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Measuring gene expressicn
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Measuring gene expression using RNA-seq

For a sample :
1. Extraction of RNA
2. Retranscription RNA = DNAc
3. Lecture of piece of DNACc, called reads

GATTACA, GTTTTTAGCTG, TAATTAG
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Measuring gene expression using RNA-seq

For a sample :
1. Extraction of RNA
2. Retranscription RNA = DNAc
3. Lecture of piece of DNACc, called reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignment of reads

aligned read GCTCTGAT
aligned read TTAGCTC
aligned read GATTACA

reference genome —TATTTAGCTCTGATTACAATG—

5. Quantification of Reads

number of reads 45 17685 0 15
reference genome — géne 1 ———— géne 2 — géne 3 — géne 4 —
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Network inference from expression data
| gene 1l  gene? gene 3 gened  pgene b

individual 1 4938 199 2087 0 65
individual 2 7530 189 1806 0 29
individual 3 29906 201 1752 43 5499
individual 4 2904 198 2087 0 65

individual 5 7670 19931 1837 0 388
Reconstruct a graph G = {V, E} where
P Vertices V = {1,..., p} = Random variables (genes)

P Edges £ < Direct dependencies between variables {regulations)

Goal : reconstruct the gene regulatory network
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Network inference from gene expression data
First {naive) approach to build the network: group together similar genes based
on pairwise correlations, threshold smallest ones, and build network of
correlation {association) network

"Correlations” Thresholding Graph
Figures from Nathalie Villa-Vialaneix
» We want to distinguish between direct and non-direct relationships :

if the true underlying is as below, we want to infer an edge between A and
B, and B and C, no edge between A and C.
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Modeling gene expression data for network inference

genel gene2 gene3 gened4 geneb
individual 1 4938 199 2987 0 65
individual 2 7530 189 1806 0 29
individual 3 2996 201 1752 48 599
individual 4 2904 198 2987 0 65
individual 5 7670 19931 1837 0 388
individual 6 2309 18319 8786 20 861
individual 7 7398 23101 2237 180 76
individual 8 1218 34198 9828 0 65
yi: expression level for sample j for i=1,... n
y/: expression level for gene j for j=1,...,p

yij: expression level for gene j and sample i

We observe the expression of p genes y',...,y” and assume that they are
realizations of p random variables Y1, ... YP.
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Network inference methods : an overview (1/2)

(Direct) dependencies networks

» describes marginal dependencies between variables

> two variables Y/ et Y/’ independent if we can write their
joint distribution as the product of their two marginal
distribution (in the following, the letter "p" will represent
the corresponding probability density functlon) :

p(ysy") = p(y')p(y")

» related to hierarchical clustering and co-expression
networks

Mutual information based networks (Meyer, 2008, Butte, 2000.)
» The mutual information between two variables is:

e[ [ ““'g(g())“W

» takes into account non-linear relationship between
variables
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Network inference methods : an overview (2/3)

Directed graphical models or Bayesian networks (Pear/, 1990)
> Bayesian network are DAG (acyclic directed graph)
» Exemple : consider three random variables Y?*,Y?, Y3 and
the following factorization of the joint density

Py y%yY) = POt |2 y)p(y [ v?)p(y?)
The corresponding network has 3 nodes : there is a
directed edge from node 3 from to node 2 (due to the
factor p(y® | y*)) and from node 2 and 3 to node 1 (due
to the factor p(y' | y*,y?).

> The graph is deduced from the factorisation of the joint
density f where pa(y’) are the parents of the node j :

p(y*,...,y°) = Hp(yk | pa(y’)).

Undirected graphical models (Whittaker, 1990, Lauritzen, 1996)
» Conditional dependencies networks, also called Markov
networks
» The edges between nodes are non-directed and represent
conditional dependencies between variables
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A focus on undirected graphical models
We define Y* = {¥/,j C S} for any set S of nodes. The vector Y satisfies the
Markov property with respect to the graph G if, for any set of nodes S, cutting
the graph into two disjoint subsets of nodes A and B, Y* et Y¥ are
independent conditionally on Y*: p(y®:v® | y°) = p(y* | y*)p(y® | ¥°).

Hammersley-Clifford Theorem The vector Y satisfies the Markov property with
respect to the graph G iff the probability distribution density p of the data can
be written as follows:

1 .
L P — = i (g™
Py .- ¥) =< H wely”)-
[y
where ( is a fully connected component of the graph, & the set of all fully

connected component of the graph, «¢ is a potential function and Z is a

partition function (normalization factor). ,
10730



Special case : the Gaussian Graphical Model (GGM)

» The p variables are assumed to follow Gaussian distributions:
> y; ~ Np(0,%) i.i.d. for each individual i € {1,...,n}.

