2
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Application to rainfall data

» Hourly observations at 50 rainfall stations for the years 1993 to
2014 from September to November (54542 hours)

» Moderately large dataset (50 x 54542 observations)

T =
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Application to rainfall data

» Marginal distributions are not stationary in space

99% quantile ¢ (tail parameter)

> Fit a GP distribution separately to each site s with thresholds
chosen as the empirical quantiles g 99(5s)

»> Transform the exceedances to the same GP distribution
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Space-time dependence parameters

0 = (¢)Y17Y2)6r (l)),

Y2 71
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Inferential issues: composite likelihood approach
Let u be a sufficiently high threshold

» Different (censored) likelihood contribution L(z,2,:0) of
Z(x]J =z, Z(xg) = Iz

» Weighted composite likelihood (Lindsay, 1988, Bevilacqua et
al., 2012)

n—1

pL(e) =] ﬁ Lz, zj3 68 ) wy;

i=l j=it1

w;; positive weights that depend on the space-time distance.

«— Then we maximise pairwise weighted censored log-likelihood to
obtain parameter estimations.



Application to rainfall data

Two models for space-time dependence
Gamma-Pareto process

model G1 without velocity (w =0)
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Estimates, standard errors (in italic) values of the
Gamma-Pareto fitted models.

0= ((I))'}/I’YZ)éy (I)),

-

Muoddel Parameters

k? Y2 & a wy uy

G1 165.062 318,823 0.085 20,184 0723 0.446
23459 19.811 0026  0.4948 0195 0.009

G2 175817 294.323 0041 20,036 0 0

11874 25,291 iy 1059

Parameter units are kms for y; and y,, radians for ¢, hours for § and

kms per hour for w; and ws.
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Comparison with other Al processes

Comparison with three variants of a censored anisotropic Gaussian
space-time copula.

Space-time separable model

Non-separable model (frozen field, Christakos,
2017)

Non-separable model with spherical correlation
function

Comparison according to

> (minimum for our Gamma-Pareto process G1)
>

Pr(Z(s,t)>qlZ(s,t— ht) > q)
>

Yoo, (@) :=Pr(Z(s;, 1) > q,5 € 0si| Z(si, t = hy) > q)



Angle /4

lag 0 lag 1

Estimated probabilities Pr(Z(s,t) > qlZ(s,t— h;) > q) along
different directions and at different temporal lags h;. Dotted points
correspond to empirical estimates. The value q is fixed to the
empirical 99% quantile.



Angle 3 /4

lag 0 lag 1

Estimated probabilities Pr(Z(s,t) > qlZ(s,t— h;) > q) along
different directions and at different temporal lags h;. Dotted points
correspond to empirical estimates. The value q is fixed to the
empirical 99% quantile.



RMSE

» Compute
> empirical estimates of the multivariate conditional
probability

X (0) = Pr(Z(si,0) > 4y 5;€ 91 Z (st~ 1) > )

where 8s; is the set of the four nearest neighbors of site s;,
i=1,...,50.
> Monte-Carlo estimates , j=1,...,200.

> Calculate site-specific root mean squared errors (RMSE)

2905 ()= i)

RMSE;(h;) = 500

and the resulting total RMSE(hy) = ¥3°, RMSE; (hy).



RMSE

RMSE(0) RMSE(1) RMSE(2)
qo.99  40.995 qo.99  40.995 qo.99  40.995
Gl 2614 2.096 1.901 1.643 1.475 1.496
G2 2605 2.072 1.907 1.626 1.477 1.480
Cl 2240 2455 2.053 2428 1.779 1.928

Table 1: Total root mean squared errors for the estimates of X:»-h,(Q)
with h;=0,1,2 hours.



Conclusions on this part

> A space-time model for threshold exceedances of data with
asymptotically vanishing dependence strength with
physical interpretation.

> Extensions to asymptotic dependence are possible.

> Simulations of exceedances
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Why simulate extreme rainfall 7

Example of simulated water level and speed in Montpellier with a
urban flood model.

Left : study area (600m x 600m). Center : simulated water depths. Right:
detail view of the mesh. The lowest depths in blue and the largest depths (5

cm) in red

« Input for urban flood models: rainfall forcing.
> Exploration of not already observed scenarios from limited
observations
» Stochastic inputs for impact studies

Reconstructing extreme space-time rainfall forcing scenarios
as close to reality as possible is therefore a crucial issue.
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Urban flood risk study

\
.

