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Deterministic vs. stochastic simulators

4
Deterministic simulators I
* Each set of input variables has a unique - _,_.y :?2 —
corresponding output siiuleter E 1\ // ! \
. T s
My iDx CR” =R °g LI 2
nput paramelers
Stochastic simulators
4
® A given set of input parameters can lead to i,
different values of the output s ,_ ¥iz) g
simulator / Y _-; 2
® Y{x)is a random variable ! \--g !
o
* Source of randomness: Y(x) = M(x, Z), ol S8 : s y
Input parameters

whete Z are latent variables
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Computational costs induced by stochastic simulators

® Replications are needed to estimate the PDF of Y (z) (i.e., Y | X = @)
® Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis,
optimization, etc.

® Realistic simulators (e.g., for wind turbine design) are costly
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Computational costs induced by stochastic simulators

® Replications are needed to estimate the PDF of Y (z) (i.e., Y | X = @)

® Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis,
optimization, etc.

® Realistic simulators (e.g., for wind turbine design) are costly

Need for surrogate models

* Non-intrusive (i.e., that considers the stochastic simulator as a black box)
® General-purpose: no restrictive assumption (e.g., Gaussian) on the family of the output

® Able to tackle the full distribution of Y (), but also quantities of interest (e.g., mean, variance,
quantiles)
® Providing a representation of Y (x) easy to sample from
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Existing methods

®* Replication-based:

— Quantile estimation: Plumlee & Tuo (2014) Building accurate emitators for stochastic simulations via quantile
Kriging, Technometrics

— Kernel smoothing: Moutoussamy et af. (2015) Emulators for stochastic simulation codes, ESAIM: Math.
Model. Num. Anal.

|7 Data
- Replicate mean
—Fit
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Existing methods

® Replication-based:

— Quantile estimation: Plumlee & Tuo (2014) Building accurate emulators for stochastic simulations via quantile
Kriging, Technometrics

— Kernel smoothing: Moutoussamy et al. (2015) Emulators for stochastic simulation codes, ESAIM: Math.
Model. Num. Anal.

® Random field representation Y, (w) = M (x, Z(w)): Azzi et al. (2019) Surrogate modeling of stochastic
functions - application to computational electromagnetic dosimetry, Int. J. Uncertainty Quantification
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Existing methods

® Replication-based:
— Quantile estimation: Plumlee & Tuo (2014) Building accurate emulators for stochastic simulations via quantile

Kriging, Technometrics
— Kernel smoothing: Moutoussamy et al. (2015) Emulators for stochastic simulation codes, ESAIM: Math.

Model. Num. Anal.

® Random field representation Yz (w) = M (x, Z(w)): Azzi et al. (2019) Surrogate modeling of stochastic
functions - application to computational electromagnetic dosimetry, Int. J. Uncertainty Quantification

e Statistical approach:

— Under the assumption of normality:
Marrel et al. (2012) Global sensitivity analysis of stochastic computer models with joint metamodels, Stat.

Comput.
Binois et al. (2018) Practical heteroscedastic Gaussian process modeling for large simulation experiments, J.

Comput. Graph. Stat.
— Quantile regression: Koenker & Bassett (1978) Regression quantiles, Econometrica: journal of the

Econometric Society
— Kernel smoothing: Hall et al. (2004) Cross-validation and the estimation of conditional probability densities, J.

Amer. Stat. Assoc.
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Generalized lambda distributions

® [lexibility: able to approximate most of the parametric distributions

S Standard narmal 54 s | [5) il Exponential {1} 5 Weibull {1.2)
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®* The Freimer-Mudholkar-Kollia-Lin {(FMKL) lambda distribution is defined through its quantile function
Ag S 0.
QN A g L (u 1 (1-w) 1)

Az A4
* The PDF is obtained by:

fr(nA) = i

1
(X)) T Ml (1 — gl

with = Q7' (1: \)
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Properties

o - 5-“\;_ A3/ ® )\, and A, control the shape and
g ; 1 , boundedness
: /{ J — | ,}/\_
e 2 , : —nc, A3 <0
E" | | HE (A]I iy Ay ] 3 =
% A] — m, A;—; e U
v
3 : . Ay 20
. 1 Byl R T - =
- F \/ - Mt sdo, Ada>0
k i 7Al¢~ JLTA. T * Blue peints: infinite support

=3 S 0 1 e 3 * Red points: finite support. with PDF
; 'f’;' _\_ =0 at the bound

= 4& — o 65 o ;

//f-i.\&‘ Moments of jarder = k do not sxist Green pOInts. flmte SUDDDT’t, W|th
i PDF = 0 at the bound

Zhu# Sacre: (20200, Aopteation-hasced cinulation of e resp mhetibation of sfochashic simufabors using o of famb aistribuiicns, Ik o, Unecrtzinty Cuantificacion, 10:248-275
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Generalized lambda models (GLaM)

