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Rainfall data

Ï Hourly observations at 50 rainfall stations for the years 1993 to
2014 from September to November (54542 hours)

Ï Moderately large dataset (50×54542 observations)
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Bivariate max-stable distributions

Let (Xi,Yi) ∼ F be independent random vectors with w.l.g. unit
Fréchet margins K (x) = exp(−1/x), x > 0. If a non-degenerate
limit distribution for (Mx,n,My,n) = (maxi=1,...,n Xi,maxi=1,...,n Yi) ex-
ists (F ∈ D(G)),

lim
n→∞

P(Mx,n ≤ nx,My,n ≤ ny)= G(x,y)

then G is max-stable: Gk(k x1,k x2)= G (x,y)

• If

G(x,y)= K (x)K (y)= exp

(
−

1

x

)
exp

(
−

1

y

)

,→ ultimately, normalized maxima of X and Y are independent.

(X ,Y ) are said to be Asymptotically Independent (AI).

Otherwise, (X ,Y ) are Asymptotically Dependent (AD).
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Dependence measures χ and χ
Let (X ,Y )∼ F ∈ D(G), with FX and FY margins.

The χ parameter

χ= limu→1P(FY (Y )> u|FX (X)> u)

= limu→1 2−
logP(FX (X)≤u,FY (Y )≤u)

logP(FX (X)≤u)

≡ limu→1χ(u)

• χ> 0 ⇒ X and Y are AD;
,→ χ quantifies the strength of the

extremal dependence.

• χ= 0 ⇒ X and Y are AI.
,→ χ unable to provide dependence

information for AI case !

The χ parameter

χ= limu→1
2 logP(FX (X)>u)

logP(FX (X)>u,FY (Y )>u)
−1

≡ limu→1χ(u)

• χ= 1 ⇒ X and Y are AD.

• −1 ≤χ< 1 ⇒ X and Y are AI;
moreover χ provides a measure that
increases with dependence strength.

Example 1: Gaussian vectors with correlation parameter ρ 6= 1: χ= 0, χ= ρ.

Example 2: For max-stable distribution, χ(u)=χ (same dependence structure

∀u)
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Our rainfall data: extremal dependence measure I

Spatial lag: x = (s, t),x′ = (s+hs, t)
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Our rainfall data: extremal dependence measure II

Temporal lag: x = (s, t),x′ = (s, t +ht)
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Space-time setup

Bacro, J.N., Gaetan, C., Opitz, T., Toulemonde, G. (2020). "Hierarchical

space-time modeling of exceedances with an application to rainfall data",

JASA.

Ï {Z(x),x ∈ D}, space-time process where x = (s, t), D ⊂R
2 ×R+

Ï s space coordinate
Ï t time coordinate

Ï Types of concern when dealing with extreme values of the
processes:

Ï accurate inference for marginal distributions
Ï assessment of the space-time dependence of the extreme values

Possibly asymptotically independent

Ï What Extreme means for a process? no unique definition
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Exceedances

Ï Model for tail behaviour of Z(x) by fixing a “high” threshold u

and focusing only on the (left-censored) values above u

(exceedances)

u

x

Z(x)

,→ We explicitly model the original event data
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Marginal modelling: Generalized Pareto (GP) distribution

Ï Distribution for (censored) exceedances : the GP distribution

 asymptotic justification for u → τF (upper endpoint)

Pr(Z(x)−u ≤ y|Z(x)> u) ≃ 1−

(
1+ξ

y

ψ

)−1/ξ

+

:= H(y;ξ,ψ), y ≥ 0

Ï A different look at the GP distribution (when ξ> 0): GP
distribution as a Gamma mixture for the rate of the
exponential distribution:

V | G ∼ Exp(G), G ∼Gamma(1/ξ,ψ/ξ) ⇒ V ∼ GP(·;ξ;ψ).
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Hierarchical space-time process with GP marginals
Hierarchical formulation for exceedances (following an idea of
Bortot and Gaetan, 2014)

Y (x) := (Z(x)−u)1{Z(x)> u}

Ï latent space-time process with Gamma marginals

G(x)∼Gamma(α,β)

