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Uncertainty Quantification
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Uncertainty Quantification

Inferences based on complex computer models require careful
consideration and account of uncertainties. The main sources of
uncertainty are

– Parameter uncertainty
– Model error
– Code uncertainty
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Complex computer models

– We represent a complex computer model as a function f that gives
a vector of outputs f(x) and which requires a vector of input
parameters x.

– Cheap surrogates (emulators) such as neural networks, splines and
polynomial chaos could be used to approximate computer model
behaviour across the input space, X .

– Gaussian Process (GP) emulators, a non-parametric class of
surrogate models, have become increasingly popular due to their
flexibility as no assumptions about the form of simulator response are
required.
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Gaussian Process (GP) Emulation

We define a statistical model to represent f(x)

f(x) = h(x)T� + �(x) + �(x);

– Residual term �(x) � GP
�
0; �2r(�; �; �)

�
– Nugget process term �(x) � N

�
0; � 2

�
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Gaussian Process (GP) Emulation

The prior specification for f(x)

f(x)j�; �2; �; � 2 � GP
�
h(x)T�; k(�; �;�2; �; � 2)

�
;

E
h
f(x)

i
= h(x)T�

Cov
h
f(x); f(x0)

i
= k(x;x0;�2; �; � 2) = �2r(x;x0; �) + 1

n
x = x0

o

We proceed to obtaining computer model runs F =
�
f(x1); : : : ; f(xn)

�
at

design points X =
�
x1; : : : ;xn

�
and perform Bayesian updating for f(x).
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Inverse problem. Calibration

‘Best Input Approach’ to link the model f(x) to the real system y via

y = f(x�) + �(x);

where �(x) is a model discrepancy term with model discrepancy error
Var[�(x)].
We relate the true system y to the observation z via

z = y + e;

where e is the observation error term with the variance of the observation
error Var[e].
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History matching. Implausibility measure

Define an implausibility function:

I(x) = jz � E[f(x)]jq
Var[f(x)] + Var[�(x)] + Var[e]

:

A threshold value a is chosen so that any value of I(x) > a is deemed
implausible.
The remaining parameter space is termed as Not Ruled Out Yet (NROY)
and defined as

XNROY =
n
x 2 X : I(x) � a

o
:
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History matching. Refocussing

We choose an initial ensemble design X[1] 2 X , defined as

X[1] =
�
x1;1; : : : ;x1;n1

�T
;

and produce computer model runs at the intial design, F[1]

F[1] =
�
f(x1;1); : : : ; f(x1;n1)

�T
:

Based on the generated ensemble, we construct an emulator and obtain

X 1 =
n
x 2 X : I(x; F[1]) � a

o
:

The whole process of deriving NROY space X 1 is called wave 1.
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History matching. Refocusing

To perform wave k > 1 of history matching
1. Generate design X[k] 2 X k�1 and obtain computer model runs F[k].
2. Obtain an updated distribution for f(x)

�k
�
f(x)

�
/ �k�1

�
f(x)

�
� p

�
F[k]jhFi[k�1]; f(x)

�
;

where hFi[k�1] =
�
F[1]; : : : ;F[k�1]

�
.

3. For x 2 X k�1 compute I(x; hFi[k]) = jz�E[f(x)jhFi[k]]jp
Var[f(x)jhFi[k]]+Var[e]+Var[�]

.

4. Obtain NROY space X k =
n
x 2 X k�1 : I(x; hFi[k]) � a

o
.
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Climate model example
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Introduce new
parameters to climate model.
Use statistical
tools to obtain parameter
values that matches model
output with the observation.
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Figure: After performing wave 2 of history matching the size of NROY space, X 2, is 4% of
original input space, X .
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Design for iterative refocussing

29/04/2021 1The Alan Turing Institute

2University of Exeter

15



Current approaches

The following methods were adopted for generating design for each wave
of history matching:

– Rejection sampling [2]: generate latin hypercubes over the full space
and only keeping those points that are not ruled out by history
matching.

