

Emulating the response distribution of stochastic simulators

Xujia Zhu

Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich

Outline

Stochastic simulators

Stochastic surrogate models

Review Generalized lambda models Stochastic polynomial chaos expansions

Application example

Conclusions & Outlook

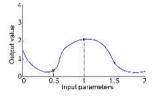
Deterministic vs. stochastic simulators

Deterministic simulators

• Each set of input variables has a unique corresponding output

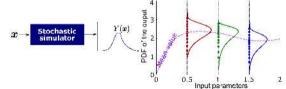
$$\mathcal{M}_d:\mathcal{D}_{oldsymbol{X}}\subset\mathbb{R}^M
ightarrow\mathbb{R}$$

$x ightarrow rac{\mathsf{Deterministic}}{\mathsf{simulator}} ightarrow y$



Stochastic simulators

- A given set of input parameters can lead to different values of the output
- Y(x) is a random variable
- Source of randomness: $Y(x) = \mathcal{M}(x, Z)$, where Z are latent variables



and thereby 6 of the contraction

Computational costs induced by stochastic simulators

- Replications are needed to estimate the PDF of Y(x) (i.e., $Y \mid X = x$)
- Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis, optimization, etc.
- Realistic simulators (e.g., for wind turbine design) are costly

Need for surrogate models

- Non-intrusive (i.e., that considers the stochastic simulator as a black box)
- General-purpose: no restrictive assumption (e.g., Gaussian) on the family of the output
- Able to tackle the full distribution of Y(x), but also quantities of interest (e.g., mean, variance, quantiles)
- Providing a representation of Y(x) easy to sample from

of the second second

Computational costs induced by stochastic simulators

- Replications are needed to estimate the PDF of Y(x) (i.e., $Y \mid X = x$)
- Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis, optimization, etc.
- Realistic simulators (e.g., for wind turbine design) are costly

Need for surrogate models

- Non-intrusive (i.e., that considers the stochastic simulator as a black box)
- General-purpose: no restrictive assumption (e.g., Gaussian) on the family of the output
- Able to tackle the full distribution of Y(x), but also quantities of interest (e.g., mean, variance, quantiles)
- Providing a representation of Y(x) easy to sample from

of the second second

Computational costs induced by stochastic simulators

- Replications are needed to estimate the PDF of Y(x) (i.e., $Y \mid X = x$)
- Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis, optimization, etc.
- Realistic simulators (e.g., for wind turbine design) are costly

Need for surrogate models

- Non-intrusive (i.e., that considers the stochastic simulator as a black box)
- General-purpose: no restrictive assumption (e.g., Gaussian) on the family of the output
- Able to tackle the full distribution of Y(x), but also quantities of interest (e.g., mean, variance, quantiles)
- Providing a representation of Y(x) easy to sample from

Outline

Stochastic simulators

Stochastic surrogate models

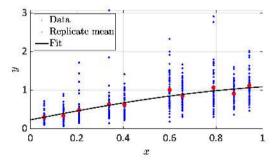
Review Generalized lambda models Stochastic polynomial chaos expansions

Application example

Conclusions & Outlook

Existing methods

- Replication-based:
 - Quantile estimation: Plumlee & Tuo (2014) Building accurate emulators for stochastic simulations via quantile Kriging, Technometrics
 - Kernel smoothing: Moutoussamy et al. (2015) Emulators for stochastic simulation codes, ESAIM: Math. Model. Num. Anal.



Existing methods

- Replication-based:
 - Quantile estimation: Plumlee & Tuo (2014) Building accurate emulators for stochastic simulations via quantile Kriging, Technometrics
 - Kernel smoothing: Moutoussamy et al. (2015) Emulators for stochastic simulation codes, ESAIM: Math. Model. Num. Anal.
- Random field representation $Y_x(\omega) = \mathcal{M}(x, Z(\omega))$: Azzi et al. (2019) Surrogate modeling of stochastic functions application to computational electromagnetic dosimetry. Int. J. Uncertainty Quantification

