

BAYESIAN MULTI-OBJECTIVE OPTIMIZATION WITH CONSTRAINTS

APPLICATION TO THE DESIGN OF A COMMERCIAL AIRCRAFT ENVIRONMENT CONTROL SYSTEM

ATELIER DU GOR MASCOT NUM, 13 MAI 2016, IHP, PARIS

TAKING INTO ACOUNT STOCHASTICS IN OPTIMIZATION PROBLEMS

PAUL FELIOT (IRT SYSTEMX), JULIEN BECT (L2S), EMMANUEL VAZQUEZ (L2S)

IRT SYSTEMX & SUPELEC

Introduction

The BMOO algorithm

Environment control system

Optimization of the system

Conclusions

References

The multi-objective optimization problem Positioning and contributions

2 THE BMOO ALGORITHM

BANNING STREAM

Optimization of the system

5 CONCLUSIONS

Multi-objective optimization problem with constraints:

$$\left\{\begin{array}{ll} \mathsf{Minimize} & f(x) \\ \mathsf{Subject to} & x \in \mathbb{X} \quad \mathsf{and} \quad c(x) \leq \mathsf{0} \end{array}\right.$$

with

 $\begin{array}{lll} o & \mathbb{X} \subset \mathbb{R}^d & \to & \text{search space} \\ o & f = (f_j)_{1 \leq j \leq p} & \to & \text{vector of objective functions to be minimized} \\ o & c = (c_i)_{1 \leq i \leq q} & \to & \text{vector of constraint functions} \end{array}$

Sequentially approximate the set of feasible and non-dominated solutions:

 $\Gamma = \{x \in \mathbb{X} : c(x) \leq 0 \text{ and } \nexists x' \in \mathbb{X} \text{ such that } c(x') \leq 0 \text{ and } f(x') \prec f(x)\}$

Assumptions:

- Both f and c are smooth, nonlinear, expensive-to-evaluate functions (black-box)
- The available simulation budget is very limited (\approx 10*d*)

Positioning:

- We adopt a Bayesian approach to this optimization problem.
- We focus on highly constrained problems. Tipically it is assumed that no feasible observation is available at the start of the optimization procedure.

Main contributions:

- Proposal of an Expected Improvement (EI) criterion for the constrained multi-objective optimization problem.
- Study on the use of Sequential Monte Carlo techniques for the optimization of improvement based sampling criteria.
- Implementation of the associated algorithm, which we call BMOO.

Associated publications:

- P. Feliot, J. Bect, and E. Vazquez. A bayesian approach to constrained single- and multi-objective optimization. Journal of Global Optimization, 2016.
- P. Feliot, Y. Le Guennec, J. Bect, and E. Vazquez. Design of a commercial aircraft environment control system using Bayesian optimization techniques. ENGOPT, 2016 (to appear).

The BMOC algorithm 0000000000 Environment control system 0000000 Optimization of the system 00000 Conclusions

References

02 THE BMOO ALGORITHM

Expected Hypervolume Improvement (EHVI) criterion Extending the EHVI to handle constraints Criterion calculation and optimization Structure of the algorithm Illustration

ENVIRONMENT CONTROL SYSTEM

OPTIMIZATION OF THE SYSTEM

5 CONCLUSIONS

We first consider the multi-objective optimization problem without constraints.

Expected Hypervolume Improvement (EHVI) sampling criterion:

• Given evaluation results $(f(X_1), \ldots, f(X_n))$, with $f(X_l) = (f_1(X_l), \ldots, f_p(X_l)), 1 \le i \le n$, define:

$$\begin{cases} \mathbb{B} &= \{y \in \mathbb{R}^p; \ y \le y^{\mathsf{upp}}\}, y^{\mathsf{upp}} \in \mathbb{R}^r \\ H &= \{y \in \mathbb{B}; \exists x \in \mathbb{X}, f(x) \prec y\} \\ H_n &= \{y \in \mathbb{B}; \exists i \le n, f(X_i) \prec y\} \end{cases}$$