» Y : covariance matrix of size p X p.
> O =¥ 1, the inverse of the covariance matrix, i.e. the precision matrix.

> GJ.J.I : coefficients of the precision matrix for (j,j') € {1,..., p}>.
> Links between 0,/ and the partial correlation coefficient p;+ between

variables j and j’ :
Oj'
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Special case : the Gaussian Graphical Model (GGM)

» The p variables are assumed to follow Gaussian distributions:
> y; ~ Np(0,%) i.i.d. for each individual i € {1,...,n}.
» 3 : covariance matrix of size p X p.
» © =X "1 the inverse of the covariance matrix, i.e. the precision matrix.
> 9]]’ : coefficients of the precision matrix for (j,j') € {1,..., p}>.
> Links between 0,/ and the partial correlation coefficient p;+ between
variables j and j’ :
Oj'

To infer the graph, we need to estimate the matrix © :

yi ~ N3(0, Y)
R 1 0.98 0.98 . 31.3 -31.6 0.86
> =10.98 1 0.99 ©=|-316 145 —113
0.98 0.99 1 0.86 —113 112
Correlation matrix Precision matrix
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Gaussian Graphical Model in high-dimension
yi 2 AN{0,Z)pouri=1,...,n
Each edge in the network < non nuls coefficients of @ = ¥~1

In high-dimensional context ("p > n")
Maximization on @ by Graphical lasso {Friedm:

log det(©) — tr(SO) — A||O]|1

with 5 sample covariance matrix
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Gaussian Graphical Model in high-dimension

i g ANL{0,Z) pour i =1,.

Each edge in the network < non nuls coefhcnents of @=%"1

In high-dimensional context ("p > n"')
Maximization on @ by Graphical lasso {Friedmzn

log det(®) — tr(S©) — A||©||1

with S sample covariance matrix

Choice of the level of regularization (value of the )\) Bayesian Information
Criterion (BIC) or extended BIC (¢ of 2

Sparsity lambda = 0.664 =0. lambda = 0.538
o
2 |
(=]
gl -
2=
08 08 04

Regularization

R package huge (Liu et a/
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Gaussian Graphical Model in ultra-high dimensional context

Degree of a network d : maximum number of edges adjacent to a node

Wtra-high dimensional contexts (Verzelen

l
dIOE(d) - 1
n -2
Example: n =50.p = 200,d = 8 — network inference is difficult
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Gaussian Graphical Model in ultra-high dimensional context

Degree of a network d : maximum number of edges adjacent to a node

Ultra-high dimensional contexts (Verzelen, 2012}
B
dIOE(d) - 1
n -2
Example: n =50, p = 200,d = 8 — network inference is difficult

Selutions to reduce the dimension

1. Restrict the number of genes based on external information

2. Select key genes automatically
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A property of the graphical lasso algorithm.

azumder et |

Block Diagonal Screening Rule for the glasso (M

For a fixed regularization parameter A, § sample covariance matrix
Step 1 Thresholding of | 5 to the level A = block structure

Step 2 Graphical lasse with regularization parameter A in each block

This rule gave rise to new algorithms Cluster gr:

P Based on the equivalence between the thresholding of | 5 | to the level A

and single-linkage clustering (Mirkin 1996, Jain & Dube
%Ky My B B *s *a )
X X5 Xz oXi Xs - X
¢ [0 6 2. 7 i
X3 6 0 1 a4 3 2 W
@ =x; |8 1 0 10 9 iy L . %
% | & 5 10 0 4 ool wow -
s |7 3 9 4 0 # i "
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Links between clustering, cliques and connected components

2 3 2 3 2
— R e T }
L3 @5 5 -1
- L ] E - - — -
1 4 1 4 1 4 1 4
G1) 6(2) 6(3) Gld)
z 3
2 3 2 3 a
9
) L
1 1 4 1 4
6(5) G6(6) G(7)
8 3 1 A 2 3 1 4 5

Single Link Complele Link

Figures from Jain & Dubes 1988
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Automatic selection of key genes prior to network inference

Cluster graphical lasso {Tan et af 5) {inspired from the Block Diagonal
Screening Rule, Mazumder et Hastle 2012)
1. Detect K "blocks" of variables based on average linkage hierarchical
clustering = reduce the dimension of the network inference problem

2. Graphical lasso inference in each black with different regularization
parameters
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Automatic selection of key genes prior to network inference

Cluster graphical lasso {Tan et al, 2015} (inspired from the Block Diagonal
Screening Rule, Mazumder et Hastle 2012)
1. Detect K "blocks" of variables based on average linkage hierarchical
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Automatic selection of key genes prior to network inference

