


Introduction

On the necessity of optimization under uncertainties

Structural systems need to be optimized w.r.t. cost constraints

Discrepancy may arise between the designed and actual systems:

• Model error

• Uncertainties

• in the design parameters (e.g. dimensions or material properties)
• in the environmental conditions (e.g. loading)
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Introduction

Accounting for uncertainties

Robust design optimization (RDO)

• Seeks to produce a design immune to input variability

• Puts emphasis on the effects of randomness on the objective function

Reliability-based design optimization (RBDO)

• Trades cost with reliability

• The failure probability Pf gives a measure of the design reliability

Pf = P [g (X) ≤ 0] =

∫

Df ={x:g(x)≤0}

fX (x) dx

• Estimation of the failure probability

• Approximation: FORM/SORM
• Simulation: Monte Carlo or advanced simulation methods
• Surrogate modeling
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Introduction

Introduction to surrogate modeling Santner et al. (2003)

• Let us consider a computational model M which represents the physical
behavior of the system:

X ∈ DX ⊂ R
M 7→ Y = M (X) ∈ R

• The computational model is generally time-consumming and treated as a
black-box

• A metamodel M̂ is a cheap approximation of M yet with similar
statistical properties

• Given an experimental design X = {x1, . . . , xn} and the associated
model response Y = {M (x1) , . . . , M (xn)}:

• Kriging yields a mean prediction µ
M̂

(x) and variance σ2

M̂
(x)

• The variance gives a local measure of the accuracy of the surrogate, thus
allowing for adaptive techniques
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Quantile-based design optimization

RBDO formulation Dubourg et al. (2011)

RBDO formulation

d
∗ = arg min

d∈D

c (d) s.t.:

{
fj (d) ≤ 0 {j = 1, . . . , ns}

P [gk (X(d), Z) < 0] ≤ P̄fk
{k = 1, . . . , nh}

• X ∼ fX|d: Design parameters

• Z ∼ fZ : Environmental parameters

• c: Cost function

• f: Soft constraints

• g: Hard constraints – gk (X(d), Z) = ḡk − Mk (X(d), Z)
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Quantile-based design optimization

RBDO solution Chateauneuf and Aoues (2008)

Solution of the RBDO problem

• Two-level approach
• Mono-level approach
• Decoupled approach

Application to car body optimization
• Structural reliability analysis

• Approximation methods are inefficient due to the complexity of the limit
state

• The target failure probability is relatively high (1% − 10%)

• Double-loop optimization
• Industrial context: The formulation needs to be close to a deterministic

design optimization

Solution of the RBDO problem with quantiles as measure of
conservatism
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Quantile-based design optimization

Quantile-based design optimization

• Definition of the quantile

Qα (d; M (X (d) , Z)) = inf {q ∈ R : P [M (X (d) , Z) ≤ q] ≥ α}

P̄f = 1−α

PDF of M(X(d),Z)

M(x , z)q0.5 ḡq
α

Safe design

P̄f = 1−α

PDF of M(X(d),Z)

M(x , z)q0.5 ḡ q
α

Unsafe design

Quantile-based formulation

d
∗ = arg min

d∈D

c (d) s.t.:

{
fj (d) ≤ 0 {j = 1, . . . , ns}

Qαk
(d; M (X (d) , Z)) ≤ ḡk {k = 1, . . . , nh}

αk = 1 − P̄fk
controls the degree of conservatism
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Solution using adaptive Kriging

Adaptive enrichment Echard et al. (2011)

Enrichment principle

• Start with an initial scarce experimental design

• Define a learning function for enrichment

• Enrich the experimental design iteratively so that the Kriging model
becomes more accurate in regions of interest

Deviation number

U (x) =

∣∣∣ḡ − µ
M̂

(x)
∣∣∣

σ
M̂

(x)

• This function is to be minimized with respect to a pre-defined MC set

• U decreases as µ
M̂

→ ḡ and/or σ
M̂

→ ∞

• Stopping criterion: min U ≥ 2 (Prob. of misclassification ≈ 0.05)

Too conservative a stopping criterion!
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Solution using adaptive Kriging

A two-stage of enrichment scheme

Main idea: Couple enrichment to optimization

First stage of enrichment: global

• Identify regions of the space in the vicinity of the limit-state surface

• Reduce the global Kriging epistemic uncertainty in these regions

• Stop when such regions have been discovered without refining too much

Second stage of enrichment: local

• Start the optimization

• Make sure that the computed quantile at each iteration is accurate
enough

• If not, locally refine the Kriging model

• Enrichment points are directed toward regions of the space where the
objective function is decreasing
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Solution using adaptive Kriging

First stage of enrichment

Remark: The constraint on the quantile is defined in the design
space while the Kriging model is built in the augmented space

A slightly modified enrichment scheme

1 Sample a set of candidates for enrichment: C ∈ D

2 For any d
(i) ∈ C:

1 Build the set of MC samples needed to compute the quantile: C
(i)
q

2 Estimate the quantile q̂α

(
d

(i)
)

3 Identify the point

(x(i)
α , z

(i)
α ) = {(x, z) ∈ C

(i)
q : q̂α(d(i)) = µ

M̂
(x, z)}

4 Compute the modified learning function:

Ũ
(
d

(i)
)