Loss function:

$$arepsilon_n(\underline{X},f) = |H \setminus H_n| \; ,$$

Hypervolume improvement:

$$I_n(X_{n-1}) = \varepsilon_n(\underline{X}, f) - \varepsilon_{n+1}(\underline{X}, f)$$

= $|H_{n+1}| - |H_n|$

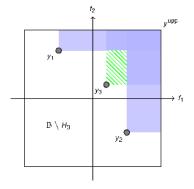


Figure: Hypervolume improvement yielded by the observation of y_3

Expected Hypervolume Improvement (EHVI) sampling criterion:

- Assume a vector-valued Gaussian random process model ξ = (ξ₁,..., ξ_ρ) of f = (f₁,..., f_ρ)
- The EHVI^a comes from taking the expectation of the improvement with respect to the posterior probability of ξ:

$$\begin{aligned} \mathsf{EI}_n(x) &= & \mathbb{E}_n \left(|H_{n+1}| - |H_n| \right) \\ &= & \mathbb{E}_n \left(\int_{\mathbb{D} \setminus H_n} \mathbb{1}_{\xi(x) \prec y} \, \mathrm{d}y \right) \\ &= & \int_{\mathbb{B} \setminus H_n} \mathbb{P}_n \left(\xi(x) \prec y \right) \, \mathrm{d}y \end{aligned}$$

◆ The next sample is chosen as X_{n+1} = argmax El_n(x), which requires solving an auxiliary optimization problem at each iteration.

• We now consider the multi-objective problem with constraints.

Constraint handling in the literature:^b

- Emmerich [2005] and Couckuyt et al. [2014] propose to multiply the EHVI by $\mathbb{P}_n(\xi_c(x) \leq 0)$
 - This corresponds to $I_n = (|H_{n+1}| |H_n|) \|_{c(x) \le 0}$ under the independence assumption.
 - The progress on constraint resolution is not measured.
- Gramacy et al. [2015] recently proposed to use the Augmented Lagrangian approach.
- Our proposal is to extend the Pareto domination rule to handle the constraints.

^b<u>References:</u> See e.g. Conn et al. [1991], Sasena [2002], Parr et al. [2012], Gelbart [2015]

Extended domination rule definition:

- Denote $\mathbb{Y}_{o} = \mathbb{R}^{p}$, the objective space and $\mathbb{Y}_{c} = \mathbb{R}^{q}$ the constraint space, and let $\mathbb{Y} = \mathbb{Y}_{o} \times \mathbb{Y}_{c}$.
- We shall say that $y_1 \in \mathbb{Y}$ dominates $y_2 \in \mathbb{Y}$, which will be written as $y_1 \triangleleft y_2$, if $\psi(y_1) \prec \psi(y_2)$, where \prec is the usual Pareto domination rule.

- Properties of the extended domination rule:
 - Feasible solutions are compared wrt their objectives values.
 - Non-feasible solutions are compared wrt their component wise constraint violations.
 - Feasible solutions always dominate non-feasible ones.

 $^{\circ}$ <u>References:</u> Ray et al. [2001], Fonseca and Fleming [1998], Oyama et al. [2007]

Similarly to the EHVI derivation, we can define the following sets.

 $\begin{cases} \mathbb{B} &= \mathbb{B}_{o} \times \mathbb{B}_{c}, \text{ where } \mathbb{B}_{o} \subset \mathbb{Y}_{o} \text{ and } \mathbb{B}_{c} \subset \mathbb{Y}_{c} \text{ are bounded hyper-rectangles} \\ H &= \{y \in \mathbb{B}; \exists x \in \mathbb{X} (f(x), c(x)) \lhd y\} \\ H_{o} &= \{y \in \mathbb{B}; \exists i \leq n (f(X_{i}), c(X_{i})) \lhd y\} \end{cases}$

Expected hypervolume improvement criterion with constraints:

$$\begin{split} \mathsf{E}\mathsf{I}_n(x) &= & \mathbb{E}_n\left(|H_{n-1}| - |H_n|\right) \\ &= & \mathbb{E}_n\left(\int_{\mathbb{R}\setminus H_n} \mathbf{1}_{\xi(x) < y} \, \mathrm{d}y\right) \\ &= & \int_{\mathbb{R}\setminus H_n} \mathbb{P}_n\left(\xi(x) \lhd y\right) \, \mathrm{d}y, \end{split}$$

• where $\xi = (\xi_o, \xi_c)$, with $\xi_o = (\xi_{o,1}, \ldots, \xi_{o,\rho})$ and $\xi_c = (\xi_{c,1}, \ldots, \xi_{c,q})$.