Forcings Hs,t Vs t

Flow models . Risk indicators

f(Hs,t Vs,t)

Toulemonde, G., Carreau, J., Guinot, V. (2020). "Space-time simulations of
extreme rainfall : why and how 7" in 5. Manou-Abi, 5. Dabo-Niang, J. Salone
(eds), Mathematical Modeling of Random and Deterministic Phenomena,
Wiley.
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Which extremal behaviour of Z={Z(x),xe D} ?

» what does it mean rainfall extreme we would like to simulate 7

» Events satisfying an exceedance condition

2%
2(x)

Max-stable Gamma-Pareto Pareto processes

processes
¢-Pareto process
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Semi-parametric simulation method

(Chailan, R., Toulemonde, G., and Bacro, J. (2017); Palacios-Rodriguez
F., Toulemonde G., Carreau J., Opitz T. (2020))

(Based on Ferreira and de Haan, 2014; Dombry and Ribatet, 2015)

Z(s,t):=R

with R~ Pareto(1,yg) independent of Y(s,£) =0, £(Y(s,t)) =1 with
¢ a cost functional (a continuous non negative function that is
homogeneous).



Semi-parametric simulation method

> {Z*(s,1),s€ #,t€ T} the Pareto
standardised process.

> Defining extreme episodes — Cost functional ¢+ threshold u
> Select the m most extreme episodes

(Zy(st)se e S teTic T, iell,...,m)
For each ie{l,...,m},

>

> Non-parametric approach for the dependence structure
> Sample R; according to a Pareto r.v. with shape 1 and scale
a >0 and generate

B Z[*l.] (s7) B
‘/i(S, t) = l‘W = Rl‘Yi(S, t)



Application to precipitation in Mediterranean France

> Reanalysis data-set
> Hourly rainfall totals (mm).

> 133kms x 104kms grid with
1km spatial resolution.

> Years: from 1997 to 2007.
N = 87642 hours time steps.

> ¢: Space-time
neighborhoods(15 kms, 24h)
> 1u=0.99-quantile.
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Some perspectives about urban flood risk study

N

Forcings Hs,t Vst

Flow models . Risk indicators

f(Hs,t Vs,1)

HAR
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Statistical modelling of extreme events

»> Framework:

> multivariate,
> temporal,
> spatial

— taking into account associated complex dependence.

> Three main issues (I11), (12) and (13)
> (I11) Asymptotic independence (hybrid according
components)
> (12) Spatial and/or temporal non-stationarity of the
dependence structure (Carreau J., Toulemonde G., 2020)
> (13) Combination of extreme and non-extreme events.



Some perspectives about urban flood risk study

Hs,t Vs,
el Risk indicators
f(Hs,t Vs,1)
HR

MNesd high

ST resaluicn % Multivariste

Very lime- risk measures

CONSUMIng

37/38



Some references

| 4

Bacro, J.N., Gaetan, C., Opitz, T., Toulemonde, G. (2020). Hierarchical
space-time modeling of exceedances with an application to rainfall data,
JASA, 115(530), 555-569.

Carreau J., Toulemonde G. (2020). Spatial dependence structure for
flood-risk rainfall. Spatial Statistics, 40.

Chailan, R., Toulemonde, G., and Bacro, J. (2017). A semiparametric
method to simulate bivariate space-time extremes. The Annals of Applied
Statistics, 11(3):1403-1428.

Ferreira, A. and de Haan, L. (2014). The generalized Pareto process; with
a view towards application and simulation. Bernoulli, 20(4):1717-1737.
Huser, R., Davison, A. C. (2014). Space-time modelling of extreme
events, JRSS B, 76, 439-461.

Palacios-Rodriguez F., Toulemonde G., Carreau J., Opitz T. (2020).
Generalized Pareto processes for exploring and simulating space-time
extremes : application to rainfall data. SERRA, 34, 2033-2052.
Toulemonde, G., Carreau, J., Guinot, V. (2020). Space-time simulations
of extreme rainfall : why and how ? in Mathematical Modeling of
Random and Deterministic Phenomena, Wiley.

Wolpert, R. L., Ickstadt, K. (1998). Poisson/Gamma random fields for
spatial statistics, Biometrika, 85, 251-267.



	Urban flood risk study