MASCOTNUM - April 28, 2021 Xujia Zhu 4/19

Existing methods

- Replication-based:
 - Quantile estimation: Plumlee & Tuo (2014) Building accurate emulators for stochastic simulations via quantile Kriging, Technometrics
 - Kernel smoothing: Moutoussamy et al. (2015) Emulators for stochastic simulation codes, ESAIM: Math. Model. Num. Anal.
- Random field representation $Y_x(\omega) = \mathcal{M}(x, Z(\omega))$: Azzi et al. (2019) Surrogate modeling of stochastic functions application to computational electromagnetic dosimetry, Int. J. Uncertainty Quantification
- Statistical approach:
 - Under the assumption of normality: Marrel et al. (2012) Global sensitivity analysis of stochastic computer models with joint metamodels, Stat. Comput.

Binois *et al.* (2018) *Practical heteroscedastic Gaussian process modeling for large simulation experiments*, J. Comput. Graph. Stat.

- Quantile regression: Koenker & Bassett (1978) Regression quantiles, Econometrica: journal of the Econometric Society
- Kernel smoothing: Hall et al. (2004) Cross-validation and the estimation of conditional probability densities, J. Amer. Stat. Assoc.

Outline

Stochastic simulators

Stochastic surrogate models

Review

Generalized lambda models

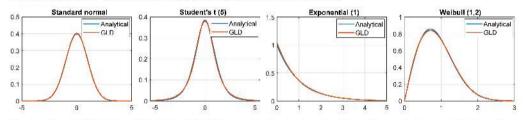
Stochastic polynomial chaos expansions

Application example

Conclusions & Outlook

Generalized lambda distributions

Flexibility: able to approximate most of the parametric distributions



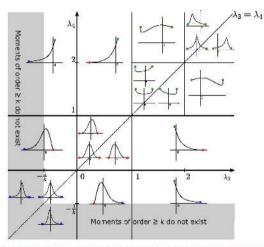
• The Freimer-Mudholkar-Kollia-Lin (FMKL) lambda distribution is defined through its quantile function

$$Q(u;oldsymbol{\lambda})=\lambda_1+rac{1}{\lambda_2}\left(rac{u^{\lambda_3}-1}{\lambda_3}-rac{(1-u)^{\lambda_4}-1}{\lambda_4}
ight)$$

• The PDF is obtained by:

$$f_{Y}(y;\boldsymbol{\lambda}) = \frac{1}{Q'(u;\boldsymbol{\lambda})} = \frac{\lambda_2}{u^{\lambda_3 - 1} + (1 - u)^{\lambda_4 - 1}} \qquad \text{with } u = Q^{-1}(y;\boldsymbol{\lambda})$$

Properties



 λ₃ and λ₄ control the shape and boundedness

$$B_{l}(\boldsymbol{\lambda}) = \begin{cases} -\infty, & \lambda_{3} \leq 0\\ \lambda_{1} - \frac{1}{\lambda_{2}\lambda_{3}}, & \lambda_{3} > 0 \end{cases}$$
$$B_{u}(\boldsymbol{\lambda}) = \begin{cases} +\infty, & \lambda_{4} \leq 0\\ \lambda_{1} + \frac{1}{\lambda_{2}\lambda_{4}}, & \lambda_{4} > 0 \end{cases}$$

- Blue points: infinite support
- Red points: finite support, with PDF = 0 at the bound
- Green points: finite support, with $PDF \neq 0$ at the bound

Zhu & Sucret (2020), Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions, Int. J. Uncertainty Quantification, 10:249–275

Generalized lambda models (GLaM)

General setting

the Length 6

$$Y(oldsymbol{x}) \sim \mathrm{GLD}\left(\lambda_{1}\left(oldsymbol{x}
ight),\lambda_{2}\left(oldsymbol{x}
ight),\lambda_{3}\left(oldsymbol{x}
ight),\lambda_{4}\left(oldsymbol{x}
ight)
ight)$$

Polynomial chaos expansions

$$\lambda_{k}(\boldsymbol{x}) = \lambda_{k}^{\text{PC}}(\boldsymbol{x}; \boldsymbol{c}) = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^{d}} c_{k,\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x}) \quad k = 1, 3, 4$$
$$\lambda_{2}(\boldsymbol{x}) = \lambda_{2}^{\text{PC}}(\boldsymbol{x}; \boldsymbol{c}) = \exp\left(\sum_{\boldsymbol{\alpha} \in \mathbb{N}^{d}} c_{2,\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x})\right)$$