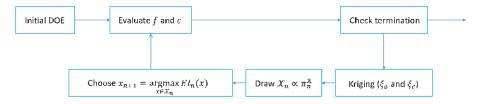
Criterion calculation:

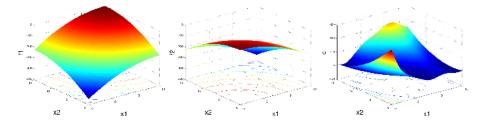
- The criterion takes the form of a multi-dimensional integral for which no closed form solution exists.
- The BMOO algorithm implements a Monte Carlo approximation of the integral using sequential Monte Carlo techniques.

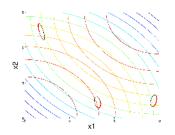
Criterion optimization:

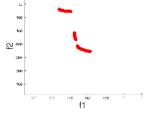
- The criterion optimization is performed using sequential Monte Carlo techniques as well.
- At time *n*, the next sample is chosen out of a population X_n of particles distributed according to a density of interest π_n^K.

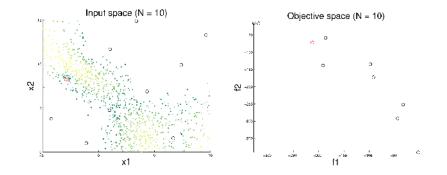
Structure of the algorithm:

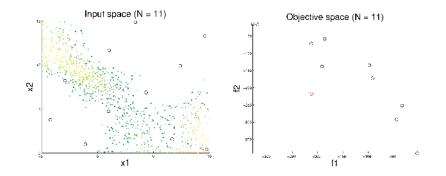


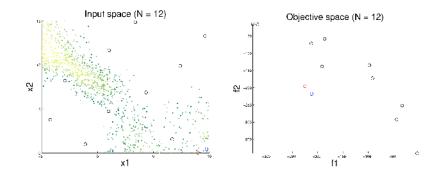


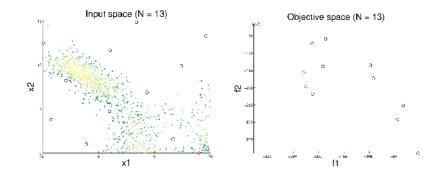


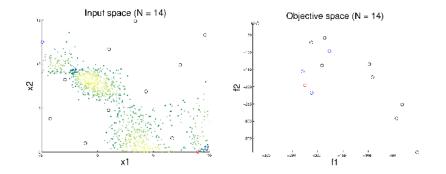


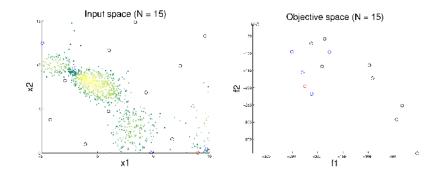


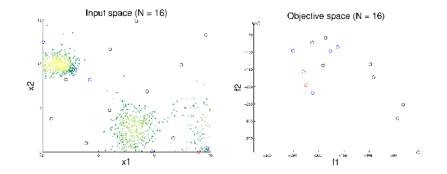


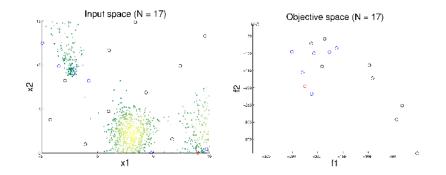


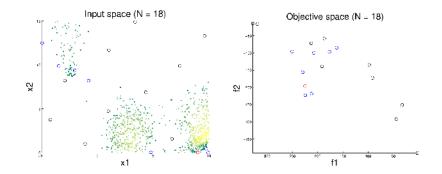


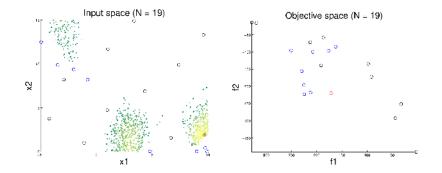


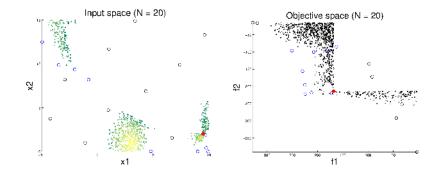


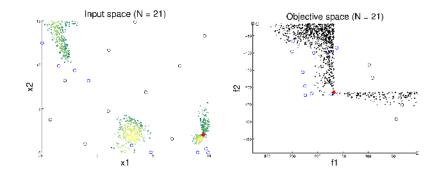


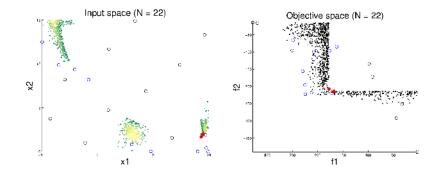


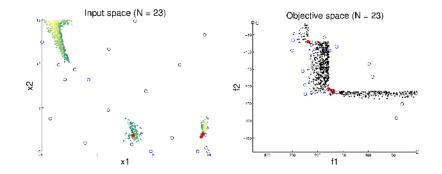


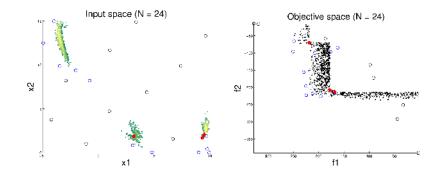


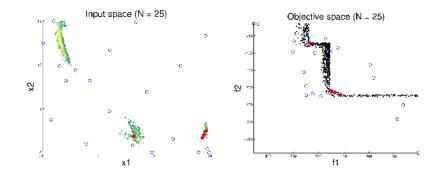


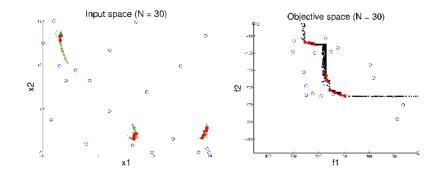


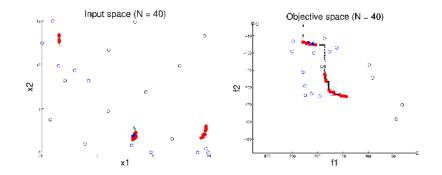


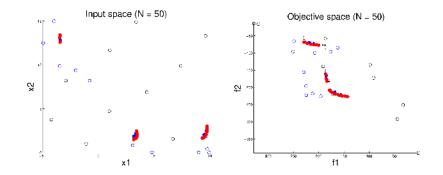












Introduction

The BMOC algorithm

Environment control system 0000000 Optimization of the system

Conclusions

References

2 THE BMOO ALGORITHM

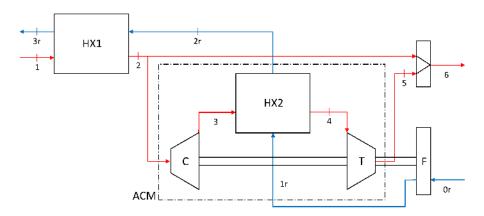
03 Environment control system

Presentation of the problem One dimensional model of the system Formulation of an optimization problem

14 Optimization of the system

5 CONCLUSIONS

Architecture of the ECS:



Sizing scenario:

Aircraft-on-ground, full of passengers, with 50°C outside.

 $\mathcal{P}_{HT} = \mathcal{P}_{out} + \mathcal{P}_{eq} + N_{pax}\mathcal{P}_{pax} + N_{crew}\mathcal{P}_{crew}$

• Keep the cabin temperature at $T_c = 24^{\circ}$ C.

$$\mathcal{P}_{HT} \leq \dot{m}c_p \left(T_c - T_5\right)$$

Keep the cabin pressure close to the atmospheric pressure.