– Space-filling [1]: maximin design in NROY space.
– Implausibility Driven Evolutionary Monte Carlo algorithm (IDEMC)

to obtain a uniform design for history matching [5].
– Subset Simulation (SuS) technique to sample from NROY space

[3, 4].
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Bayesian Design Criterion. Loss function:

L(VX k+1; VXT
; �) =

Z
X

�
1fx 2 X k+1g � 1fx 2 XTg

�2
dx;

– the ‘truth’, volume of ‘true’ NROY space:

VXT
=
Z
X

1fx 2 XTgdx =
Z
X

1

8<
: jz � f(x)jq

Var[e] + Var[�]
� a

9=
;dx

– a decision, a volume of NROY space at wave k + 1

VX k+1 =
Z
X k

1fx 2 X k+1gdx

=
Z
X k

1

8<
:

jz � E[f(x)jhFi[k]; f(�)]jq
Var[f(x)jhFi[k]; f(�)] + Var[�] + Var[e]

� a

9=
;dx
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Since we do not know the ‘truth’, we have to operate with the expected
loss:

	(�) =
Z Z

L(VX k+1; VXT
; �)�(VX k+1; VXT

; �)dVX k+1dVXT

=
Z Z

L(VX k+1; VXT
; �)�(f(x)jf(�); hFi[k])�(f(�)jhFi[k])df(x)df(�)

= 	1(�)� 2�	2(�) + 	3(�)

Bayesian Optimal Design for wave k+ 1, ��, is obtained by minimizing the
expected loss function, 	(�), i.e.

�� = argmin	(�):
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Bayesian Design Criterion. 	1(�) component

The first term of the expected loss function, 	1(�), corresponds to the
expected volume of NROY space at wave k + 1.

	1(�) =
Z Z

X k

1

8<
:

jz � E[f(x)jhFi[k]; f(�)]jq
Var[e] + Var[�] + Var[f(x)jhFi[k]; f(�)]

� a

9=
;

� �
�
f(�)jhFi[k]

�
dxdf(�)
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Bayesian Design Criterion. 	3(�) component

The third term of the expected loss function, 	3(�), corresponds to the
expected volume of ‘true’ NROY space.

	3(�) =
Z Z

X k

h
�(s2)� �(s1)

i
�
�
f(�)jhFi[k]

�
dxdf(�)

with

s2 =
z + a

q
Var[e] + Var[�]� E[f(x)jhFi[k]; f(�)]q

Var[f(x)jhFi[k]; f(�)]

s1 =
z � a

q
Var[e] + Var[�]� E[f(x)jhFi[k]; f(�)]q

Var[f(x)jhFi[k]; f(�)]
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– (a): s1; s2 < 0, i.e. E[f(x)jhFi[k]; f(�)] > z + a
q

Var[e] + Var[�]
– (b): s2 > 0; s1 < 0, i.e.

z � a
q

Var[e] + Var[�] < E[f(x)jhFi[k]; f(�)] < z + a
q

Var[e] + Var[�]

– (c): s2; s1 > 0, i.e. E[f(x)jhFi[k]; f(�)] < z � a
q

Var[e] + Var[�]
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– (a) low values of Var[f(x)jhFi[k]; f(�)]
– (b) large values of Var[f(x)jhFi[k]; f(�)]
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Bayesian Design Criterion. 	2(�) component

The second term of the expected loss function, 	2(�), corresponds to the
expected volume of the input region that is in both wave k + 1 NROY space
and ‘true’ NROY.

	2(�) =
Z Z

X k

1

( jz � E[f(x)jhFi[k]; f(�)]jq
Var[e] + Var[�] + Var[f(x)jhFi[k]; f(�)]

� a

)

�
�
�(s2)� �(s1)

�
�
�
f(�)jhFi[k]

�
dxdf(�);

red component corresponds to the integrand function in 	1(�) and
blue component corresponds to the integrand function in 	3(�).
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Implementation details

1. Estimate the GP hyperparameters � using computer model runs, F[1], from the initial
design X[1]. Fix GP hyperparameters at MAP values �MAP , perform history matching
to obtain wave 1 NROY space, X 1.