Cluster graphical lasso {

115} (inspired from the Block Diagonal

Screening Rule, Mazumder et Hastle 2012)
1. Detect K "blocks" of variables based on average linkage hierarchical
clustering = reduce the dimension of the network inference problem
= No clear rules to select K
2. Graphical lasso inference in each black with different regularization

parameters

How to select K? The following graph leads us to use the Slope heuristics

Iagikeiteed

20000

120000

Leglikelihoad as 3 functlan af the siza of the blocks

128000

dmersen ol e mads

18 / 30



Model selection to detect groups of genes

1 0 0
Hypothesis: y; ~ N,(0,Zg) with Se = | o . ¢
0 o0 xK
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Model selection to detect groups of genes

o 0
Hypothesis: y; iE./\/',,(O,):B) withZg=19 " ¢
0 o xX
The block structure of X g provides a classification of genes B = (B, ..., Bk)
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Model selection to detect groups of genes

¥ o 0
Hypothesis: y; iE/\/',,(O,):B) withg=1| o9 . ¢
0o o0 ¥
The block structure of X g provides a classification of genes B = (B, ..., Bk)
¥y O 0
Fg = { fa = ¢p(0,Xg) with g € S/ T (R) Se=Prl|o o Pl
0 0 Xk
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Model selection to detect groups of genes

o 0
Hypothesis: y; iE/\/',,(O,):B) withg=1| o9 . ¢
0 o xX
The block structure of X g provides a classification of genes B = (B, ..., Bk)
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Model selection to detect groups of genes

o 0
Hypothesis: y; iE/\/',,(0,):,3) withg=1| o9 . ¢
0 o xX
The block structure of X g provides a classification of genes B = (B, ..., Bk)

)\m S /\min(zB) S /\max(zB) S /\Mv

Y3 0 0
Fg = { fa = ¢p(0,Xg) with g € S/ T (R) Se=Pr|o o pot
0 0 Ik

Selection of groups of genes based on non-asymptotic argument (Massart, 2003)

B= argl;nin {,11 Zlog(fB(y/‘)) + pen(B)} )

i=1
with pen(B) to define.

17 /30



Selection among an aleatory sub-collection of models

B: set of all possible partitions of the p variables
= Exhaustive exploration of B is unrealistic

B": set of partitions obtained by thresholding of | S |

B = argmin {— Z|Og(f3 yi)) + pen(B)} )

BeBh

with pen(B) to deflne.
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Oracle inequality
There exists some absolute constants x and Cgacle such that whenever

o
26 flog | — P
E\Ds(Zczn1)

for every B € B, with ¢ = /7 + Iog(3\/§§—“m”), the random variable B € By
such that

pen(B) > &DT

B = argmin {— Z log(fs(y)) + pen(B)}

BeB, i=1

exists and, moreover, whatever the true density *,

E(d7(f*, f5)) < CoracleE {Binf < inf KL(f*,f)+ pen(B))] + 1VTTplog(p).

feFg
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Minimax lower bound
Let B € B. Consider the model Fg and Dg its dimension. Then, if we denote
Crninim = 2112 @ 10800 75) [OF any estimator fg of f* one has

sup IE(dzH(fB,f*))sz.n.mDn <1+| (M))_

freFg Dg
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Our procedure

Step A (Block-diagonal covariance structure detection) Select the modularity
structure of the network.
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Step A (Block-diagonal covariance structure detection) Select the modularity
structure of the network.

(1) Compute the sample covariance matrix S from the data y.

(2) Construct the sub-collection of partitions By = (Bx)xen by thresholding S,
where A is a set of thresholds

(3) For each partition B € By, compute the corresponding maximum
log-likelihood of the model.

(4) Based on the log-likelihood associated to each partition B in By,
select B based on model selection
= Non-asymptotic theoretical guaranties for model selection
Step B (Network inference in each module) For each group of variables in the
selected partition B, infer the network using the graphical lasso.
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Oracle inequality
There exists some absolute constants x and Cgacle such that whenever

o
26 flog | — P
E\Ds(Zczn1)

for every B € B, with ¢ = /7 + Iog(3\/§§—fj), the random variable B € By
such that

pen(B) > /iDT

B = argmin {— Z log(fs(y)) + pen(B)}

BeB, i=1

exists and, moreover, whatever the true density *,
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Our procedure

Shock procedure : Slope heuristic for block-diagonal covariance structure
detection for network inference
Step A (Block-diagonal covariance structure detection) Select the modularity
structure of the network.

(1) Compute the sample covariance matrix S from the data y.

(2) Construct the sub-collection of partitions By = (Bx)xen by thresholding S,
where A is a set of thresholds

(3) For each partition B € By, compute the corresponding maximum
log-likelihood of the model.

