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The deterministic world

Mono-objectif constraint optimization

Multi-objective constraint optimization

The stochastic world

What is stochastic ?

Stochastic Problems

Stochastic methods



Mono-objectif constraint optimization











min
x∈Rd

f (x)

hj(x) = 0 j = 1, ..., KE

gj(x) ≤ 0 j = 1, ..., KI

Goal :

◮ Find a feasible point that minimizes the objectif function

Constraint :

◮ The objectif function and the constraints are potentially expensive

in CPU time to evaluate.

Examples :

◮ Optimal design of a wing with stability constraints

◮ Placement of a new well in an oil reservoir

◮ Prediction of extreme scenarios in an oil reservoir





The Multi-Objectif problem

Given

(fi)i=1...m m real scalar functions

gathered in the vector

F(x) =
(

f1(x), ..., fm(x)
)

Our goal is to minimize











min
x∈Rd

F(x)

hj(x) = 0 j = 1, ..., KE

gj(x) ≤ 0 j = 1, ..., KI





But we are not omnipotent/omniscient

Uncertainties appear at different stages of the optimization problem

Causes

◮ EPISTEMIC : lack of knowledge, imprecise measurements of

the model inputs or/and outputs, modelization error, numerical

error ...

◮ ALEATORY : intrinsic to the physics involved, stochastic codes ...

◮ METHODOLOGICAL CHOICE : introduction of a probabilistic

framework in the resolution method. A way to model our lack of

knowledge of the solution and build a (random) sequence we

expect to converge to the solution.



Kind of classification

◮ Non-Stochastic problem + Stochastic method

◮ Stochastic problem + Non-Stochastic method

◮ Stochastic problem + Stochastic method

◮ Non-Stochastic problem + Non-Stochastic method

→ deterministic world



Stochastic problem : introducing uncertainties

Uncertainties appear on the objectif function or/and the constraints



















f (x)
F(x)
gj(x)
hj(x)

→



















f (x, U)
F(x, U)
gj(x, U)
hj(x, U)

For example

f (x + Uin) + Uout,

gj(x + Uin) + Uout,

hj(x + Uin) + Uout

Approach : find the best deterministic world approaching our

stochastic world : use the adequate operator.

L1f (x, U) = f̃ (x), L2gj(x, U) = g̃j(x), ...

and use your favorite/adapted deterministic optimization method



Summarizing the distribution

Approach : find the best deterministic world approaching our

stochastic world

Lf (x, U) = f̃ (x), ...

and use your favorite/adapted deterministic optimization method

◮ What is the "best" ?

◮ It depends on the question

◮

E
(

f (x, U)
)

, E
(

gj(x, U)
)

E
(

f (x, U)
)

± 2

√

Var(f (x, U)),

P
(

f (x, U) > s
)

s − P
(

gj(x, U) < 0
)

< 0
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Summarizing the distribution

Approach : find the best deterministic world approaching our

stochastic world

Lf (x, U) = f̃ (x), ...

◮ What is the best ?

◮ It depends on the question

Scenario approach

1

N

N
∑

i=1

f (x, Ui),
1

N

N
∑

i=1

gj(x, Ui)

max
i=1,...,N

gj(x, Ui) < 0...



Illustration

f (x) = sin(2πx)e−2x



Illustration : noisy output model

f (x, U) = sin(2πx)e−2x + U U ∼ N (0, σ
2)



Illustration : mean of noisy ouput model

E
(

f (x, U)
)

= sin(2πx)e−2x U ∼ N (0, σ
2)



Illustration : estimated mean of noisy output model

1

N

N
∑

i=1

f (x, Ui) Ui ∼ N (0, σ
2) N small



Illustration : noisy input model

f (x, U) = sin(2π(x + U))e−2(x+U) U ∼ N (0, σ
2)



Illustration : mean of noisy input model

E
(

f (x, U)
)

= E(sin(2π(x + U))e−2(x+U)) U ∼ N (0, σ
2)



Illustration : estimated mean of noisy input model

1

N

N
∑

i=1

f (x, Ui) Ui ∼ N (0, σ
2) N small



Illustration : deterministic constraint

a < x < b



Illustration : chance constraint

P
(

a < x + U < b
)

> s U ∼ N (0, σ
2)



Stochastic methods I

Kriging approach

◮ Consider x → f (x), (x, u) → f (x, u) or x → Lf (x, U) and suppose it

is the realisation of a prior gaussian random process Y(x), ...

◮ sample your function Y1, ..., YN

◮ Learn the distribution of the posterior conditional random process

Y(x)|Y1, ..., YN

◮ Use an adequate summary of the posterior distribution to find

the next best point : reducing uncertainty or/and converging

towards the minimum. Evaluate. Iterate



Stochastic methods I

Noisy output



Stochastic methods I

Noisy Input



Stochastic methods II

Evolutionary approach

◮ Generate initial population ;

◮ Select a part of the population

◮ Reproduce the selected individuals

◮ Mutate the new borns

◮ Check improvement

◮ Replace initial population by new one



Stochastic methods II

Evolutionary approach



Stochastic methods II

Evolutionary approach



Stochastic methods II

Evolutionary approach



Stochastic methods II

Evolutionary approach



Stochastic methods II

Evolutionary approach
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