General setting
Y(x) ~ GLD (A1 (2), A2 (), A3 (), A1 (x))

Polynomial chaos expansions

M(@) =\ C(@se) = Y ckatial®) k=1,3,4

aeNd

e () = X5 (5¢) = exp < > CQ,a%(m))

acNd

® Independent input parameters with X ~ fx = szl Ix;
® Basis functions (multivariate polynomials) v« () = H;lzl qbf,f}(xj)

® c are the model parameters to be estimated
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Generalized lambda models (GLaM)

General setting
Y(x) ~ GLD (A1 (2), A2 (), A3 (), A1 (x))

Polynomial chaos expansions

M(@) 2 A (@ie) = D cratial®) k=1,3,4

ac Ay

A2 (z) & A5 (x5¢) = exp < Z CZ’Qwa(m)>

ac Ay

® Independent input parameters with X ~ fx = H;l X
® Basis functions (multivariate polynomials) ¥« (z HJ lqb(’)

® c are the model parameters to be estimated
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Estimation with given PCE basis

Data generation
* Experimental design of size N in the X -space: X = {z*,..., ™}

e The simulator is evaluated once, i.e., no replications needed, for each =¥ € Xz 3y & A (z,21)
Idea

® Build a global model for the joint distribution of inputs and outputs:

Ixy(z,y) = frix (y] ) - fx(x)

where the conditional PDF is represented by a generalized lambda model:

GL

5 (@,y; 0) = [yl (A7 (x50)) - fx (@)
® Find the optimal PCE coefficients ¢* that minimize the Kullback-Leibler divergence between
fxy(@,y) and fZP (z, y):

c* —argmlnDKL (fXYH V(- ?C))
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Estimation with given PCE basis (cont.)

Maximum likelihood estimation

® The minimization problem is equivalent to
¢’ =argmaxEx y [log fS‘L)](D (Y; )\PC(X;C))]

® Maximum likelihood estimator
¢ =arg max Z log f- %L;P @, )\Pc(m(i); c))
® Consistency: if the simulator is a GLaM for ¢*, under mild conditions ¢ 2% ¢*as N — +oo

Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to SIAM/ASA J. Unc. Quant.
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Estimation with unknown PCE basis
With replications
* R replications for each 2 € x: YV = {1 402 01
® Infer a generalized lambda distribution X(i) for each point @ of the experimental design based on the
replications Y®
* Fit a sparse polynomial chaos expansion to the parameters { (a:“), ;\(1)) e, (a:(N), ;\(N>) }
which selects the basis functions for A\¥€ ()

® MLE with all the data to estimate the coefficients

N R
. 1 GLD (_ (i,r), yPC/_ (i),
&= argmax E E log fy|x (y A (z 7‘3))

=1 r=1

Zhu & Sudret (2020), Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions, Int. J. Uncertainty Quantification, 10:249-275
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Estimation with unknown PCE basis

Without replications

® PCE models for the mean and variance of the model output built using the feasible generalized
least-square method

e Use the PCE basis of u(x) (resp. log o®(x)) for A (resp. Az)

® PCE of degree 1 for A3 and A4 (it is assumed that the shape of the response distribution does not vary
nonlinearly with x)

® MLE to estimate the coefficients

N
. 1 GLD (. (i). yPC/, (i)

— — 1 A ;
¢ = argmax Eﬂ og fylx (v'; A (@' 0))

Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to SIAM/ASA J. Unc. Quant.
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Stochastic surrogate models
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Motivation

Another perspective of GLaM

Y(z) £ Fylx (U | 2) = Q¥ (U; A7(x;.0))

® The variable U ~ U(0, 1) can be seen as the source of stochasticity, and the quantile transform
represents the model response

® This is a stochastic surrogate: when fixing  and sampling U, one obtains samples for the surrogate
model response

mn*
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Motivation

Another perspective of GLaM

Y(z) £ Fylx (U | 2) = Q¥ (U; A7(x;.0))

® The variable U ~ U(0, 1) can be seen as the source of stochasticity, and the quantile transform
represents the model response

® This is a stochastic surrogate: when fixing  and sampling U, one obtains samples for the surrogate
model response

Latent variable model

® Represent the model response as a transform of a latent variable Z, e.g., Y(x) é 9(Z;x)
e Stochastic PCE: the transform is given by a PCE

T, e
mn*

Surrogate Modelling for Stochastic Simulators MASCOTNUM — April 28, 2021 Xujia Zhu 11/19



Formulation

Yix) & Z caWalE Z) — ¢
A

e 7 is alatent variable, and ¢ ~ A (0, 0%} is a noise variable

* Z and ¢ are introduced 1o represent the random nature of the stochastic simulator: for a given =, Y (2)
is a function of the latent variable Z plus ¢

