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Introduction

On the necessity of optimization under uncertainties

Structural systems need to be optimized w.r.t. cost constraints

Discrepancy may arise between the designed and actual systems:
= Model error
= Uncertainties

= in the design parameters (e.g. dimensions or material properties)
= in the environmental conditions (e.g. loading)
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Introduction

Accounting for uncertainties

Robust design optimization (RDO)
= Seeks to produce a design immune to input variability

= Puts emphasis on the effects of randomness on the objective function

Reliability-based design optimization (RBDO)
= Trades cost with reliability
= The failure probability P gives a measure of the design reliability
Pr=Plg(X)<0= [ fx (@) da

Dyp={wm:g(x)<0}

= Estimation of the failure probability
= Approximation: FORM/SORM
= Simulation: Monte Carlo or advanced simulation methods
= Surrogate modeling
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Introduction

Introduction to surrogate modeling Santner et al. (2003)

= Let us consider a computational model M which represents the physical
behavior of the system:

XeDx cRYM Y =M(X)eR

= The computational model is generally time-consumming and treated as a
black-box

= A metamodel M is a cheap approximation of M yet with similar
statistical properties

= Given an experimental design X = {x1,...,x,} and the associated
model response Y = {M (x1),..., M (x,)}:
* Kriging yields a mean prediction i & (@) and variance Jfa (x)

= The variance gives a local measure of the accuracy of the surrogate, thus
allowing for adaptive techniques
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Quantile-based design optimization

RBDO fOI’mU|atI0n Dubourg et al. (2011)

RBDO formulation

fj(d) <0 {j=1,...,ns}

d* = argminc(d) s.t.:
836D (d) { 3 {k=1,...,n4}

= X ~ fxq: Design parameters

» Z ~ fz: Environmental parameters

= ¢: Cost function

= §: Soft constraints

= g: Hard constraints — gi (X (d), Z) = g — My (X(d), Z)

V =64 km/h
H
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Quantile-based design optimization

RBDO SO| Utlon Chateauneuf and Aoues (2008)

Solution of the RBDO problem
= Two-level approach
= Mono-level approach
= Decoupled approach

Application to car body optimization
= Structural reliability analysis
= Approximation methods are inefficient due to the complexity of the limit
state
= The target failure probability is relatively high (1% — 10%)
= Double-loop optimization
= Industrial context: The formulation needs to be close to a deterministic
design optimization

Solution of the RBDO problem with quantiles as measure of
conservatism
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Quantile-based design optimization

Quantile-based design optimization

= Definition of the quantile

Qo (d;M(X (d),Z)) =inf{geR:P[M(X (d),Z) <q| > a}

PDF of M(X(d),Z) PDF of M(X(d),Z)

| |
| |
| |
| |
| |
o.

Qs g a Mlx,z)
Safe design Unsafe design
Quantile-based formulation

fi(d) <0 {j=1,...,ns}

d* :arggleiﬂl)}c(d) s.t.:{ Qu, (d: M (X (d),2Z)) < G {k=1,...,n4}

oy, = 1 — Py, controls the degree of conservatism
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Solution of the RBDO problem Taflanidis (2007), Dubourg (2011)

Monte Carlo simulation in the inner loop

= Quantile computed from the following set of Monte Carle samples
G:q:{(w,l-z,r))!:l'*'\-} X~ fXd: Z ~ fz

Construction of the surrogate model
= Build a single global model in the augmented space
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= Adaptive construction




Solution using adaptive Kriging

Adaptive enrichment Echard et al. (2011)

Enrichment principle
= Start with an initial scarce experimental design
= Define a learning function for enrichment

= Enrich the experimental design iteratively so that the Kriging model
becomes more accurate in regions of interest

Deviation number
a1 (@)

U(x) =
@)=

= This function is to be minimized with respect to a pre-defined MC set

* U decreases as ;i iy — g and/or 0 5 — 00

= Stopping criterion: min U > 2 (Prob. of misclassification =~ 0.05)

[ Too conservative a stopping criterion! }
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Solution using adaptive Kriging

A two-stage of enrichment scheme

[ Main idea: Couple enrichment to optimization ]

First stage of enrichment: global
= |dentify regions of the space in the vicinity of the limit-state surface
= Reduce the global Kriging epistemic uncertainty in these regions

= Stop when such regions have been discovered without refining too much

Second stage of enrichment: local
= Start the optimization

= Make sure that the computed quantile at each iteration is accurate
enough

= |If not, locally refine the Kriging model

= Enrichment points are directed toward regions of the space where the
objective function is decreasing
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Solution using adaptive Kriging

First stage of enrichment

Remark: The constraint on the quantile is defined in the design
space while the Kriging model is built in the augmented space

A slightly modified enrichment scheme
@ Sample a set of candidates for enrichment: € € D
® For any d? e ¢
@ Build the set of MC samples needed to compute the quantile: C{(;)
@® Estimate the quantile g (d“))
© Identify the point

@), 20)) = {(z,2) € €V :7°(dD) = p g (@, 2)}
® Compute the modified learning function:
‘ﬁ —HG (mff),sz)) ‘

O'ﬁ (CCS%Z&”)

© Add K points w.r.t. the modified learning function U (d)