- Independent input parameters with $oldsymbol{X} \sim f_{oldsymbol{X}} = \prod_{j=1}^d f_{X_j}$
- Basis functions (multivariate polynomials) $\psi_{m{lpha}}(m{x}) = \prod_{j=1}^d \phi_{lpha_j}^{(j)}(x_j)$
- c are the model parameters to be estimated

Generalized lambda models (GLaM)

General setting

and thereby 6 of the contraction

$$Y(oldsymbol{x}) \sim \mathrm{GLD}\left(\lambda_{1}\left(oldsymbol{x}
ight),\lambda_{2}\left(oldsymbol{x}
ight),\lambda_{3}\left(oldsymbol{x}
ight),\lambda_{4}\left(oldsymbol{x}
ight)
ight)$$

Polynomial chaos expansions

$$\lambda_{k}(\boldsymbol{x}) \approx \lambda_{k}^{\text{PC}}(\boldsymbol{x}; \boldsymbol{c}) = \sum_{\boldsymbol{\alpha} \in \boldsymbol{\mathcal{A}}_{k}} c_{k,\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x}) \quad k = 1, 3, 4$$
$$\lambda_{2}(\boldsymbol{x}) \approx \lambda_{2}^{\text{PC}}(\boldsymbol{x}; \boldsymbol{c}) = \exp\left(\sum_{\boldsymbol{\alpha} \in \boldsymbol{\mathcal{A}}_{2}} c_{2,\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x})\right)$$

- Independent input parameters with $m{X} \sim f_{m{X}} = \prod_{j=1}^d f_{X_j}$
- Basis functions (multivariate polynomials) $\psi_{m{lpha}}(x) = \prod_{j=1}^d \phi_{lpha_j}^{(j)}(x_j)$
- c are the model parameters to be estimated

Estimation with given PCE basis

Data generation

- Experimental design of size N in the ${\boldsymbol X}\text{-space} {:}~ {\mathcal X} = \left\{ {{\boldsymbol x}^{(1)}, \ldots ,{\boldsymbol x}^{(N)}} \right\}$
- The simulator is evaluated *once*, i.e., no replications needed, for each $x^{(i)} \in \mathcal{X}$: $y^{(i)} \stackrel{\text{def}}{=} \mathcal{M}(x^{(i)}, z^{(i)})$ Idea
 - Build a global model for the joint distribution of inputs and outputs:

$$f_{\boldsymbol{X},Y}(\boldsymbol{x},y) = f_{Y|\boldsymbol{X}}\left(y \mid \boldsymbol{x}\right) \cdot f_{\boldsymbol{X}}(\boldsymbol{x})$$

where the conditional PDF is represented by a generalized lambda model:

$$f_{\boldsymbol{X},Y}^{\text{GLD}}(\boldsymbol{x},y;\,\boldsymbol{c}) = f_{Y|\boldsymbol{X}}^{\text{GLD}}\left(y;\boldsymbol{\lambda}^{\text{PC}}(\boldsymbol{x};\boldsymbol{c})\right) \cdot f_{\boldsymbol{X}}(\boldsymbol{x})$$

• Find the optimal PCE coefficients c^* that minimize the Kullback-Leibler divergence between $f_{X,Y}(x,y)$ and $f_{X,Y}^{GLD}(x,y)$:

$$\boldsymbol{c}^{*} = \arg\min_{\boldsymbol{c}} D_{\mathrm{K}L} \left(f_{\boldsymbol{X},Y} \parallel f_{\boldsymbol{X},Y}^{\mathrm{GLD}}(\,\cdot\,;\boldsymbol{c}) \right)$$

Estimation with given PCE basis (cont.)