Rimadal o Student’s 1 {4] Welbull [2,7)

- = Huebereooe O

a as 1 15 2 25 1 15 4
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Formulation

Y(x) =~ Z caValr,Z)+ €
acA
e 7 is alatent variable, and € ~ N(0, 5) is a noise variable

* 7 and ¢ are introduced to represent the random nature of the stochastic simulator: for a given x, Y (z)
is a function of the latent variable Z plus ¢

® By convolution, the response distribution is given by

— caV(x, 2 ?
leX(y|93)=/_ \/21?0 exp <— (v 2“6“2402 (z.2)) )fz(é)dé

® To build a stochastic PCE, ¢ and ¢ should be estimated from data

mn*
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Estimation method

Maximum likelihood estimation
® The conditional likelihood for a data point (x, y) is
! ex —
\V2ro P 202

Dy

® Numerical integration by 1D quadrature (¢, o5 x,y) = I(c, 052, y)

(y - ZaeA CO‘\I}(E’ 2)) ) fz(f)df

® Maximum likelihood to estimate the coefficients

N
A 7 3 2
¢ = arg max E logl (c,a;m( ),y( ))
c
i=1
Ill “ I| [ Surrogate Modelling for Stochastic Simulators MASCOTNUM — April 28, 2021 Xuijia Zhu 13/19




Estimation method

Maximum likelihood estimation
® The conditional likelihood for a data point (x, y) is
! ex —
\V2ro P 202

Dy

® Numerical integration by 1D quadrature (¢, o5 x,y) = I(c, 052, y)

(y - ZaeA CO‘\I}(E’ 2)) ) fz(f)df

® Maximum likelihood to estimate the coefficients
N

P 7 () (3)
¢ = argmnglogl (c,a,w Y )
i=1
Cross-validation
® The likelihood is unbounded for o = 0: ¢ is a hyperparameter that can be selected by cross-validation

® The cross-validation score is also used to figd a suitable distribution for Z and a truncation scheme
Artd = {a eN': Jall, ¥ (T, 0f) " < p}

i=1 1

Surrogate Modelling for Stochastic Simulators MASCOTNUM — April 28, 2021 Xujia Zhu 13/19
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Outline

Application example

Paiiingy
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Comparisons

Error metric

® The Wasserstein distance of order 2 is the L? distance between the quantile functions for continuous
random variables:

dws(Y,Y) = |Qy — Qy |72

® Normalized Wasserstein distance

Compared models
® Generalized lambda model (GLaM)
® Stochastic polynomial chaos expansions (SPCE)

® Kernel conditional density estimator (KCDE) Hayfieid & Racine (2008) Nonparametric Econometrics: The np Package, J. Stat. Softw., 27:1015-1026

AT
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Stochastic SIR model in epidemiology

iy b hyd
Model description : 1 : 1 ffﬂ:r = : T:/'ll 11 ﬂf
s A, = 5; 4+ I, + R, total population | 11\ T ﬂr' T T’\{'f L " |

* 5. number of susceptible individuals at time ¢
® [.: number of infected individuals at time {

1
® R,: number of recovered individuals at time ¢ i
1

Bingig or &', {20 8} Prachcs! hororoscodasis Gauesian proceas mogoling for lamge sitvianan oxperments, o, Gorput. Grapa, Stat,, 78L&
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Stochastic SIR model in epidemiology

Model description . o# #
, . R I | I NP
®* Ay 5 + I + Ry total population f i (| “'H‘ i f nta\f “'|1

® 5;: number of susceptible individuals at time ¢ P | Pt : T{

LSRN A
® /,: number of infected individuals at time ¢ t i P
I'n

® .. number of recovered individuals at time i i i 3 T i i ; 3
Setup LN PN
« Total population M, = 2,000 N PR NS PR
* |nitial condition: S ~ Z4(1300, 1800}, f 3 f 4

Ty ~ (20, 200)

* System dynamics: the contact rate J ~ 24(0.5.0.75), ® ¥ (@): total number of infected individuals
the recovery rate + ~ I4(0.5, 0.75) during the outbreak (without counting £,

Dhneiss el sl 200 B Practiva! Deleroscedasic Suosslad procoss modeling o Bege sinolation exoe . Corrpul, Grap, Blel, 27:805-821
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PDF predictions

¢ Surrogates built on an experimental design of size N = 1,600 generated by the Latin hypercube
sampling {without replications)

¢ 1" replications as a reference

-3 -2

_x 10 . i xl[)l . . .
| Reference) | |Referenee

—SPCLE —5PCL

GLaM —(3LaM

—KODE 1- —K(DE

05-
A¥

- F 1l : :
0 100 200 300 400 500 50 100 150 200 250 300 350
@ = (1A00, 40, 0.6, 0.53) a = (1700, 120, 0.5, (1L.7) a = (1400, 180, 1.7, (L&)
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Convergence study