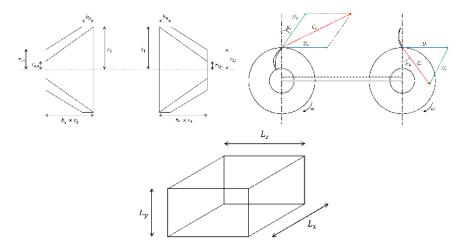
$$P_{min} \leq P_5 \leq P_{max}$$

• The air injected into the cabin must lie between $T_{min} = 15^{\circ}$ C and $T_{max} = 25^{\circ}$ C.

Objectives:

- Minimize the mass of the system.
- Minimize its entropy generation rate.

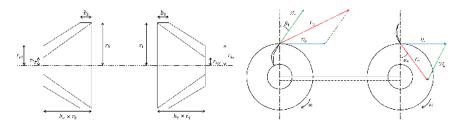
Parametrization:



18 variables: m, m_r, r₃, r_{2p}, r_{2t}, b₃, β₃, r₄, r_{5p}, r_{5t}, b₄, α₄, L_{x1}, L_{y1}, L_{z1}, L_{x2}, L_{y2}, L_{z2}.

• The system is ruled by a non-linear system of 13 equations with 13 unknowns: T_{t2} , T_{t3} , T_{t4} , T_{t5} , T_{t2r} , T_{t3r} , P_{t2} , P_{t3} , P_{t4} , P_{t5} , P_{t2r} , P_{t3r} and ω .

ĺ	$\dot{m}c_p(T_{l1}-T_{l2})$		$\dot{m}_r c_p (T_{i3r} - T_{i2r})$
	$\dot{m}c_p(T_{t3}-T_{t4})$	=	$\dot{m}_r c_p (T_{t2r} - T_{t1r})$
	$c_p(T_{t1}-T_{t2})$	=	$\epsilon_1 c_p (T_{t1} - T_{t2r})$
	$c_p(T_{t3}-T_{t4})$	—	$\epsilon_2 c_p (T_{t3} - T_{t1r})$
	$P_{l2} - P_{l1}$	=	ΔP_{HX}
	$P_{t4} - P_{t3}$	=	ΔP_{HX}
	P _{r3}		$P_{t2}\left(1+\eta_{c}\frac{T_{t3}-T_{t2}}{T_{t2}}\right)^{\frac{\gamma}{\gamma-1}}$
	P _{t5}	=	$P_{t4}\left(1+\tfrac{1}{\eta_{7}}\tfrac{T_{t5}-T_{t4}}{T_{t4}}\right)^{\frac{\gamma}{\gamma-1}}$
	Ŵc	=	$\dot{m}\left(r_{3}^{2}\omega^{2}-\frac{\dot{m}\tan(\beta_{3})}{2\pi\rho b_{3}}\omega\right)$
	Ŵτ	—	$-rac{\dot{m}^2 \tan(lpha_2)}{2\pi ho b_4}\omega$
	$\dot{W}_{C}+\dot{W}_{T}+rac{1}{\eta_{F}}rac{\dot{m}_{t}^{3}}{2 ho^{2}A_{r}^{2}}$	=	0
	Ŵ _c	=	$\eta_{G}\dot{m}c_{P}(T_{t3}-T_{t2})$
	Ŵŗ		$rac{1}{\eta_T}\dot{m}c_p(T_{t5}-T_{t4})$



Design constraints:

Simulation constraints:

Summary:

- 18 variables: m, m, r₃, r_{2p}, r_{2t}, b₃, β₃, r₄, r_{5p}, r_{5t}, b₄, α₄, L_{x1}, L_{y1}, L_{z1}, L_{x2}, L_{y2}, L_{z2}.
- Bound constraints on the variables.
- 9 design constraints: d₁₋₉.
- 15 simulation constraints: c_{1-15} .
- 2 objectives: \mathcal{M} and $\dot{\mathcal{S}}$.

Remarks:

- The design space is not hypercubic.
- Possibility of simulation failures (hidden constraints).