Maximum likelihood estimation

• The minimization problem is equivalent to

$$\boldsymbol{c}^{*} = \arg\max_{\boldsymbol{c}} \mathbb{E}_{\boldsymbol{X},Y} \left[\log f_{Y|\boldsymbol{X}}^{\text{GLD}} \left(Y; \, \boldsymbol{\lambda}^{\text{PC}}(\boldsymbol{X}; \boldsymbol{c}) \right) \right]$$

Maximum likelihood estimator

$$\hat{\boldsymbol{c}} = \arg\max_{\boldsymbol{c}} \frac{1}{N} \sum_{i=1}^{N} \log f_{Y|\boldsymbol{X}}^{\text{GLD}}\left(\boldsymbol{y}^{(i)}; \boldsymbol{\lambda}^{\text{PC}}(\boldsymbol{x}^{(i)}; \boldsymbol{c})\right)$$

• Consistency: if the simulator is a GLaM for c^* , under mild conditions $\hat{c} \xrightarrow{\text{a.s.}} c^*$ as $N \to +\infty$

Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to SIAM/ASA J. Unc. Quant.

Estimation with unknown PCE basis

With replications

- R replications for each $x^{(i)} \in \mathcal{X}$: $\mathcal{Y}^{(i)} = \left\{y^{(i,1)}, y^{(i,2)}, \dots, y^{(i,R)}\right\}$
- Infer a generalized lambda distribution $\hat{\lambda}^{(i)}$ for each point $x^{(i)}$ of the experimental design based on the replications $\mathcal{Y}^{(i)}$
- Fit a sparse polynomial chaos expansion to the parameters $\left\{ \left(\boldsymbol{x}^{(1)}, \hat{\boldsymbol{\lambda}}^{(1)} \right), \dots, \left(\boldsymbol{x}^{(N)}, \hat{\boldsymbol{\lambda}}^{(N)} \right) \right\}$, which selects the basis functions for $\boldsymbol{\lambda}^{PC}(\boldsymbol{x})$
- MLE with all the data to estimate the coefficients

$$\hat{\boldsymbol{c}} = \arg \max_{\boldsymbol{c}} \frac{1}{NR} \sum_{i=1}^{N} \sum_{r=1}^{R} \log f_{\boldsymbol{Y}|\boldsymbol{X}}^{\text{GLD}} \left(\boldsymbol{y}^{(i,r)}; \, \boldsymbol{\lambda}^{\text{PC}}(\boldsymbol{x}^{(i)}; \boldsymbol{c}) \right)$$

Zhu & Sudret (2020), Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions, Int. J. Uncertainty Quantification, 10:249–275

Estimation with unknown PCE basis

Without replications

- PCE models for the mean and variance of the model output built using the feasible generalized least-square method
- Use the PCE basis of $\mu(x)$ (resp. $\log \sigma^2(x)$) for λ_1 (resp. λ_2)
- PCE of degree 1 for λ₃ and λ₄ (it is assumed that the shape of the response distribution does not vary nonlinearly with *x*)
- MLE to estimate the coefficients

$$\hat{\boldsymbol{c}} = \arg \max_{\boldsymbol{c}} \frac{1}{N} \sum_{i=1}^{N} \log f_{Y|\boldsymbol{X}}^{\text{GLD}}\left(\boldsymbol{y}^{(i)}; \, \boldsymbol{\lambda}^{\text{PC}}(\boldsymbol{x}^{(i)}; \boldsymbol{c})\right)$$

Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to SIAM/ASA J. Unc. Quant.

Outline

Stochastic simulators

Stochastic surrogate models

Review Generalized lambda models Stochastic polynomial chaos expansions

Application example

Conclusions & Outlook

Motivation

Another perspective of GLaM

$$Y(\boldsymbol{x}) \stackrel{\mathrm{d}}{=} F_{Y|\boldsymbol{X}}^{-1}(U \mid \boldsymbol{x}) \approx Q^{\mathrm{GLD}}\left(U; \boldsymbol{\lambda}^{\mathrm{PC}}(\boldsymbol{x}; \boldsymbol{c})\right)$$

- The variable $U \sim U(0, 1)$ can be seen as the source of stochasticity, and the quantile transform represents the model response
- This is a stochastic surrogate: when fixing *x* and sampling *U*, one obtains samples for the surrogate model response

Latent variable model

- Represent the model response as a transform of a latent variable \tilde{Z} , e.g., $Y(x) \stackrel{d}{\approx} g(\tilde{Z}; x)$
- Stochastic PCE: the transform is given by a PCE