2. At wave k > 1, set hXi[k+1] = (hXiT[k]; �
T )T and obtain � by optimizing a design

criterion with respect to the proposed additional runs. Continuous optimizations are
carried out using Fedorov exchange (Fedorov, 1972).

3. Set X[k+1] = �� and collect computer model runs from X[k+1] and re-estimate the GP
hyperparametres using the entire set of runs from the augmented design hXi[k+1].
Perform history matching to obtain wave k + 1 NROY space, X k+1.

4. Repeat steps (2) and (3) until termination. Relevant stopping criteria include
exhaustion of the experimental budget or minor (no change) in the size of NROY
space.
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Toy example
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Range z Var[e] Var[�] Sample size (n1) NROY size a

[�2; 1] 1.25 0:12 0 10 5.4% 3

Table: Toy model information for history matching.
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Wave 1 History matching

By performing Wave 1 of history matching we obtained NROY space, X 1,
of size 15:56% of original input space, X .
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Candidate designs
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Type Bayesian design criterion std. error
space-filling 0.0152 9� 10�5

Bayes optimal 0.0093 9� 10�5

clustered 0.157 26� 10�4

Table: Bayesian design criterion for three candidate designs. The second and third
columns correspond to the score and standard error on the score respectively.

Type 	1(�) 	2(�) 	3(�)

space-filling 0.419 0.408 0.413
Bayes optimal 0.417 0.411 0.413

clustered 0.560 0.407 0.412

Table: Individual terms of Bayesian design criterion for three candidate designs.
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Decomposition of 	1(�) component
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Decomposition of 	2(�)
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Decomposition of 	3(�)
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Wave 2 history matching

Nothing impressive...

Type NROY size
space-filling 5.23%

Bayes optimal 5.27%
clustered 5.28%

Table: Summary of history matching results after Wave 2 with candidate designs.
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Beam displacement example
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Figure: Mean displacement value plotted against �1 and �5.
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Specify z = �4, Var[�] = 0 and Var[e] = 0:005. Set threshold value a at 3.
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Figure: Representation of “true” NROY space. Red points correspond to input values at
which computer model output is close to observation z based on the implausibility
function.
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Figure: Grey points correspond to those points classified as being in NROY space after
one wave. Points in red correspond to the “true” NROY space. The wave 1 NROY space
X 1 consists of 68.65% of the full space X .
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Design for subsequent waves

For later waves, new design of 100 runs are sampled from the current NROY space. We
use our proposed Bayesian design criterion to rank three different design options. At each
wave, we have 3 potential candidates:

1. Space-filling design [1]
2. Random design: choose 100 design points from the previous wave NROY space
3. Maximum variance design: choose 100 design points from the previous wave NROY

space with high variance (sampling along the ridges)
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Design for subsequent waves

Type Wave 2 Wave 3 Wave 4
space-filling 0.265 (3� 10�4) 0.521 (2� 10�4) 0.254 (2� 10�4)

random 0.339 (3� 10�4) 0.552 (2� 10�4) 0.349 (2� 10�4)
max variance 0.576 (2� 10�4) 0.561 (2� 10�4) 0.303 (2� 10�4)

Table: Bayesian design criterion for three candidate designs with standard error in
brackets.
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Figure: Grey points correspond to those points classified as being in NROY space after
four waves of history matching. Points in red correspond to the “true” NROY space.
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Figure: The progression of the sizes of NROY space.
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Final remarks

29/04/2021 1The Alan Turing Institute

2University of Exeter

43



Final remarks

1. A new approach for obtaining a design for the next wave (iteration) of
history matching. Our proposed design criterion is easily decomposed
into three meaningful and interpretable terms.

2. It is computationally expensive to obtain �� (multi-dimensional
optimization problem), we demonstrate we can use our criterion for
ranking.

3. Specification of the number of design points to perform k waves of
history matching, as well as the division of runs across waves.

4. Extension to a multi-dimensional Bayesian design criterion.
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