Introduction

The BMOO algorithm -----

Environment control system

Optimization of the system

References

INTRODUCTION

THE BMOO ALGORITHM

ENVIRONMENT CONTROL SYSTEM

04 Optimization of the system

Simulation failures management Handling non-hypercubic design spaces **Optimization results**

CONCLUSIONS

Hidden constraints management:

- There are two cases where the model fails to produce a result:
 - The system can not be inverted.
 - The air flowrate becomes supersonic.
- This is taken into account in BMOO by multiplying the Expected improvement by a probability of observability^d.
 - A nearest-neighbour classifier is built on the observed/non-observed data to this end.
- The sampling density $\pi_0^{\mathbb{X}}$ is also multiplied by the probability of observability.

Initial DoE:

Denote D the domain delimited by the bound constraints and define:

$$\mathbb{X} = \mathbb{D} \setminus \{x \in \mathbb{D}; d(x) > 0\}$$

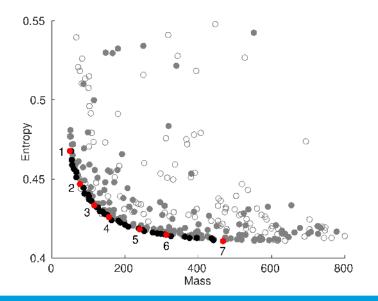
- If |X|/|D| is not too small, a pseudo-maximin design on X can be achieved using the following process.
 - Sample a large population uniformly on D.
 - Discard particles falling out of X.
 - Prune the remaining particles to augment the maximin distance until the required number of particles remain.

During the optimization:

The sampling density π^X_n is multiplied by 1_K.

A few statistics:

- Initial DoE:
 - N_{init} = 90 samples.
 - 44 simulation failures.
 - No feasible observation
- Optimization process:
 - N_{max} = 500 samples.
 - 92 additional simulation failures.
 - First feasible point found after 25 iterations.



Introduction	The BMOC algorithm		Environment control system	Optimization of the system		Conclusions	References
					4 - Optimization results		
	1	2	3	4	5	6	7
<i>ṁ</i>	2.95	2.92	2.94	2.94	2.94	2.95	2.94
m _r	7.74	6.86	5.63	5.06	4.64	4.40	4.27
r ₂₀	0.07	0.05	0.05	0.03	0.03	0.07	0.04
r_{2t}	0.10	0.08	0.08	0.08	0.06	0.09	0.10
r 3	0.10	0.11	0.10	0.10	0.12	0.12	0.13
b_3	0.01	0.01	0.05	0.05	0.04	0.02	0.03
β_3	0.36	0.74	0.97	-0.16	0.61	0.94	0.48
r ₅₀	0.03	0.03	0.03	0.03	0.03	0.03	0.03
r _{5t}	0.05	0.05	0.05	0.05	0.05	0.05	0.05
r 4	0.10	0.10	0.11	0.12	0.11	0.10	0.11
b_4	0.02	0.02	0.04	0.02	0.04	0.03	0.03
α_4	1.04	0.50	0.89	1.01	0.44	0.79	0.30
L_{x1}	0.67	0.65	0.68	0.68	0.63	0.69	0.70
L_{y1}	0.65	0.68	0.61	0.67	0.67	0.66	0.65
L_{z1}	0.03	0.04	0.07	0.12	0.17	0.20	0.32
L_{x2}	0.66	0.69	0.66	0.66	0.70	0.68	0.69
Ly2	0.69	0.53	0.68	0.65	0.65	0.68	0.65
L_{z2}	0.03	0.06	0.09	0.10	0.17	0.25	0.36

Introduction

The BMOC algorithm

Environment control system

Optimization of the system

Conclusions

References

02 THE BMOO ALGORITHM

13 Environment control system

04. Optimization of the system

05 CONCLUSIONS

- BMOO: A Bayesian optimization algorithm for single- and multi-objective optimization.
 - Designed to address highly constrained problems.
 - Based on a generalized EHVI criterion defined using an extended domination rule.
 - SMC techniques for the criterion calculation and optimization.
 - Hidden constraints handling capability.
 - Non-hypercubic design spaces handling capability.
- The algorithm is applied to the design of a commercial aircraft environment control system with promising results.
- Directions for future work on this application case.
 - Taking into account uncertainties on key parameters of the simulation.
 - · Sensitivity analysis on non-hypercubic design spaces.
 - Sensitivity analysis in constrained multi-objective optimization.