(4) Based on the log-likelihood associated to each partition B in By,

select B based on model selection
= Non-asymptotic theoretical guaranties for model selection

Step B (Network inference in each module) For each group of variables in the
selected partition B, infer the network using the graphical lasso.
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Our procedure

Shock procedure : Slope heuristic for block-diagonal covariance structure
detection for network inference

Step A (Block-diagonal covariance structure detection) Select the modularity
structure of the network.

(1) Compute the sample covariance matrix S from the data y.

(2) Construct the sub-collection of partitions By = (Bx)xen by thresholding S,
where A is a set of thresholds

(3) For each partition B € By, compute the corresponding maximum
log-likelihood of the model.

(4) Based on the log-likelihood associated to each partition B in By,

select B based on model selection

= Non-asymptotic theoretical guaranties for model selection

= In practice : we don't use the theoretical penalty, we calibrate the
constant k from the data using the slope heuristic

pen(B) = kDg

Step B (Network inference in each module) For each group of variables in the
selected partition B, infer the network using the graphical lasso.
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Calibration of coefficient « in pen(B) = xkDg

» lllustrations on simulated data: p =100, n =70 et K* = 15

» Practical solution to calibrate the penalty
implemented in the package R capushe (Baudry et al., 2012)

Method 1: SHDJ

Slope Heuristics Dimension Jump Method 2: SHRR

Slope Heuristics Robust Regression

aves o

-6000 5000 -4000 -3000

Model dimension
log-likelihood

-8000  -7000

-9000

o |

T
0 034 S Kopt 28 31 34 38

T T T
Values of the penalty constant k 500 1000 1500 2000

Model dimension
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Results on 100 replicated datasets
Simulated data: p = 100, n = 70 and ¥ block diagonal with K* = 15.

2:helustk15 3a:SHDJ 3b:SHRR

Adjusted Rand Index

between the true partition and the selected partition
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Comparison of four strategies to infer networks
Simulated data: p = 100, n = 70 and X block diagonal with K* = 15.

> (1) Graphical lasso
Network inference on all variables (graphical lasso with BIC)

» (2) Cluster Graphical Lasso (Tan et al., 2015)

Step 1: Hierarchical classification of variables, for fixed K = K*
Step 2: Graphical lasso with regularization parameters p1, ..., pk+
from Tan 2015.

> (3) Our solution
Step 1: Non-asymptotic model selection of groups of genes
(3a) SHRR partition
(3b) SHDJ partition

Step 2: Network inference in each group (graphical lasso with BIC)

> (4) True Partition

Step 1: Set the partition of variables to the true partition (known)
Step 2: Network inference in each group (graphical lasso with BIC)

25/30



Performance of strategies in simulated data
Simulated data: p = 100, n = 70 and ¥ block diagonal with K* = 15.

TP FP
(TP 1 FN) FDR = 75 1 Fp)

=

Sensitivity =

: .

Sensitivity

§ e

1:glésso 2.CGL  3a:SHDJ 3b:SHRR 4:truePart 1:glésso 2:.CGL  3a:SHDJ 3b:SHRR 4:truePart

Results on 100 replicated datasets
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Results on real data

» Pickrell et al. (2010): RNA sequencing from lymphoblastoid cell lines
derived from n = 69 unrelated Nigerian individuals

> Selection of p = 200 highest variable genes

210 - —

-120000

Model dimension
log-likelihood

~125000

-130000

[
T T T T T T T T T T
0 15 & Kopt 12 14 0 500 1000 1500 2000
Values of the penalty constant x Model dimension

— Partitions selected with SHRR and SHDJ are the same
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Network inference on Pickrell data

Graphical lasso
» D = 19900 parameters to estimate

Partition detected by slope heuristic 5
»> DE?’sH = 283 parameters to estimate
> Ksy — 150 blocks

> 140 blocks of size 1, 2 blocks of size 2, 4 blocks of size 3 and 4 blocks of
size 18,13,8 et b
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Practical session

» Demonstration of the slope heuristic (SH) on gene expression :
» Pickrell data : n = 69 individuals, p = 200 genes geneExpression.RData
» demoSHGeneExpression.R
» Requires functions.R

> To go further :

> Network inference techniques are often criticized because they are known to
be "unstable" : if we add more individuals to the dataset, the inferred
network might change drastically.

» Question : is the partition of genes into subgroups detected by SH
stable by resampling?

» Our hypothesis : the groups of genes detected by the slope heuristic has
good "stability" properties!

» A new dataset : BRCA.RData with p = 200 genes and more n = 1212
individuals (TCGA database). Are the partitions detected by SH on small
subsamples (ng,p, = 70) similar between each others?
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