Motivation

Another perspective of GLaM

$$Y(\boldsymbol{x}) \stackrel{\mathrm{d}}{=} F_{\boldsymbol{Y} \mid \boldsymbol{X}}^{-1}(U \mid \boldsymbol{x}) \approx Q^{\mathrm{GLD}}\left(U; \boldsymbol{\lambda}^{\mathrm{PC}}(\boldsymbol{x}; \boldsymbol{c})\right)$$

- The variable $U \sim \mathcal{U}(0, 1)$ can be seen as the source of stochasticity, and the quantile transform represents the model response
- This is a stochastic surrogate: when fixing *x* and sampling *U*, one obtains samples for the surrogate model response

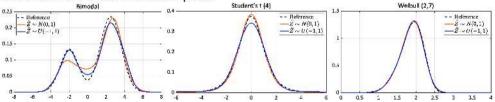
Latent variable model

- Represent the model response as a transform of a latent variable \tilde{Z} , e.g., $Y(x) \stackrel{d}{\approx} g(\tilde{Z}; x)$
- Stochastic PCE: the transform is given by a PCE

Formulation

$$Y(\boldsymbol{x}) \stackrel{\mathrm{d}}{pprox} \sum_{\boldsymbol{lpha} \in \mathcal{A}} c_{\boldsymbol{lpha}} \Psi_{\boldsymbol{lpha}}(\boldsymbol{x}, ar{Z}) + \epsilon$$

- \check{Z} is a latent variable, and $\epsilon \sim \mathcal{N}(0,\sigma^2)$ is a noise variable
- \tilde{Z} and ϵ are introduced to represent the random nature of the stochastic simulator: for a given x, Y(x) is a function of the latent variable \tilde{Z} plus ϵ



Formulation

$$Y(\boldsymbol{x}) \stackrel{\mathrm{d}}{\approx} \sum_{\boldsymbol{lpha} \in \mathcal{A}} c_{\boldsymbol{lpha}} \Psi_{\boldsymbol{lpha}}(\boldsymbol{x}, \tilde{Z}) + \epsilon$$

- \tilde{Z} is a latent variable, and $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is a noise variable
- \tilde{Z} and ϵ are introduced to represent the random nature of the stochastic simulator: for a given x, Y(x) is a function of the latent variable \tilde{Z} plus ϵ
- By convolution, the response distribution is given by

$$f_{Y|\mathbf{X}}(y \mid \mathbf{x}) = \int_{\mathcal{D}_{\tilde{Z}}} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(y - \sum_{\boldsymbol{\alpha} \in \mathcal{A}} c_{\boldsymbol{\alpha}} \Psi(\mathbf{x}, \tilde{z})\right)^2}{2\sigma^2}\right) f_{\tilde{Z}}(\tilde{z}) \mathrm{d}\tilde{z}$$

- To build a stochastic PCE, \boldsymbol{c} and σ should be estimated from data

Estimation method

Maximum likelihood estimation

• The conditional likelihood for a data point (x, y) is

$$l(\boldsymbol{c},\sigma;\boldsymbol{x},y) = \int_{\mathcal{D}_{\tilde{Z}}} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(y - \sum_{\boldsymbol{\alpha}\in\mathcal{A}} c_{\boldsymbol{\alpha}} \Psi(\boldsymbol{x},\tilde{z})\right)^2}{2\sigma^2}\right) f_{\tilde{Z}}(\tilde{z}) \mathrm{d}\tilde{z}$$

- Numerical integration by 1D quadrature $l(c,\sigma;x,y) \approx \tilde{l}(c,\sigma;x,y)$
- · Maximum likelihood to estimate the coefficients

$$\hat{\boldsymbol{c}} = \arg \max_{\boldsymbol{c}} \sum_{i=1}^{N} \log \tilde{l}\left(\boldsymbol{c}, \sigma; \boldsymbol{x}^{(i)}, y^{(i)}\right)$$