- A. R. Conn, N. I. M. Gould, and P. Toint. A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds. *SIAM Journal on Numerical Analysis*, 28(2):545–572, 1991.
- Couckuyt, D. Deschrijver, and T. Dhaene. Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization. *Journal of Global Optimization*, 60(3):575–594, 2014.
- M. Emmerich. *Single- and multiobjective evolutionary design optimization assisted by Gaussian random field metamodels.* PhD thesis, Technical University Dortmund, 2005.
- M. Emmerich, K. C. Giannakoglou, and B. Naujoks. Single- and multi-objective evolutionary optimization assisted by Gaussian random field metamodels. *IEEE Transactions on Evolutionary Computation*, 10(4):421–439, 2006.
- C. M. Fonseca and P. J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. *IEEE Transactions on Systems, Man and Cybernetics. Part A: Systems and Humans*, 28(1):26–37, 1998.
- M. A. Gelbart. *Constrained Bayesian Optimization and Applications*. PhD thesis, Harvard University, Graduate School of Arts and Sciences, 2015.

- R. B. Gramacy and H. Lee. Optimization under unknown constraints. In *Bayesian Statistics 9. Proceedings of the Ninth Valencia International Meeting*, pages 229–256. Oxford University Press, 2011.
- R. B. Gramacy, G. A. Gray, S. Le Digabel, H. K. H. Lee, P. Ranjan, G. Wells, and S. M. Wild. Modeling an augmented lagrangian for blackbox constrained optimization. *Technometrics*, (just-accepted):00–00, 2015.
- A. Oyama, K. Shimoyama, and K. Fujii. New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. *Transactions of the Japan Society for Aeronautical* and Space Sciences, 50(167):56–62, 2007.
- J. M. Parr, A. J. Keane, A. I. J. Forrester, and C. M. E. Holden. Infill sampling criteria for surrogate-based optimization with constraint handling. *Engineering Optimization*, 44(10): 1147–1166, 2012.
- T. Ray, K. Tai, and K. C. Seow. Multiobjective design optimization by an evolutionary algorithm. *Engineering Optimization*, 33(4):399–424, 2001.
- M. J. Sasena. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. PhD thesis, University of Michigan, 2002.

Adaptive procedure to set \mathbb{B}_c and \mathbb{B}_o :

Assume that *n* evaluation results ξ(X_i), 1 ≤ i ≤ n, are available. Then, we define the corners of B_o by

$$\left(\begin{array}{cc} y_{\mathbf{o},l,n}^{\mathsf{low}} &=& \min\left(\min_{i\leq n}\xi_{\mathbf{o},l}(X_{l}),\ \min_{x\in\mathcal{X}_{n}}\hat{\xi}_{\mathbf{o},l,n}(x) - \lambda_{\mathbf{o}}\sigma_{\mathbf{o},l,n}(x)\right), \\ y_{\mathbf{o},l,n}^{\mathsf{upo}} &=& \max\left(\max_{i\leq n}\xi_{\mathbf{o},i}(X_{i}),\ \max_{x\in\mathcal{X}_{n}}\hat{\xi}_{\mathbf{o},i,n}(x) + \lambda_{\mathbf{o}}\sigma_{\mathbf{o},i,n}(x)\right). \end{array} \right)$$

for $1 \leq i \leq p$, and the corners of \mathbb{B}_{e} by

$$\begin{cases} y_{c,j,n}^{\text{low}} &= \min\left(0, \min_{l \leq n} \xi_{c,j}(X_l), \min_{x \in \mathcal{X}_n} \hat{\xi}_{c,j,n}(x) - \lambda_c \sigma_{c,j,n}(x)\right), \\ y_{c,j,n}^{\text{upp}} &= \max\left(0, \max_{l \leq n} \xi_{c,j}(X_l), \max_{x \in \mathcal{X}_n} \hat{\xi}_{c,j,n}(x) + \lambda_c \sigma_{c,j,n}(x)\right), \end{cases}$$

for $1 \le j \le q$, where λ_0 and λ_c are positive numbers.

