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Computational costs induced by stochastic simulators

• Replications are needed to estimate the PDF of Y (x) (i.e., Y | X = x)

• Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis,

optimization, etc.

• Realistic simulators (e.g., for wind turbine design) are costly

Need for surrogate models

• Non-intrusive (i.e., that considers the stochastic simulator as a black box)

• General-purpose: no restrictive assumption (e.g., Gaussian) on the family of the output

• Able to tackle the full distribution of Y (x), but also quantities of interest (e.g., mean, variance,

quantiles)

• Providing a representation of Y (x) easy to sample from
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Existing methods

• Replication-based:

– Quantile estimation: Plumlee & Tuo (2014) Building accurate emulators for stochastic simulations via quantile

Kriging, Technometrics

– Kernel smoothing: Moutoussamy et al. (2015) Emulators for stochastic simulation codes, ESAIM: Math.

Model. Num. Anal.

• Random field representation Yx(ω) = M (x,Z(ω)): Azzi et al. (2019) Surrogate modeling of stochastic

functions - application to computational electromagnetic dosimetry, Int. J. Uncertainty Quantification
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Model. Num. Anal.

• Random field representation Yx(ω) = M (x,Z(ω)): Azzi et al. (2019) Surrogate modeling of stochastic

functions - application to computational electromagnetic dosimetry, Int. J. Uncertainty Quantification

• Statistical approach:

– Under the assumption of normality:

Marrel et al. (2012) Global sensitivity analysis of stochastic computer models with joint metamodels, Stat.

Comput.

Binois et al. (2018) Practical heteroscedastic Gaussian process modeling for large simulation experiments, J.

Comput. Graph. Stat.

– Quantile regression: Koenker & Bassett (1978) Regression quantiles, Econometrica: journal of the

Econometric Society

– Kernel smoothing: Hall et al. (2004) Cross-validation and the estimation of conditional probability densities, J.

Amer. Stat. Assoc.
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Generalized lambda models (GLaM)

General setting

Y (x) ∼ GLD (λ1 (x) , λ2 (x) , λ3 (x) , λ4 (x))

Polynomial chaos expansions

λk(x) = λPC
k (x; c) =

∑

α∈Nd

ck,αψα(x) k = 1, 3, 4

λ2 (x) = λPC
2 (x; c) = exp

(

∑

α∈Nd

c2,αψα(x)

)

• Independent input parameters with X ∼ fX =
∏d

j=1
fXj

• Basis functions (multivariate polynomials) ψα(x) =
∏d

j=1
φ

(j)
αj

(xj)

• c are the model parameters to be estimated

Surrogate Modelling for Stochastic Simulators MASCOTNUM – April 28, 2021 Xujia Zhu 7 / 19



Generalized lambda models (GLaM)

General setting

Y (x) ∼ GLD (λ1 (x) , λ2 (x) , λ3 (x) , λ4 (x))

Polynomial chaos expansions

λk(x) ≈ λPC
k (x; c) =

∑

α∈Ak

ck,αψα(x) k = 1, 3, 4

λ2 (x) ≈ λPC
2 (x; c) = exp

(

∑

α∈A2

c2,αψα(x)

)

• Independent input parameters with X ∼ fX =
∏d

j=1
fXj

• Basis functions (multivariate polynomials) ψα(x) =
∏d

j=1
φ

(j)
αj

(xj)

• c are the model parameters to be estimated

Surrogate Modelling for Stochastic Simulators MASCOTNUM – April 28, 2021 Xujia Zhu 7 / 19



Estimation with given PCE basis

Data generation

• Experimental design of size N in the X-space: X =
{

x
(1), . . . ,x(N)

}

• The simulator is evaluated once, i.e., no replications needed, for each x
(i) ∈ X : y(i) def

= M
(

x
(i), z(i)

)

Idea

• Build a global model for the joint distribution of inputs and outputs:

fX,Y (x, y) = fY |X (y | x) · fX(x)

where the conditional PDF is represented by a generalized lambda model:

fGLD
X,Y (x, y; c) = fGLD

Y |X

(

y; λ
PC(x; c)

)

· fX(x)

• Find the optimal PCE coefficients c
∗ that minimize the Kullback-Leibler divergence between

fX,Y (x, y) and fGLD
X,Y (x, y):

c
∗ = arg min

c

DKL

(

fX,Y || fGLD
X,Y ( · ; c)

)
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Estimation with given PCE basis (cont.)