Cross-validation

of the second second

- The likelihood is unbounded for $\sigma = 0$: σ is a hyperparameter that can be selected by cross-validation
- The cross-validation score is also used to find a suitable distribution for \tilde{Z} and a truncation scheme $\mathcal{A}^{p,q,d} = \left\{ \alpha \in \mathbb{N}^d : \|\alpha\|_q \stackrel{\text{def}}{=} \left(\sum_{i=1}^d \alpha_i^q \right)^{\frac{1}{q}} \leq p \right\}$

Estimation method

Maximum likelihood estimation

• The conditional likelihood for a data point (x, y) is

$$l(\boldsymbol{c},\sigma;\boldsymbol{x},y) = \int_{\mathcal{D}_{\tilde{Z}}} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(y - \sum_{\boldsymbol{\alpha}\in\mathcal{A}} c_{\boldsymbol{\alpha}}\Psi(\boldsymbol{x},\tilde{z})\right)^2}{2\sigma^2}\right) f_{\tilde{Z}}(\tilde{z}) \mathrm{d}\tilde{z}$$

- Numerical integration by 1D quadrature $l(c,\sigma;x,y) \approx \tilde{l}(c,\sigma;x,y)$
- · Maximum likelihood to estimate the coefficients

$$\hat{\boldsymbol{c}} = \arg \max_{\boldsymbol{c}} \sum_{i=1}^{N} \log \tilde{l}\left(\boldsymbol{c}, \sigma; \boldsymbol{x}^{(i)}, y^{(i)}\right)$$

Cross-validation

of the second second

- The likelihood is unbounded for $\sigma = 0$: σ is a hyperparameter that can be selected by cross-validation
- The cross-validation score is also used to find a suitable distribution for \tilde{Z} and a truncation scheme $\mathcal{A}^{p,q,d} = \left\{ \boldsymbol{\alpha} \in \mathbb{N}^d : \|\boldsymbol{\alpha}\|_q \stackrel{\text{def}}{=} \left(\sum_{i=1}^d \alpha_i^q \right)^{\frac{1}{q}} \leq p \right\}$

Outline

Stochastic simulators

Stochastic surrogate models

Application example

Conclusions & Outlook

Comparisons

Error metric

• The Wasserstein distance of order 2 is the *L*² distance between the quantile functions for continuous random variables:

$$d_{\rm WS}^2(Y, \hat{Y}) = \|Q_Y - Q_{\hat{Y}}\|_{L^2}^2$$

Normalized Wasserstein distance

$$\varepsilon = \frac{\mathbb{E}_{\boldsymbol{X}}\left[d_{\mathrm{WS}}^{2}\left(\boldsymbol{Y}(\boldsymbol{X}), \hat{\boldsymbol{Y}}(\boldsymbol{X})\right)\right]}{\mathrm{Var}\left[\boldsymbol{Y}\right]}$$

Compared models

- Generalized lambda model (GLaM)
- Stochastic polynomial chaos expansions (SPCE)
- Kernel conditional density estimator (KCDE) Hayfield & Racine (2008) Nonparametric Econometrics: The np Package, J. Stat. Softw., 27:1015–1026

Stochastic SIR model in epidemiology

Model description

- $M_t = S_t + I_t + R_t$: total population
- St: number of susceptible individuals at time t
- It: number of infected individuals at time t
- R_t : number of recovered individuals at time t

Binois et al. (2018) Practical hotoroscedastic Gaussian process modeling for large simulation experiments, J. Comput. Graph. Stat., 27:808–821

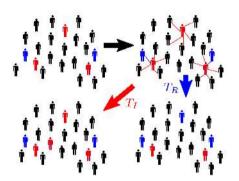
Stochastic SIR model in epidemiology

Model description

- $M_t = S_t + I_t + R_t$: total population
- S_t : number of susceptible individuals at time t
- I_t : number of infected individuals at time t
- R_t : number of recovered individuals at time t

Setup

- Total population $M_t = 2,000$
- Initial condition: $S_0 \sim \mathcal{U}(1300, 1800),$ $I_0 \sim \mathcal{U}(20, 200)$
- System dynamics: the contact rate $\beta \sim \mathcal{U}(0.5, 0.75)$, the recovery rate $\gamma \sim \mathcal{U}(0.5, 0.75)$



