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5. Quantification of Reads

number of reads – 45 ————- 17685 —- 0 —– 15 —
reference genome – gène 1 ———– gène 2 – gène 3 – gène 4 —
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Modeling gene expression data for network inference

gene 1 gene 2 gene 3 gene 4 gene 5 . . .
individual 1 4938 199 2987 0 65 . . .
individual 2 7530 189 1806 0 29 . . .
individual 3 2996 201 1752 48 599 . . .
individual 4 2904 198 2987 0 65 . . .
individual 5 7670 19931 1837 0 388 . . .
individual 6 2309 18319 8786 20 861 . . .
individual 7 7398 23101 2237 180 76 . . .
individual 8 1218 34198 9828 0 65 . . .

. . . . . . . . . . . . . . . . . . . . .

yi : expression level for sample i for i = 1, . . . , n
yj : expression level for gene j for j = 1, . . . , p
yij : expression level for gene j and sample i

We observe the expression of p genes y1, . . . , yp and assume that they are
realizations of p random variables Y1, . . . ,Yp.
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Network inference methods : an overview (1/2)

(Direct) dependencies networks

◮ describes marginal dependencies between variables
◮ two variables Yj et Yj′ independent if we can write their

joint distribution as the product of their two marginal
distribution (in the following, the letter "p" will represent
the corresponding probability density function) :

p(yj ; yj
′

) = p(yj)p(yj
′

)

◮ related to hierarchical clustering and co-expression
networks

Mutual information based networks (Meyer, 2008, Butte, 2000.)

◮ The mutual information between two variables is:

I (Yj
,Yj′) =

∫ ∫

p(yj , yj
′

) log
p(yj , yj

′

)

p(yj) p(yj′)
dyjdyj

′

.

◮ takes into account non-linear relationship between
variables

8 / 30



Network inference methods : an overview (2/3)

Directed graphical models or Bayesian networks (Pearl, 1990)

◮ Bayesian network are DAG (acyclic directed graph)
◮ Exemple : consider three random variables Y1,Y2,Y3 and

the following factorization of the joint density

p(y1
, y2

, y3) = p(y1 | y2
, y3)p(y2 | y3)p(y3)

The corresponding network has 3 nodes : there is a
directed edge from node 3 from to node 2 (due to the
factor p(y2 | y3)) and from node 2 and 3 to node 1 (due
to the factor p(y1 | y2, y3).

◮ The graph is deduced from the factorisation of the joint
density f where pa(yj) are the parents of the node j :

p(y1
, . . . , yp) =

p
∏

j=1

p(yk | pa(yj)).

Undirected graphical models (Whittaker, 1990, Lauritzen, 1996)

◮ Conditional dependencies networks, also called Markov
networks

◮ The edges between nodes are non-directed and represent
conditional dependencies between variables

9 / 30





Special case : the Gaussian Graphical Model (GGM)

◮ The p variables are assumed to follow Gaussian distributions:
◮ yi ∼ Np(0,Σ) i.i.d. for each individual i ∈ {1, . . . , n}.
◮ Σ : covariance matrix of size p × p.
◮ Θ = Σ−1, the inverse of the covariance matrix, i.e. the precision matrix.
◮ θ

jj
′ : coefficients of the precision matrix for (j , j ′) ∈ {1, . . . , p}2.

◮ Links between θ
jj
′ and the partial correlation coefficient ρjj′ between

variables j and j ′ :

ρjj′ =
θjj′

√

θjjθj′j′
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◮ Θ = Σ−1, the inverse of the covariance matrix, i.e. the precision matrix.
◮ θ

jj
′ : coefficients of the precision matrix for (j , j ′) ∈ {1, . . . , p}2.

◮ Links between θ
jj
′ and the partial correlation coefficient ρjj′ between

variables j and j ′ :

ρjj′ =
θjj′

√

θjjθj′j′

To infer the graph, we need to estimate the matrix Θ :

yi ∼ N3(0,Σ)

Σ̂ =





1 0 .98 0 .98
0.98 1 0 .99
0.98 0.99 1



 Θ̂ =





31.3 −31.6 0.86
−31.6 145 −113
0.86 −113 112





Correlation matrix Precision matrix
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Selection of groups of genes based on non-asymptotic argument (Massart, 2003)

B̂ = argmin
B

{

−
1

n

n
∑

i=1

log(f̂B(yi )) + pen(B)

}

,

with pen(B) to define.
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Selection among an aleatory sub-collection of models

B: set of all possible partitions of the p variables
⇒ Exhaustive exploration of B is unrealistic

BΛ: set of partitions obtained by thresholding of | S |

B̂ = argmin
B∈BΛ

{

−1

n

n
∑

i=1

log(f̂B(yi )) + pen(B)

}

,

with pen(B) to define.
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Oracle inequality
There exists some absolute constants κ and Coracle such that whenever

pen(B) ≥ κ
DB

n

[

2c2 + log

(

p4

DB(
DB
n
c2 ∧ 1)

)]

for every B ∈ B, with c =
√
π +

√

log(3
√

3λM

λm
), the random variable B̂ ∈ BΛ

such that

B̂ = argmin
B∈BΛ

{

−1

n

n
∑

i=1

log(f̂B(yi )) + pen(B)

