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Context

o Constrained optimization problem
min f(x) s.t. g(x) <0
X

f:R" > R,g:R" R, neN
o Black-box setting

f(x). 9(x)
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Contributions

o General framework for building stochastic derivative-free optimization (DFO) algorithm for
constrained optimization

o From stochastic DFO algorithm for unconstrained optimization
o Using augmented Lagrangian constraint handling approach

o Algorithm: (u/pw, A)-MSR-CMA-ES with adaptive augmented Lagrangian

@ Theoretical framework for analyzing linear convergence
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Stochastic DFO Algorithms for Unconstrained Optimization

State-of-the-Art

Stochastic derivative-free optimization algorithm

minf(x),f :R" - R,n €N
X

@ Sequence (st)en of states s;
o Transition function 77
ser1 = F' (se, Upy1)
Uepr = [UL g, -+, U2 4], UL, iid. random vectors
@ s; includes a vector X; € R" representing the favorite solution at iteration t

o From s; and U;;1, sample \ candidate solutions X::(+1

Xlt(—%—l evaluated on f
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Stochastic DFO Algorithms for Unconstrained Optimization

State-of-the-Art

Evolution strategies (ES)
@ Stochastic DFO algorithms

@ X\ normally distributed candidate solutions (offspring)
Xfi1 = Xe +oeUf 1, Uy ~ N(0,C)
e X,: current solution (mean vector)

o 0 € RL: step-size
o C;: covariance matrix

o (u/pw, A)-ES: Recombine p best offspring (parents)

n

kX

Xer1 =D WXy
k=1
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Stochastic DFO Algorithms for Unconstrained Optimization

State-of-the-Art

Covariance matrix adaptation ES (CMA-ES) [Hansen et al.’01]
o State-of-the-art ES
o Adapt C; to increase likelihood of successful solutions
o Efficiently tackles ill-conditioned, noisy, non-separable functions

@ Shows linear convergence on unconstrained optimization problems

N
I

(c) Non-separable
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Linear Convergence

e (entral property in uncenstrained optimization

@ Preserve linear convergence in constrained optimization

@ Minimal requirement for evolutionary algorithm for constrained optimization [Arnold et

al.'15]
o Converge linearly on convex quadratic functions with one linear constraint g{x) < 0,

gix)=xTb+ec,be "

l&# By A)—CSA-ES, f.sphm'c? n=10 {61»/ i l..l CRSARES, asd -f-w'mu.. =10

— e sl

—
i

L T TETETTrEErT
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Figure: Left: single run of (g, A)-CSA-ES on unconstrained 7,

ephere: Right: single run of
{1t/ . A)-CSA-ES with resampling on linearly constrained f,

aphere
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Augmented Lagrangian Methods

o Constraint handling methods that transform a constrained optimization problem into an
unconstrained one
o Augmented Lagrangian: a combination of a Lagrangian £ : R"1 — R and a penalty function

— avoid the shortcomings of penalty function methods

Lagrangian associated to our constrained problem

L(x,7) = f(x) + v&(x)

Karush-Kuhn-Tucker (KKT) stationarity condition

Consider the problem of minimizing the objective function f : R” — R s.t. the constraint
g(x) <0, where g : R” — R. If x* is a local optimum that satisfies some regularity conditions,
then there exists a non-negative constant ~*, called the Lagrange multiplier, such that

Vxf(x*) + 7" Vxg(x*) =0
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Augmented Lagrangian Methods

Considered Augmented Lagrangian

h(x, 7, w) =f(x) + {"’gg‘) +58%(x) ify+wg(x)>0
N——

20

otherwise
augmented Lagrangian

e v € R: Lagrange factor
e w > 0: penalty factor

Property of the augmented Lagrangian

If x* € R” satisfies KKT conditions, then for all w > 0

Vxh(x*, 7", w) = Vxf(x*) + max(0,7* + wg(x™))Vxg(x*) =0

New (unconstrained) optimization problem

min h(x, v, w)
X

o Adaptive augmented Lagrangian approach: v and w are updated
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Outline

@ Stochastic Derivative-Free Optimization Algorithms with Adaptive Augmented Lagrangian
o General Framework
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Stochastic DFO Algorithms for Unconstrained Optimization

General Framework

Stochastic derivative-free optimization algorithm

minf(x),f :R" - R,n €N
X

@ Sequence (st)en of states s;
o Transition function 77
ser1 = F' (se, Upy1)
Uepr = [UL g, -+, U2 4], UL, iid. random vectors
@ s; includes a vector X; € R" representing the favorite solution at iteration t

o From s; and U;;1, sample \ candidate solutions X::(+1

Xlt(—%—l evaluated on f
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian

General Framework

w 2 H .
. v8(x) + 58°(x) ifv+wg(x) >0
minf(x) s.t. g(x) <0 — h(x,~,w) = f(x)+ ﬂ(z) 2670 . )
x —— -3 otherwise
augmented Lagrangian
o Candidate solutions X§+1 evaluated on objective function
k .7 k
h('thWt)(Xt‘Fl) = h(xt+17 Tty wt)

o State s¢/ = [s¢,Vt,w:] — two additional state variables
o s;/ updated in two steps

® Sti1 = ]'—h(”’f"”)(st, Uri1)

o Update ¢, we
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian

General Framework

@ Update of Lagrange factor

Ye+1 = max(0, ve + wrg(Xet1))

o Update of penalty factor [Arnold et al.'15]

wex4if weg 2(Xet1) < ka ‘h(xt+17’YtaWt) h(Xe,ve,wt)| — avoid stagnation
Wil = or ka|lg(Xer1) — g(Xe)| < \g(xt)l
uex~ ! otherwise  — avoid ill-conditioning

where

o wig?(Xer1) & |h(Xera, Ve + AN, we + Ap) — h(Xera, Ve, we)|
o X, ki, k2 € RE
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Outline