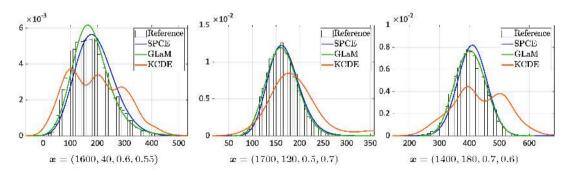
• *Y*(*x*): total number of infected individuals during the outbreak (without counting *I*₀)

Binois et al. (2018) Practical heteroscedastic Gaussian process modeling for large simulation experiments, J. Comput. Graph. Stat., 27:808–821

Surrogate Modelling for Stochastic Simulators

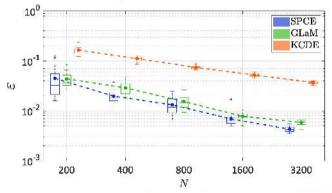
PDF predictions

- Surrogates built on an experimental design of size N = 1,600 generated by the Latin hypercube sampling (without replications)
- 10⁴ replications as a reference



Convergence study

- Experimental design of size $N \in \{200; 400; 800; 1,600; 3,200\}$, no replications
- 20 independent runs for each scenario
- Normalized Wasserstein distance as a performance indicator



Conclusions & Outlook

Conclusions

- · Stochastic simulators are used in many fields of applied sciences and engineering
- Building general-purpose emulators is necessary for optimization, sensitivity analysis, etc.
- We propose two surrogate models
 - Generalized lambda models
 - Stochastic polynomial chaos expansions
- Replications are not mandatory ... but can be used

Outlook

- Combinations with other surrogates (e.g., Gaussian processes)
- Sparse techniques, e.g, penalized maximum likelihood estimator $\hat{c} = \arg \min_{c} L(c) + \nu P(c)$, e.g., LASSO $P(c) = \|c\|_{l^1}$

18/19

Related publications

- X. Zhu and B. Sudret. "Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions". In: *Int. J. Uncertainty Quantification* 10.3 (2020), pp. 249–275. DOI: 10.1615/Int.J.UncertaintyQuantification.2020033029.
- X. Zhu and B. Sudret. "Emulation of stochastic simulators using generalized lambda models". In: *SIAM/ASA J. Unc. Quant.* (2021). (Submitted). URL: https://arxiv.org/abs/2007.00996.
- X. Zhu and B. Sudret. "Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models". In: *Reliab. Eng. Sys. Safety* (2021). (Submitted). URL: https://arxiv.org/abs/2005.01309.
- X. Zhu and B. Sudret. "Stochastic polynomial chaos expansions for emulating stochastic simulators". In: (2021). (In preparation).

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

The Uncertainty Quantification Software

www.uqlab.com

The Uncertainty Quantification Community

www.uqworld.org

Thank you very much for your attention !

Surrogate Modelling for Stochastic Simulators

Replications

Some results

• Consider a random design of size N/R with replications R, the likelihood is:

$$L(\boldsymbol{c}) = \frac{1}{N} \sum_{i=1}^{N/R} \sum_{r=1}^{R} \log f_{Y|\boldsymbol{X}}^{s} \left(Y^{(i,r)} \big| \boldsymbol{X}^{(i)}; \boldsymbol{c} \right)$$

• In expectation, we have

$$\mathbb{E}\left[L(\boldsymbol{c})\right] = \mathbb{E}_{\boldsymbol{X},Y}\left[\log f^{s}_{Y|\boldsymbol{X}}\left(Y \mid \boldsymbol{X}; \boldsymbol{c}\right)\right]$$

• The variance of *L* is given by

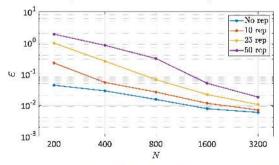
$$\operatorname{Var}\left[L(\boldsymbol{c})\right] = \frac{1}{N} \operatorname{Var}\left[\log f_{Y|\boldsymbol{X}}^{s}\left(Y \mid \boldsymbol{X}; \boldsymbol{c}\right)\right] + \frac{R-1}{N} \operatorname{Var}_{\boldsymbol{X}}\left[\mathbb{E}\left[\log f_{Y|\boldsymbol{X}}^{s}\left(Y \mid \boldsymbol{X}; \boldsymbol{c}\right) \middle| \boldsymbol{X}\right]\right]$$

R = 1 (no replications) leads to the minimum variance of L(c)

Replications (cont.)