}

exists and, moreover, whatever the true density f ⋆,

E(d2

H(f
⋆
, f̂

B̂
)) ≤ CoracleE

[

inf
B∈BΛ

(

inf
f∈FB

KL(f ⋆, f ) + pen(B)

)]

+
1 ∨ τ

n
p log(p).
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Minimax lower bound
Let B ∈ B. Consider the model FB and DB its dimension. Then, if we denote
Cminim = e

4(2e+1)2(8+log(λM/λm))
, for any estimator f̂B of f ⋆ one has

sup
f ⋆∈FB

E(d2

H(f̂B, f
⋆)) ≥ Cminim

DB

n

(

1 + log

(

2λMp(p − 1)

DB

))

.
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Our procedure

Step A (Block-diagonal covariance structure detection) Select the modularity
structure of the network.
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Our procedure

Shock procedure : Slope heuristic for block-diagonal covariance structure
detection for network inference

Step A (Block-diagonal covariance structure detection) Select the modularity
structure of the network.

(1) Compute the sample covariance matrix S from the data y.

(2) Construct the sub-collection of partitions BΛ = (Bλ)λ∈Λ by thresholding S ,
where Λ is a set of thresholds

(3) For each partition B ∈ BΛ, compute the corresponding maximum
log-likelihood of the model.

(4) Based on the log-likelihood associated to each partition B in BΛ,

select B̂ based on model selection
⇒ Non-asymptotic theoretical guaranties for model selection
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(1) Compute the sample covariance matrix S from the data y.

(2) Construct the sub-collection of partitions BΛ = (Bλ)λ∈Λ by thresholding S ,
where Λ is a set of thresholds

(3) For each partition B ∈ BΛ, compute the corresponding maximum
log-likelihood of the model.

(4) Based on the log-likelihood associated to each partition B in BΛ,

select B̂ based on model selection
⇒ Non-asymptotic theoretical guaranties for model selection
⇒ In practice : we don’t use the theoretical penalty, we calibrate the
constant κ from the data using the slope heuristic

pen(B) = κDB

Step B (Network inference in each module) For each group of variables in the
selected partition B̂, infer the network using the graphical lasso.
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Calibration of coefficient κ in pen(B) = κDB

◮ Illustrations on simulated data: p = 100, n = 70 et K⋆ = 15

◮ Practical solution to calibrate the penalty
implemented in the package R capushe (Baudry et al., 2012)

Method 1: SHDJ
Slope Heuristics Dimension Jump
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Slope Heuristics Robust Regression

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●
●
●
●●●
●
●
●●●

●
●●●●

● ●●

●
● ●

●

● ●
●

●
●

0 500 1000 1500 2000

−
9

0
0

0
−

8
0

0
0

−
7

0
0

0
−

6
0

0
0

−
5

0
0

0
−

4
0

0
0

−
3

0
0

0

Model dimension

lo
g

−
lik

e
lih

o
o

d

23 / 30



Results on 100 replicated datasets
Simulated data: p = 100, n = 70 and Σ block diagonal with K⋆ = 15.

0.2

0.4

0.6

0.8

1.0

2:hclustK15 3a:SHDJ 3b:SHRR

A
R

I

Adjusted Rand Index

between the true partition and the selected partition
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Comparison of four strategies to infer networks
Simulated data: p = 100, n = 70 and Σ block diagonal with K⋆ = 15.

◮ (1) Graphical lasso
Network inference on all variables (graphical lasso with BIC)

◮ (2) Cluster Graphical Lasso (Tan et al., 2015)

Step 1: Hierarchical classification of variables, for fixed K = K⋆

Step 2: Graphical lasso with regularization parameters ρ1, . . . , ρK⋆

from Tan 2015.

◮ (3) Our solution

Step 1: Non-asymptotic model selection of groups of genes

(3a) SHRR partition
(3b) SHDJ partition

Step 2: Network inference in each group (graphical lasso with BIC)

◮ (4) True Partition

Step 1: Set the partition of variables to the true partition (known)
Step 2: Network inference in each group (graphical lasso with BIC)
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Performance of strategies in simulated data
Simulated data: p = 100, n = 70 and Σ block diagonal with K⋆ = 15.

Sensitivity =
TP

(TP + FN)
FDR =

FP

(TP + FP)
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Results on real data

◮ Pickrell et al. (2010): RNA sequencing from lymphoblastoid cell lines
derived from n = 69 unrelated Nigerian individuals

◮ Selection of p = 200 highest variable genes
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→ Partitions selected with SHRR and SHDJ are the same
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Practical session

◮ Demonstration of the slope heuristic (SH) on gene expression :
◮ Pickrell data : n = 69 individuals, p = 200 genes geneExpression.RData
◮ demoSHGeneExpression.R
◮ Requires functions.R

◮ To go further :
◮ Network inference techniques are often criticized because they are known to

be "unstable" : if we add more individuals to the dataset, the inferred
network might change drastically.

◮ Question : is the partition of genes into subgroups detected by SH
stable by resampling?

◮ Our hypothesis : the groups of genes detected by the slope heuristic has
good "stability" properties!

◮ A new dataset : BRCA.RData with p = 200 genes and more n = 1212
individuals (TCGA database). Are the partitions detected by SH on small
subsamples (nsub = 70) similar between each others?
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