@ Stochastic Derivative-Free Optimization Algorithms with Adaptive Augmented Lagrangian

o (u/pw, A)-MSR-CMA-ES with Adaptive Augmented Lagrangian

Asma Atamna ESs for Constrained Optimization May 13, 2016 18 / 30



Stochastic DFO Algorithms with Adaptive Augmented Lagrangian

(»/pw, A)-MSR-CMA-ES with Adaptive Augmented Lagrangian

Algorithm 1 (i1, A)-MSR-CMAES with Augmented Lagrangun Constraint Han-
dling

Ogiven o € Mo,y — 290 by = 0 B — B A CF, 2 - 033 0ag < 1, P wy —

it
=1
2
= Z
i+ LA
1 imitiabze X & B, o0 &
semstrained proflem
2 consteaiued problen:
3 iniekaliee - € B, oo & R
4 while not bgpy

S
= min [

co=1,
i e

4 ?]‘ +
U= =0,
the profilem s

astruined, fulee otherwise

R Saalp... didate solutions.

g _X,._:’a_-.-.:.. if comsarzined problsm

eeherwise

A reomibing p besl casdidaie solutions
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian

(»/pw, A)-MSR-CMA-ES with Adaptive Augmented Lagrangian

Median success rule (MSR)

. if constminad prabism
ollzwise

) A upilate step size

Covariance matrix adaptation ES (CMA-ES)

el = Al T Y | A -x.) i cummlasion path for CMA
E

"'(x:“.—. x.:.l |:x:_|=_ x.‘J'

S e covarisnes st

13 Comr = {11 0 )0 bapeag] | oy
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Stochastic DFO Algorithms with Adaptive Augmented Lagrangian

(»/pw, A)-MSR-CMA-ES with Adaptive Augmented Lagrangian
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Empirical Results

Experimental setting

© e = (3010, @ =1,2,05

i—1
fallipsoid (X) = 3 >o7_q @™ 1x2, o = 102,106

o fiiff_pow(X) = 1 Ixil

o Unimodal problems: xopt = (10, ,10)T, yopt = 1

@ g(x) =bTx+ ¢, b= —Vyxf (Xopt)T, ¢ = Vxf.(Xopt)Xopt

e n=10,100

o Xo sampled uniformly in [-5,5]", 0o =1, 70 =5, wo =1
o A=, pu=2X/2
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Empirical Results
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Figure: Single runs of {(u/ . A)-MSR-CMA-ES with augmented Lagrangian on f, h.. (left),

{middle}, and fs‘;fere (right) in 1 = 10. The optimum Xgpe = (10, .-+ , 10)7. Top: evolution of the distance
te the optimum, the distance to the Lagrange multiplier, the penalty factor, and the step-size in log-scale.

Bottom: evolution of the coordinates of X,
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Empirical Results
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Figure: Single runs of {jc/ prw, A)-MSR-CMA-ES with augmented Lagrangian on foipecid With o = 10%
{left), follipsia With & = 10° (middle), and fq pow (right} in n = 10. The optimum xgpe = {10,--- , 10}7.
Top: evolution of the distance to the optimum, the distance to the Lagrange multiplier, the penalty factor,
and the step-size in log-scale. Bottom: evolution of the coordinates of X;
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Analysis of Linear Convergence

Linear Convergence: Formal Definition

Definition: Linear convergence

Consider an ES minimizing a function £ : E" — 4. The sequence (X;);cx of the solutions
computed by the algorithm converges linearly to the minimum xgpe of £ if

1 | X+ XDPt| _

lim —In =—CR a.s.
toroa f |X0 Xupt|

where CR > 0 is the convergence rate

10

fsg}wrm n=

— el

L{#/ 14 A)—CSA—ES,

700300
iterations
Figure: Single run of {1/ 1., A}-CSA-ES on unconstrained f ...
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Analysis of Linear Convergence

Markov chain approach

(st)ten: sequence of states of a stochastic DFO algorithm minimizing
@ Construct homogeneous Markov chain from state variables
o Prove its stability: ¢-irreducibility, positivity, Harris-recurrence

o Express convergence rate as a function of the Markov chain

Apply law of large numbers for Markov chains to deduce linear convergence/divergence
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Analysis of Linear Convergence

Markov chain approach

(1/pws A)-MSR-ES (without CMA)
h(x,,w) = f(x) +v8(x) + §&%(x)
Yer1 = Ve + weg(Xet1)

(Ye, gt, Re, Tt,wt)ren is homogeneous Markov chain

If h positive homogeneous of degree 2 w.r.t. (X,7) where x € R", ¥ € R, g(X) =0, then

X; — X XA — % -5
Y, =2 , Re= =t ,Fe = r-a
Ot Ot Ot
o If (Y¢, qt, Re,Tt,wt)ten is ¢-irreducible, positive, Harris-recurrent with invariant probability
measure T
1 X — 1 - 1
lim L Iz xomell L e = vope] Ly o g
t—oo t HXO — XoptH t—oo t \70 — ’Yopt| t=oo t  og
where
—CR = Ex(R(P))
N——

expectation of step-size change

@ Stability checked empirically
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Conclusion

o General framework for building stochastic DFO algorithm for constrained optimization with
augmented Lagrangian constraint handling

o Linear convergence of (u/pw, A)-MSR-CMA-ES with adaptive augmented Lagrangian on
convex quadratic and ill-conditioned functions with one linear inequality constraint

e “Simple” constrained problem (one inequality constraint)
o Necessary to understand whether it is possible to converge linearly [Atamna et al.'16]

o Extension to many constraints possible

— design new update rules for v and w
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