,→ Y (x)|[G(x),Y (x)> 0]∼Exp(G(x))

P(Y (x)> 0 |G(x))= exp(−κG(x))

where κ> 0 is a parameter controlling the rate of upcrossings
of the threshold.

 joint space-time structure of the zero part and the positive part
in the distribution of Y (x)
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Multivariate distribution over the threshold

Exploiting a direct connection between probabilities for Y (·) and
L G(·), we obtain:

Pr(Z(x)> u)= E[Pr(Z(x)> u | G(x))]=LG(x)(κ)

 Data z = (z1, . . . ,zn)
′ ; for z ≥ u,

Pr(Z(x1)> z1, . . . ,Z(xn)> zn)=LG(z− (u−κ))

,→ Multivariate densities can be evaluated as soon as LG is
known.

Ï Notation for bivariate distribution with z1 > u and z2 > u :
Pr(Z(xi)≤ zi,Z(xj)≤ zj)= H(zi,zj)
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Which space-time process G(·) with Gamma marginals?
Based on Slated elliptical cylinder + Gamma random field

(Huser and Davison, 2014) (Wolpert and Ickstadt, 1998)

Time

Space

x

Ax x′

Ax′

Ï The ellipse describes the spatial influence zone of a storm

Ï The ellipse (storm) moves through space with a velocity ω

Ï The duration of a storm is δ> 0
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Which space-time process G(·) with Gamma marginals?

We propose to model the space-time process {G(x),x ∈D} as a
convolution of a Gamma random field Γ(·) (Wolpert and
Ickstadt, 1998)

G(x)=

∫

Ax

Γ(dx′)= Γ(Ax).

with Γ(.) a Gamma RF defined on the space-time domain
D =R

2 ×R+

such that

⋆ for any set A, Γ(A) :=
∫

AΓ(dx)∼ Gamma(α(A),β);

⋆ for any sets A1,A2 such that A1 ∩A2 =;, Γ(A1) and Γ(A2) are
independent random variables.
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Extremal dependence of Z(·):
Asymptotic Independence

χx,x′ = 0 and χx,x′ =
c2

2c0 −c2

≥ 0

x

x′

x

x′

x

x′

c0 c2 2c0 −c2
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Application to rainfall data

Ï Hourly observations at 50 rainfall stations for the years 1993 to
2014 from September to November (54542 hours)

Ï Moderately large dataset (50×54542 observations)
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Application to rainfall data

Ï Marginal distributions are not stationary in space
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Ï Fit a GP distribution separately to each site s with thresholds
chosen as the empirical quantiles q0.99(s)

Ï Transform the exceedances to the same GP distribution
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Space-time dependence parameters

θ = (φ,γ1,γ2,δ,ω)′

γ2
γ1

φ

s
δ

s, t

ω
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Application to rainfall data

Two models for space-time dependence

G1 Gamma-Pareto process

G2 model G1 without velocity (ω= 0)
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Estimates, standard errors (in italic) values of the

Gamma-Pareto fitted models.

θ = (φ,γ1,γ2,δ,ω)′

γ2
γ1

φ

s
δ

s, t

ω

Parameter units are kms for γ1 and γ2, radians for φ, hours for δ and

kms per hour for ω1 and ω2.
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Comparison with other AI processes

Comparison with three variants of a censored anisotropic Gaussian
space-time copula.

C1 Space-time separable model

C2 Non-separable model (frozen field, Christakos,
2017)

C3 Non-separable model with spherical correlation
function

Comparison according to

Ï CLIC (minimum for our Gamma-Pareto process G1)

Ï Bivariate conditional probabilities
Pr(Z(s, t)> q|Z(s′, t −ht)> q)

Ï RMSE based on multivariate conditional probability
χ∗

si;ht
(q) :=Pr(Z(sj, t)> q,sj ∈ ∂si|Z(si, t −ht)> q)
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Angle π/4
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Angle 3π/4

lag 0 lag 1
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RMSE

Ï Compute
Ï empirical estimates p̂i(ht) of the multivariate conditional

probability

χ∗
si;ht

(q) :=Pr(Z(sj, t)> q,sj ∈ ∂si|Z(si, t −ht)> q)

where ∂si is the set of the four nearest neighbors of site si,
i = 1, . . . ,50.