7 - L_2^{opt} density for EHVI calculation

L_2^{opt} density for EHVI calculation:

Let (x_k)_{1≤k≤mg} be a population of candidates on which we want to compute the EHVI value, using a population of particles (y_i)_{1≤i<mg} distributed according to some density π.

$$\hat{l}_k^{\pi} = rac{1}{m_{\mathbb{Y}}}\sum_{i=1}^{m_{\mathbb{Y}}}rac{\mathbb{P}_{\sigma}(\xi(x_k)\prec y_i)}{\pi(y_i)}$$

We want to achieve a good approximation for all particles (x_k)_{1≤k≤m_x}. Using the L₂ norm, we get the following:

$$\mathbb{E}\left(\left\|\hat{l}^{\pi}-l\right\|_{2}^{2}\right) = \mathbb{E}\left(\sum_{k=1}^{m_{2}}(\hat{l}_{k}^{\pi}-l_{k})^{2}\right)$$
$$= \frac{1}{m_{\mathbb{Y}}}\sum_{k=1}^{m_{2}}\left(\int\frac{\mathbb{E}_{n}(\xi(x_{k})\prec y)^{2}}{\pi(y)^{2}}\pi(y)\mathrm{d}y-l_{k}^{2}\right)$$

$$ightarrow L_2^{opt}(y) \propto \sqrt{\sum_{k=1}^{m_{\infty}} \mathbb{P}_n(\xi(x_k) \prec y)^2}$$

7 - A DENSITY FOR HEAVILY CONSTRAINED PROBLEMS

A density for problems with a lot of constraints:

- Suppose q = d, $X = [-1/2, 1/2]^q$ and $c_j : x = (x_1 \dots, x_q) \mapsto |x_j| \frac{\epsilon}{2}, \epsilon \in (0, 1].$
- ◆ Thus, the feasible domain is C = [-ε/2, ε/2]^q and the volume of the subset of X where exactly k constraints are satisfied is

$$V_k pprox \left(rac{q}{k}
ight) \, arepsilon^k \, \left(1 - arepsilon
ight)^{q-k}$$

Assume moreover that the Gaussian process models are almost perfect, i.e.,

$$\mathbb{P}_n\left(\xi_{c,l}(x) \le 0\right) \approx \begin{cases} 1, & \text{if } c_l(x) \le 0, \\ 0, & \text{otherwise,} \end{cases}$$
(1)

- Further assume n = 1 with X₁ = (¹/₂,..., ¹/₂) so that the probability of improvement P_n (ξ(x) ∈ G₁) is close to one everywhere on X.
- The expected number of particles satisfying exactly k constraints is m V_k
- If q is large, the particles thus tend to concentrate in regions where $k \approx q\varepsilon$.
- To compensate for the decrease of V_k, we suggest using the following modified sampling density:

$$\pi_n^{\mathbb{X}} \propto \mathbb{E}_n\left(K(x)! \ \mathbb{1}_{\xi(x)\in G_n}\right),$$

where K(x) is the number of constraints satisfied by ξ at x.

7 - INTERMEDIATE SUBSETS

Parametric construction of intermediate subsets:

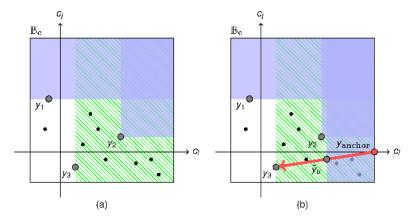


Figure: Procedure to construct intermediate subsets before the observation of a feasible solution.

7 - INTERMEDIATE SUBSETS

Parametric construction of intermediate subsets:

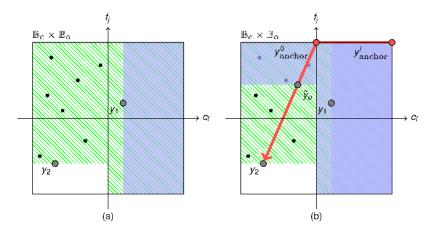


Figure: Procedure to construct intermediate subsets after the observation of a feasible solution.