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Context

Constrained optimization problem

min
x

f (x) s.t. g(x) ≤ 0

f : Rn → R, g : Rn → R, n ∈ N

Black-box setting
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Contributions

General framework for building stochastic derivative-free optimization (DFO) algorithm for
constrained optimization

From stochastic DFO algorithm for unconstrained optimization
Using augmented Lagrangian constraint handling approach

Algorithm: (µ/µw , λ)-MSR-CMA-ES with adaptive augmented Lagrangian

Theoretical framework for analyzing linear convergence
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Stochastic DFO Algorithms for Unconstrained Optimization
State-of-the-Art

Stochastic derivative-free optimization algorithm

min
x

f (x), f : Rn → R, n ∈ N

Sequence (st)t∈N of states st

Transition function F f

st+1 = F f (st ,Ut+1)

Ut+1 = [U1
t+1, · · · ,U

λ
t+1], U

k
t+1 i.i.d. random vectors

st includes a vector Xt ∈ R
n representing the favorite solution at iteration t

From st and Ut+1, sample λ candidate solutions X
k
t+1

X
k
t+1 evaluated on f
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Stochastic DFO Algorithms for Unconstrained Optimization
State-of-the-Art

Evolution strategies (ES)

Stochastic DFO algorithms

λ normally distributed candidate solutions (offspring)

X
k
t+1 = Xt + σtU

k
t+1,U

k
t+1 ∼ N (0,Ct)

Xt : current solution (mean vector)
σt ∈ R

+
>: step-size

Ct : covariance matrix

(µ/µw , λ)-ES: Recombine µ best offspring (parents)

Xt+1 =

µ∑

k=1

wkX
k:λ
t+1
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Stochastic DFO Algorithms for Unconstrained Optimization
State-of-the-Art

Covariance matrix adaptation ES (CMA-ES) [Hansen et al.’01]

State-of-the-art ES

Adapt Ct to increase likelihood of successful solutions

Efficiently tackles ill-conditioned, noisy, non-separable functions

Shows linear convergence on unconstrained optimization problems

(a) Ill-conditioned (b) Noisy (c) Non-separable
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Augmented Lagrangian Methods

Constraint handling methods that transform a constrained optimization problem into an
unconstrained one

Augmented Lagrangian: a combination of a Lagrangian L : Rn+1 → R and a penalty function

→ avoid the shortcomings of penalty function methods

Lagrangian associated to our constrained problem

L(x, γ) = f (x) + γg(x)

Karush-Kuhn-Tucker (KKT) stationarity condition

Consider the problem of minimizing the objective function f : Rn → R s.t. the constraint
g(x) ≤ 0, where g : Rn → R. If x∗ is a local optimum that satisfies some regularity conditions,
then there exists a non-negative constant γ∗, called the Lagrange multiplier, such that

∇xf (x
∗) + γ∗∇xg(x

∗) = 0
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Augmented Lagrangian Methods

Considered Augmented Lagrangian

h(x, γ, ω)
︸ ︷︷ ︸

augmented Lagrangian

= f (x) +

{

γg(x) + ω
2 g

2(x) if γ + ωg(x) ≥ 0

− γ2

2ω otherwise

γ ∈ R: Lagrange factor

ω > 0: penalty factor

Property of the augmented Lagrangian

If x∗ ∈ R
n satisfies KKT conditions, then for all ω > 0

∇xh(x
∗, γ∗, ω) = ∇xf (x

∗) + max(0, γ∗ + ωg(x∗))∇xg(x
∗) = 0

New (unconstrained) optimization problem

min
x

h(x, γ, ω)

Adaptive augmented Lagrangian approach: γ and ω are updated
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Stochastic DFO Algorithms for Unconstrained Optimization
General Framework

Stochastic derivative-free optimization algorithm

min
x

f (x), f : Rn → R, n ∈ N

Sequence (st)t∈N of states st

Transition function F f

st+1 = F f (st ,Ut+1)

Ut+1 = [U1
t+1, · · · ,U

λ
t+1], U

k
t+1 i.i.d. random vectors

st includes a vector Xt ∈ R
n representing the favorite solution at iteration t

From st and Ut+1, sample λ candidate solutions X
k
t+1

X
k
t+1 evaluated on f
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian
General Framework

min
x

f (x) s.t. g(x) ≤ 0 −→ h(x, γ, ω)
︸ ︷︷ ︸

augmented Lagrangian

= f (x) +

{

γg(x) + ω
2 g

2(x) if γ + ωg(x) ≥ 0

− γ2

2ω otherwise

Candidate solutions X
k
t+1 evaluated on objective function

h(γt ,ωt )(X
k
t+1) := h(Xk

t+1, γt , ωt)