Maximum likelihood estimation

• The minimization problem is equivalent to

c
∗ = arg max

c

EX,Y

[

log fGLD
Y |X

(

Y ; λ
PC(X; c)

)]

• Maximum likelihood estimator

ĉ = arg max
c

1

N

N
∑

i=1

log fGLD
Y |X

(

y(i); λ
PC(x(i); c)

)

• Consistency: if the simulator is a GLaM for c
∗, under mild conditions ĉ

a.s.−−→ c
∗ as N → +∞

Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to SIAM/ASA J. Unc. Quant.
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Estimation with unknown PCE basis

With replications

• R replications for each x
(i) ∈ X : Y(i) =

{

y(i,1), y(i,2), . . . , y(i,R)
}

• Infer a generalized lambda distribution λ̂
(i)

for each point x
(i) of the experimental design based on the

replications Y(i)

• Fit a sparse polynomial chaos expansion to the parameters

{(

x
(1), λ̂

(1)
)

, . . . ,
(

x
(N), λ̂

(N)
)}

,

which selects the basis functions for λ
PC(x)

• MLE with all the data to estimate the coefficients

ĉ = arg max
c

1

NR

N
∑

i=1

R
∑

r=1

log fGLD
Y |X

(

y(i,r); λ
PC(x(i); c)

)

Zhu & Sudret (2020), Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions, Int. J. Uncertainty Quantification, 10:249–275
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Estimation with unknown PCE basis

Without replications

• PCE models for the mean and variance of the model output built using the feasible generalized

least-square method

• Use the PCE basis of µ(x) (resp. log σ2(x)) for λ1 (resp. λ2)

• PCE of degree 1 for λ3 and λ4 (it is assumed that the shape of the response distribution does not vary

nonlinearly with x)

• MLE to estimate the coefficients

ĉ = arg max
c

1

N

N
∑

i=1

log fGLD
Y |X

(

y(i); λ
PC(x(i); c)

)

Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to SIAM/ASA J. Unc. Quant.
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Motivation

Another perspective of GLaM

Y (x)
d
= F−1

Y |X(U | x) ≈ QGLD
(

U ; λ
PC(x; c)

)

• The variable U ∼ U(0, 1) can be seen as the source of stochasticity, and the quantile transform

represents the model response

• This is a stochastic surrogate: when fixing x and sampling U , one obtains samples for the surrogate

model response

Latent variable model

• Represent the model response as a transform of a latent variable Z̃, e.g., Y (x)
d≈ g(Z̃; x)

• Stochastic PCE: the transform is given by a PCE
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Formulation

Y (x)
d≈
∑

α∈A

cαΨα(x, Z̃) + ǫ

• Z̃ is a latent variable, and ǫ ∼ N (0, σ2) is a noise variable

• Z̃ and ǫ are introduced to represent the random nature of the stochastic simulator: for a given x, Y (x)

is a function of the latent variable Z̃ plus ǫ

• By convolution, the response distribution is given by

fY |X(y | x) =

∫

D
Z̃

1√
2πσ

exp

(

−
(

y −
∑

α∈A
cαΨ(x, z̃)

)2

2σ2

)

fZ̃(z̃)dz̃

• To build a stochastic PCE, c and σ should be estimated from data
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Estimation method

Maximum likelihood estimation

• The conditional likelihood for a data point (x, y) is

l(c, σ; x, y) =

∫

D
Z̃

1√
2πσ

exp

(

−
(

y −
∑

α∈A
cαΨ(x, z̃)

)2

2σ2

)

fZ̃(z̃)dz̃

• Numerical integration by 1D quadrature l(c, σ; x, y) ≈ l̃(c, σ; x, y)

• Maximum likelihood to estimate the coefficients

ĉ = arg max
c

N
∑

i=1

log l̃
(

c, σ; x
(i), y(i)

)

Cross-validation

• The likelihood is unbounded for σ = 0: σ is a hyperparameter that can be selected by cross-validation

• The cross-validation score is also used to find a suitable distribution for Z̃ and a truncation scheme