LNI(d(i)) =U (ws),zgf)) =
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Solution using adaptive Kriging

lllustration of the global stage of enrichment

Two-dimensional analytical function
« M(d,z) = (1/32* —2.122 +4) 22 + dz + 4d* (d® — 1)
= Probabilistic model: X NN(d,0.052) et Z NN(0.5,0.052)
= g(d,z) =0.5 - M(d, z) with a = 0.95

o(-u)
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Solution using adaptive Kriging

Second stage of enrichment

= Relax the stopping criterion of the first stage as follows:
n = Card(€3)/Card(€) <77 where €y = {d ec:U(d) < 2}

= Reduce the remaining Kriging epistemic uncertainty during optimization

@ Define the bounds ﬁff as quantiles estimated with I + 20/@;
CH (d(”) < G (d(i)) <qt (d(i))
® Compute the following accuracy criterion:

‘ at (dD) — g5 (dP
nq(d(z)):q ( )gq ( )Sﬁq

© If not accurate enough, enrich with the following learning criterion:

e (d) — g (@)

5 (z, 2)

U.(a:,z) ) {mVZ}T € Q:EIZ)
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Application examples

Presentation of the problem

Deterministic design optimization

= A two-dimensional optimization problem with three non-linear limit state

functions:
d%ds
50 —1=<0
. dy+dy—5)2 di —dy—12)°
d’ :.&mrgder[rél?m2 di +dy s.t.: (1 0 ! 150 C _1<0
’ 80 <0

(d2+8dp+5)—1 —

Reliability-based design optimization
= Probabilistic model: X; ~ N (d;,0.6%), i = {1,2}
= Target failure probability: Py, = 1.35- 107 (3; = 3).
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Application examples

Solution: First stage of enrichment

= Initial experimental design of size 10
= Threshold for enrichment 17 = 0.30
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Iteration #

. Kriging approximations and updated

Convergence of the enrichment scheme . i

experimental design

= Convergence in five iterations
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Application examples

Solution: Second stage of enrichment Arnold and Hansen (2012)

= Optimization algorithm: Constrained (1+1)-CMA-ES
= Stopping criterion in a simulated-annealing fashion (3 thresholds)

i
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Tteration #
Convergence of the enrichment scheme Kriging approximations and

CMA-ES-sampled points

= Convergence with four enrichments
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Application examples

Benchmark results

= Due to randomness along the process, the results need to be replicated

= Presented result: Median case with respect to 50 random replications

Method di s c(d") g-calls
Brute force 3.45 3.30  6.75 ~ 106
PMA! 343 3.29 6.72 1,551
SORA? 3.44 329 6.73 151
Single loop? 3.43 329 6.72 19
RDS! 344 328 6.72 27
Meta-RBDO* 346 3.27 6.74 20(20/10/10)
Quantile-RBDO  3.46 3.30 6.76 14

1 As calculated in Shan and Wang (2008)
2 As calculated in Du and Chen (2004)

3 As calculated in Liang et al. (2004)

4 As calculated in Dubourg (2011)
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Application examples

Context of the study Duddeck (2008)

Multi-disciplinary design optimization problem
= Reduce the weight of a car body structure

= under safety and comfort of use
constraints

t (ms)
Outputs corresponding to a MC
simulation with random input
parameters
Focus on the frontal impact alone

= High-dimensional problem
= Time-consuming simulation (up to 24 hours on a HPC infrastructure)

= Highly sensitive to uncertainties
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Applis

Application to a sidlemember subsytem

= Five design variables: Metal sheet thicknesses
= Two environmental variables: V' ~ 4 (31,35} km/h, P ~ A {0.2) mm
s Cost: Weight of selected parts
= Performance functions
= Wall contact force (kN): g1 = 170 — Ay
= Sidemember compression (mm): gz = 525 — M,

« Target failure probabilities: 1%, = 0.05 (cx; = 0.95)
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Application examples

Solution of the problem

Convergence in only 114 model evaluations
= |nitial experimental design: 70 points
= First stage of enrichment: 20 points (2 x 10)
= Second stage of enrichment: 24 points (8 x 3)
= Weight saving: 1.31 kg (13.5% of initial weight)

Model accuracy estimation in the vicinity of
5 the solution - Computed on a limited MC set
4 of size 100
E Criterion g1 (kN) g2 (mm)
Pl Original model gFE  150.66  527.81
‘ Y J Kriging model GXR¢  148.02  528.04
. . ; . . Error (%) 1.75 0.04

Initial and final thicknesses
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Conclusion

Conclusion

Quantile-based design optimization
= Computed by crude Monte Carlo simulation
= Relatively high target failure probabilities in the applications

= More easily implementable in an industrial context where deterministic
design optimization is the cultural reference

Adaptive Kriging-based appproach
= Two stages of enrichment: global then local

= Save computational budget and direct enrichment to regions of high
fitness of the cost function

Application in high-dimensional problems
= Successful application in a 23-dimensional problem with 8 constraints

= Accuracy criteria difficult to respect: the approach is based on the idea
of Kriging margin shrinking which is hard to achieve in high dimension
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Questions ?

Chair of Risk, Safety & Uncertainty
Quantification

WWW .

The Uncertainty
Quantification Laboratory

www.uglab . com

[ Thank you very much for your attention !




Results with 50 replications for the two-dimensional

problem
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Convergence plots for the sidemember subsystem
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