State st
′ = [st , γt , ωt ] → two additional state variables

st
′ updated in two steps

st+1 = F
h(γt ,ωt ) (st ,Ut+1)

Update γt , ωt
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian
General Framework

Update of Lagrange factor

γt+1 = max(0, γt + ωtg(Xt+1))

Update of penalty factor [Arnold et al.‘15]

ωt+1 =







ωtχ1/4 if ωtg
2(Xt+1) < k1

|h(Xt+1,γt ,ωt )−h(Xt ,γt ,ωt )|
n

→ avoid stagnation

or k2|g(Xt+1)− g(Xt)| < |g(Xt)|

µtχ−1 otherwise → avoid ill-conditioning

where

ωtg
2(Xt+1) ≈ |h(Xt+1, γt + ∆λ, ωt + ∆µ) − h(Xt+1, γt , ωt)|

χ, k1, k2 ∈ R
+
>
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian
(µ/µw , λ)-MSR-CMA-ES with Adaptive Augmented Lagrangian
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian
(µ/µw , λ)-MSR-CMA-ES with Adaptive Augmented Lagrangian

Median success rule (MSR)

Covariance matrix adaptation ES (CMA-ES)
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian
(µ/µw , λ)-MSR-CMA-ES with Adaptive Augmented Lagrangian
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Empirical Results

Experimental setting

f αsphere(x) = ( 1
2

∑n
i=1 x2

i
)α, α = 1, 2, 0.5

fellipsoid(x) =
1
2

∑n
i=1 α

i−1
n−1 x2

i
, α = 102, 106

fdiff_pow(x) =

√
∑n

i=1 |xi |
2+4 i−1

n−1

Unimodal problems: xopt = (10, · · · , 10)⊺, γopt = 1

g(x) = b⊺x + c, b = −∇xf.(xopt)⊺, c = ∇xf.(xopt)xopt

n = 10, 100

X0 sampled uniformly in [−5, 5]n, σ0 = 1, γ0 = 5, ω0 = 1

λ =, µ = λ/2
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Analysis of Linear Convergence
Markov chain approach

(st)t∈N: sequence of states of a stochastic DFO algorithm minimizing f

Construct homogeneous Markov chain from state variables

Prove its stability: ϕ-irreducibility, positivity, Harris-recurrence

Express convergence rate as a function of the Markov chain

Apply law of large numbers for Markov chains to deduce linear convergence/divergence
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Analysis of Linear Convergence
Markov chain approach

(µ/µw , λ)-MSR-ES (without CMA)

h(x, γ, ω) = f (x) + γg(x) + ω
2 g

2(x)

γt+1 = γt + ωtg(Xt+1)

If h positive homogeneous of degree 2 w.r.t. (x̄, γ̄) where x̄ ∈ R
n, γ̄ ∈ R, g(x̄) = 0, then

(Yt , qt ,Rt , Γt , ωt)t∈N is homogeneous Markov chain

Yt =
Xt − x̄

σt

, Rt =
X

j :λ
t − x̄

σt

, Γt =
γt − γ̄

σt

If (Yt , qt ,Rt , Γt , ωt)t∈N is ϕ-irreducible, positive, Harris-recurrent with invariant probability
measure π

lim
t→∞

1

t
ln

‖Xt − xopt‖

‖X0 − xopt‖
= lim

t→∞

1

t
ln

|γt − γopt|

|γ0 − γopt|
= lim

t→∞

1

t
ln

σt

σ0
= −CR

where
−CR = Eπ(R(Φ))

︸ ︷︷ ︸

expectation of step-size change

Stability checked empirically
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Conclusion

General framework for building stochastic DFO algorithm for constrained optimization with
augmented Lagrangian constraint handling

Linear convergence of (µ/µw , λ)-MSR-CMA-ES with adaptive augmented Lagrangian on
convex quadratic and ill-conditioned functions with one linear inequality constraint

“Simple” constrained problem (one inequality constraint)
Necessary to understand whether it is possible to converge linearly [Atamna et al.‘16]

Extension to many constraints possible

→ design new update rules for γ and ω
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