* Experimental design of size N < {200; 40(}; 800; 1,600, 3,200}, no replications
¢ 20 independent runs for each scenario

* Normalized Wasserstein distance as a performance indicator

10% — ' '
o P i T e 5 _
L Ll T D—
(4 'EEL:"‘\-: '. SR “H—“_-—""‘-!—
I TR Tl ST T 4
107 - T
: B e =
e
10-3 | | |
200 400 800 1600 3200
&
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Conclusions & Outlook

Conclusions
® Stochastic simulators are used in many fields of applied sciences and engineering
® Building general-purpose emulators is necessary for optimization, sensitivity analysis, etc.

® We propose two surrogate models

— Generalized lambda models
— Stochastic polynomial chaos expansions

® Replications are not mandatory ... but can be used

Outlook
® Combinations with other surrogates (e.g., Gaussian processes)

® Sparse techniques, e.g, penalized maximum likelihood estimator & = argmin. L(c) + vP(c), e.g.,
LASSO P(c) = el

AT
mn*
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The Uncertainty Quantification
Software

www.uqglab.com

UQLah

The Uncertainty Quantification
Community

www.uqworld.org

sl e

Chair of Risk, Safety & Uncertainty Quantification

UQWerld

www.rsuq.ethz.ch

Thank you very much for your attention !
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Replications

Some results

® Consider a random design of size N/ R with replications R, the likelihood is:

2

/R
L(c

R
Z ngy| Y(i’r) X(i);c)

HM

® |n expectation, we have
E[L(c)] = Ex,y [log fy1x (Y | X;c)]

® The variance of L is given by

Var [L(c)] = %Var [logfé‘x (Y| X;c)] + i 1Vaur;.( [IE [logffz‘x Y| X;¢) |X]]

R = 1 (no replications) leads to the minimum variance of L(c)

Surrogate Modelling for Stochastic Simulators MASCOTNUM — April 28, 2021 Xujia Zhu 20/19
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Replications (cont.)

Convergence study of the SIR example
¢ Compare the method that does not need replications with the one based on replications for

constructing GLaM
* Replications {1 £ {10; 25; 50}

¢ Total number of model runsg N & {200; 400; 800: 1,600, 3,200}

10 T —
—=—XNo rep
—=—10 rep

100 23 rep
—s—Dl] ey

w 107
10-2 4
10-3 ' '
200 400 200 1600 3200
w

MASCOTHLIM — April 283, 2021 i ia Zhu 21015

Surronate Modelling for Stnchasic & molztors



Replications (cont.)

Convergence study of the SIR example

® Compare the method that does not need replications with the one based on replications for
constructing GLaM

® Replications R € {10;25;50}
® Total number of model runs N € {200; 400; 800; 1,600; 3,200}
® Replications are not helpful in this example

However...

® Some methods (e.g., replication-based approaches) rely on the information extracted from replications:
trade-off between explorations and replications

® Some methods explore strategies for adaptive designs

® Replications can be used for validations

T, e
mn*
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Geometric Brownian motion

dS; = z1 Si dt + x2St AW,

® S,: price process, W;: Wiener process, x1: drift, z2: volatility
® X; ~U(0,0.1), X2 ~U(0.1,0.4), and Y (z) = Si ()

® The analytical distribution of S; reads (It6’s calculus):

2
Sl(a:)/So ~ ,C./\[ (ml — m;,xz)

AT L .
II""II Xuijia Zhu 22/19
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PDF predictions (ED of size N =

3
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Convergence study

* Experimental design of size N & {100; 200; 100: 800; 1,600}, no replications
® 20 independent runs for each scenario
¢ Normalized Wasserstein distance as a performance indicator

iy
(=]
PN
1
B
T
e i g
T
el
g1
L
A
ii
-1" ik
i
F P
T
kajd| ®
I

¥

10—3 1 1 1
100 200 400 200 1600

N
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Bimodal toy example

Description of the simulator

Jrix(y| X =2) =06 ful4d sin?(m - ) + de — 2)+0.4 (4 siu?(f: w) —de+2)

* f,, is the PDF of a normal distribution with mean 0 and standard deviaticn 0.8, f,.(¢) =
* The response distribution is a mixture of Gaussian PDFs
o X ~ 240, 1)

o
A
—
o
=
L

AT [
g s

0.2

0.4 0.6 0.8

1
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PDF predictions (ED of size ' = 800)
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Convergence study

* Experimental design of size N & {100; 200; 100: 800; 1,600}, no replications
® 20 independent runs for each scenario
¢ Normalized Wasserstein distance as a performance indicator

10% = . ;
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