≡ U
(
x

(i)
α , z

(i)
α

)
=

∣∣∣ḡ − µ
M̂

(
x

(i)
α , z

(i)
α

)∣∣∣

σ
M̂

(
x

(i)
α , z

(i)
α

)

3 Add K points w.r.t. the modified learning function Ũ (d)
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Solution using adaptive Kriging

Illustration of the global stage of enrichment

Two-dimensional analytical function

• M (d, z) =
(
1/3z4 − 2.1z2 + 4

)
z2 + dz + 4d2

(
d2 − 1

)

• Probabilistic model: X ∼ N
(
d, 0.052

)
et Z ∼ N

(
0.5, 0.052

)

• g (d, z) = 0.5 − M (d, z) with α = 0.95
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Solution using adaptive Kriging

Second stage of enrichment

• Relax the stopping criterion of the first stage as follows:

η = Card(C2)/Card(C) ≤ η̄ where C2 =
{

d ∈ C : Ũ (d) ≤ 2
}

• Reduce the remaining Kriging epistemic uncertainty during optimization

1 Define the bounds q̂±
α as quantiles estimated with µ

M̂
± 2σ

M̂
:

q̂
−
α

(
d

(i)
)

≤ q̂α

(
d

(i)
)

≤ q̂
+
α

(
d

(i)
)

2 Compute the following accuracy criterion:

ηq

(
d

(i)
)

=
q̂+

α

(
d

(i)
)

− q̂−
α

(
d

(i)
)

ḡ
≤ η̄q

3 If not accurate enough, enrich with the following learning criterion:

U (x, z) =

∣∣̂qα

(
d

(i)
)

− µ
M̂

(x, z)
∣∣

σ
M̂

(x, z)
, {x, z}T ∈ C

(i)
q
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Application examples

Presentation of the problem

Deterministic design optimization

• A two-dimensional optimization problem with three non-linear limit state
functions:

d
∗ = arg min

d∈[0,10]2

d1 + d2 s.t.:





d2

1
d2

20 − 1 ≤ 0

(d1+d2−5)2

30 + (d1−d2−12)2

120 − 1 ≤ 0

80

(d2

1
+8d2+5)−1

≤ 0

Reliability-based design optimization

• Probabilistic model: Xi ∼ N
(
di, 0.62

)
, i = {1, 2}

• Target failure probability: P̄fi
= 1.35 · 10−3 (βi = 3).
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Application examples

Solution: First stage of enrichment

• Initial experimental design of size 10

• Threshold for enrichment η̄ = 0.30
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Convergence of the enrichment scheme
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d
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Kriging approximations and updated

experimental design

• Convergence in five iterations
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Application examples

Solution: Second stage of enrichment Arnold and Hansen (2012)

• Optimization algorithm: Constrained (1+1)-CMA-ES
• Stopping criterion in a simulated-annealing fashion (3 thresholds)
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Kriging approximations and

CMA-ES-sampled points

• Convergence with four enrichments
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Application examples

Benchmark results

• Due to randomness along the process, the results need to be replicated

• Presented result: Median case with respect to 50 random replications

Method d∗
1 d∗

2 c (d∗) g-calls

Brute force 3.45 3.30 6.75 ≈ 106

PMA1 3.43 3.29 6.72 1, 551

SORA2 3.44 3.29 6.73 151

Single loop3 3.43 3.29 6.72 19

RDS1 3.44 3.28 6.72 27

Meta-RBDO4 3.46 3.27 6.74 20(20/10/10)

Quantile-RBDO 3.46 3.30 6.76 14
1 As calculated in Shan and Wang (2008)
2 As calculated in Du and Chen (2004)
3 As calculated in Liang et al. (2004)
4 As calculated in Dubourg (2011)
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Application examples

Context of the study Duddeck (2008)

Multi-disciplinary design optimization problem

• Reduce the weight of a car body structure

• under safety and comfort of use
constraints
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)

Outputs corresponding to a MC

simulation with random input

parameters
Focus on the frontal impact alone

• High-dimensional problem

• Time-consuming simulation (up to 24 hours on a HPC infrastructure)

• Highly sensitive to uncertainties
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Application examples

Solution of the problem

Convergence in only 114 model evaluations

• Initial experimental design: 70 points

• First stage of enrichment: 20 points (2 × 10)

• Second stage of enrichment: 24 points (8 × 3)

• Weight saving: 1.31 kg (13.5% of initial weight)
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Initial and final thicknesses

Model accuracy estimation in the vicinity of

the solution - Computed on a limited MC set

of size 100

Criterion g1 (kN) g2 (mm)

Original model q̂FE
α 150.66 527.81

Kriging model q̂KRG
α 148.02 528.04

Error (%) 1.75 0.04
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Conclusion

Conclusion

Quantile-based design optimization

• Computed by crude Monte Carlo simulation

• Relatively high target failure probabilities in the applications

• More easily implementable in an industrial context where deterministic
design optimization is the cultural reference

Adaptive Kriging-based appproach

• Two stages of enrichment: global then local

• Save computational budget and direct enrichment to regions of high
fitness of the cost function

Application in high-dimensional problems

• Successful application in a 23-dimensional problem with 8 constraints

• Accuracy criteria difficult to respect: the approach is based on the idea
of Kriging margin shrinking which is hard to achieve in high dimension
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Results with 50 replications for the two-dimensional

problem
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Convergence plots for the sidemember subsystem
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