Convergence study of the SIR example

- Compare the method that does not need replications with the one based on replications for constructing GLaM
- Replications $R \in \{10; 25; 50\}$
- Total number of model runs $N \in \{200; 400; 800; 1,600; 3,200\}$



Replications (cont.)

Convergence study of the SIR example

- Compare the method that does not need replications with the one based on replications for constructing GLaM
- Replications $R \in \{10; 25; 50\}$
- Total number of model runs $N \in \{200; 400; 800; 1,600; 3,200\}$
- Replications are not helpful in this example

However...

- Some methods (e.g., replication-based approaches) rely on the information extracted from replications: trade-off between explorations and replications
- Some methods explore strategies for adaptive designs
- · Replications can be used for validations

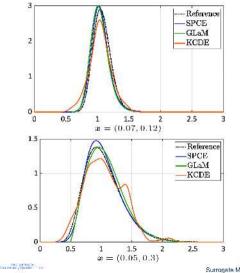
Geometric Brownian motion

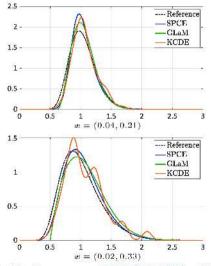
 $\mathrm{d}S_t = x_1 \, S_t \, \mathrm{d}t + x_2 \, S_t \, \mathrm{d}W_t$

- S_t : price process, W_t : Wiener process, x_1 : drift, x_2 : volatility
- $X_1 \sim \mathcal{U}(0, 0.1), X_2 \sim \mathcal{U}(0.1, 0.4), \text{ and } Y(x) = S_1(x)$
- The analytical distribution of S_t reads (Itô's calculus):

$$S_1(\boldsymbol{x})/S_0 \sim \mathcal{LN}\left(x_1 - rac{x_2^2}{2}, x_2
ight)$$

PDF predictions (ED of size N = 400)

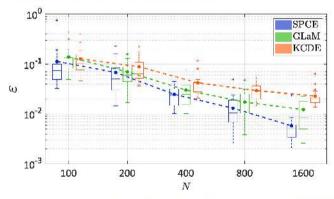




Surrogate Modelling for Strichastic Simulators

Convergence study

- Experimental design of size $N \in \{100; 200; 400; 800; 1,600\}$, no replications
- 20 independent runs for each scenario
- Normalized Wasserstein distance as a performance indicator

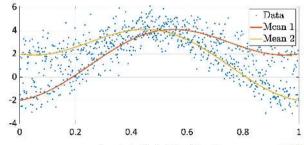


Bimodal toy example

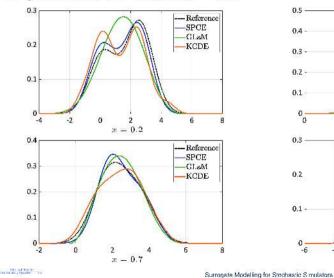
Description of the simulator

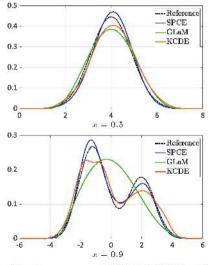
$$f_{Y|X}(y \mid X = x) = 0.6 f_n(4\sin^2(\pi \cdot x) + 4x - 2) + 0.4 f_n(4\sin^2(\pi \cdot x) - 4x + 2)$$

- f_n is the PDF of a normal distribution with mean 0 and standard deviation 0.8, $f_n(t) = \frac{3}{4} \varphi\left(\frac{3}{4}t\right)$
- The response distribution is a mixture of Gaussian PDFs
- $X \sim \mathcal{U}(0, 1)$



PDF predictions (ED of size N = 800)





MASCOTNUM - April 28, 2021 Xujia Zhu 26/19

Convergence study

- Experimental design of size $N \in \{100; 200; 400; 800; 1,600\}$, no replications
- 20 independent runs for each scenario
- Normalized Wasserstein distance as a performance indicator