Ap,q,d =

{

α ∈ N
d : ‖α‖q

def
=
(

∑d

i=1
αq

i

) 1

q ≤ p

}
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Comparisons

Error metric

• The Wasserstein distance of order 2 is the L2 distance between the quantile functions for continuous

random variables:

d2
WS(Y, Ŷ ) = ‖QY −QŶ ‖2

L2

• Normalized Wasserstein distance

ε =
EX

[

d2
WS

(

Y (X), Ŷ (X)
)]

Var [Y ]

Compared models

• Generalized lambda model (GLaM)

• Stochastic polynomial chaos expansions (SPCE)

• Kernel conditional density estimator (KCDE) Hayfield & Racine (2008) Nonparametric Econometrics: The np Package, J. Stat. Softw., 27:1015–1026
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Conclusions & Outlook

Conclusions

• Stochastic simulators are used in many fields of applied sciences and engineering

• Building general-purpose emulators is necessary for optimization, sensitivity analysis, etc.

• We propose two surrogate models

– Generalized lambda models

– Stochastic polynomial chaos expansions

• Replications are not mandatory ... but can be used

Outlook

• Combinations with other surrogates (e.g., Gaussian processes)

• Sparse techniques, e.g, penalized maximum likelihood estimator ĉ = arg minc L(c) + νP (c), e.g.,

LASSO P (c) = ‖c‖l1

Surrogate Modelling for Stochastic Simulators MASCOTNUM – April 28, 2021 Xujia Zhu 18 / 19



Related publications

X. Zhu and B. Sudret. “Replication-based emulation of the response distribution of stochastic

simulators using generalized lambda distributions”. In: Int. J. Uncertainty Quantification 10.3 (2020),

pp. 249–275. DOI: 10.1615/Int.J.UncertaintyQuantification.2020033029.

X. Zhu and B. Sudret. “Emulation of stochastic simulators using generalized lambda models”. In:

SIAM/ASA J. Unc. Quant. (2021). (Submitted). URL: https://arxiv.org/abs/2007.00996.

X. Zhu and B. Sudret. “Global sensitivity analysis for stochastic simulators based on generalized

lambda surrogate models”. In: Reliab. Eng. Sys. Safety (2021). (Submitted). URL:

https://arxiv.org/abs/2005.01309.

X. Zhu and B. Sudret. “Stochastic polynomial chaos expansions for emulating stochastic simulators”.

In: (2021). (In preparation).

Surrogate Modelling for Stochastic Simulators MASCOTNUM – April 28, 2021 Xujia Zhu 19 / 19



Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

The Uncertainty Quantification

Software

www.uqlab.com

The Uncertainty Quantification

Community

www.uqworld.org

Thank you very much for your attention !
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Replications

Some results

• Consider a random design of size N/R with replications R, the likelihood is:

L(c) =
1

N

N/R
∑

i=1

R
∑

r=1

log fs
Y |X

(

Y (i,r)
∣

∣X
(i); c

)

• In expectation, we have

E [L(c)] = EX,Y

[

log fs
Y |X (Y | X; c)

]

• The variance of L is given by

Var [L(c)] =
1

N
Var

[

log fs
Y |X (Y | X; c)

]

+
R− 1

N
VarX

[

E
[

log fs
Y |X (Y | X; c)

∣

∣X
]]

R = 1 (no replications) leads to the minimum variance of L(c)
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Replications (cont.)

Convergence study of the SIR example

• Compare the method that does not need replications with the one based on replications for

constructing GLaM

• Replications R ∈ {10; 25; 50}
• Total number of model runs N ∈ {200; 400; 800; 1,600; 3,200}
• Replications are not helpful in this example

However...

• Some methods (e.g., replication-based approaches) rely on the information extracted from replications:

trade-off between explorations and replications

• Some methods explore strategies for adaptive designs

• Replications can be used for validations
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Geometric Brownian motion

dSt = x1 St dt+ x2 St dWt

• St: price process, Wt: Wiener process, x1: drift, x2: volatility

• X1 ∼ U(0, 0.1), X2 ∼ U(0.1, 0.4), and Y (x) = S1(x)

• The analytical distribution of St reads (Itô’s calculus):

S1(x)/S0 ∼ LN
(

x1 − x2
2

2
, x2

)

Surrogate Modelling for Stochastic Simulators MASCOTNUM – April 28, 2021 Xujia Zhu 22 / 19












	Stochastic simulators
	Stochastic surrogate models
	Review
	Generalized lambda models
	Stochastic polynomial chaos expansions

	Application example
	Conclusions & Outlook
	References