Ï Monte-Carlo estimates p̃
(j)
i
(ht), j = 1, . . . ,200.

Ï Calculate site-specific root mean squared errors (RMSE)

RMSEi(ht)=





∑
200
j=1

(p̃
(j)
i
(ht)− p̂i(ht))

2

200





1/2

,

and the resulting total RMSE(ht)=
∑

50

i=1
RMSEi(ht).
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RMSE

RMSE(0) RMSE(1) RMSE(2)
q0.99 q0.995 q0.99 q0.995 q0.99 q0.995

G1 2.614 2.096 1.901 1.643 1.475 1.496
G2 2.605 2.072 1.907 1.626 1.477 1.480
C1 2.240 2.455 2.053 2.428 1.779 1.928

Table 1: Total root mean squared errors for the estimates of χ∗
si;ht

(q)

with ht = 0,1,2 hours.
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Conclusions on this part

Ï A space-time model for threshold exceedances of data with
asymptotically vanishing dependence strength with
physical interpretation.

Ï Extensions to asymptotic dependence are possible.

Ï Simulations of exceedances
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Which extremal behaviour of Z = {Z(x),x ∈ D} ?

Ï what does it mean rainfall extreme we would like to simulate ?

Ï Events satisfying an exceedance condition

Z
(x

)

x

Z
(x

)

u

Z
(x

)

u

x

{maxi Zi(x)} {max(Z(x),u)} {Z(x)|supx∈D Z(x)> u}

Max-stable Gamma-Pareto Pareto processes
processes

ℓ-Pareto process
{Z(x),x ∈ D|ℓ(Z(x))> u}
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Semi-parametric simulation method
(Chailan, R., Toulemonde, G., and Bacro, J. (2017); Palacios-Rodriguez

F., Toulemonde G., Carreau J., Opitz T. (2020))

Construction of standard space-time ℓ-Pareto processes

(Based on Ferreira and de Haan, 2014; Dombry and Ribatet, 2015)

Z(s, t) := RY(s,t)

with R ∼Pareto(1,γR) independent of Y (s, t)≥ 0, ℓ(Y (s, t))= 1 with
ℓ a cost functional (a continuous non negative function that is
homogeneous).
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Semi-parametric simulation method

Ï Standardisation {Z∗(s, t),s ∈S , t ∈T } the Pareto
standardised process.

Ï Extraction
Ï Defining extreme episodes → Cost functional ℓ+ threshold u
Ï Select the m most extreme episodes

{Z∗

[i]
(s, t),s ∈Si ⊂S , t ∈Ti ⊂T }, i ∈ {1, . . . ,m}

For each i ∈ {1, . . . ,m},

Ï Lifting procedure
Ï Non-parametric approach for the dependence structure
Ï Sample Ri according to a Pareto r.v. with shape 1 and scale

α> 0 and generate

Vi(s, t)= Ri

Z∗

[i]
(s, t)

ℓ(Z∗

[i]
(s, t))

= RiYi(s, t).

Ï Back-transformation to original scale
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Application to precipitation in Mediterranean France

Ï Reanalysis data-set

Ï Hourly rainfall totals (mm).

Ï 133kms×104kms grid with
1km spatial resolution.

Ï Years: from 1997 to 2007.
N = 87642 hours time steps.

Ï ℓ: Space-time
neighborhoods(15 kms, 24h)

Ï u = 0.99-quantile.
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Statistical modelling of extreme events

Ï Framework:
Ï multivariate,
Ï temporal,
Ï spatial

→ taking into account associated complex dependence.

Ï Three main issues (I1), (I2) and (I3)
Ï (I1) Asymptotic independence (hybrid according

components)
Ï (I2) Spatial and/or temporal non-stationarity of the

dependence structure (Carreau J., Toulemonde G., 2020)
Ï (I3) Combination of extreme and non-extreme events.
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