Differentiability: setting	Differentiability: results		
00 00000 000	0000 0000000	000 0000000000 0000	

Differentiability of probability function involving non-linear mappings of Gaussian random vectors

W. van Ackooij1

¹OSIRIS Department EDF R&D 7 Boulevard Gaspard Monge; 9120 Palaiseau ; France

GDR Mascot, 13/05/2016

Differentiability: setting	Differentiability: results		
00 00000 000	0000 0000000	000 0000000000 0000	

Outline

- 1 Introduction
 - Motivation
 - Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability
- 3 Differentiability: results
 - The one component case
 - More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability

Introduction	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	

Introduction

- Motivation
- Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability

Introduction • •	Differentiability: setting 00 00000 0000	Differentiability: results 0000 0000000	(Sub-)Differentiability 000 0000000000 0000	
Motivation				
Motivatior	n l			

A Probabilistic constraint is a constraint of the type

$$\varphi(x) := \mathbb{P}[g(x,\xi) \le 0] \ge p, \tag{1}$$

where $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ is a map, $\xi \in \mathbb{R}^m$ a (multi-variate) random variable

- Such constraints arise in many applications. For instance cascaded Reservoir management.
- We care for further understanding of differentiability of probability functions

Introduction ○ ●OO	Differentiability: setting 00 00000 000	Differentiability: results 0000 00000000	(Sub-)Differentiability 000 0000000000 0000			
Classics						
Some differentiability properties of PCs I						

General differentiability statements exist and represent the gradient as an involved integral over a "surface" and "volume". A key condition is that $\{z \in \mathbb{R}^m : g(x, z) \le 0\}$ is bounded locally around a point x (e.g., [Uryas'ev(2009)]).

Introduction	Differentiability: setting	Differentiability: results		
0 0●0	00 00000 000	0000 0000000	000 0000000000 0000	
Classics				

Some differentiability properties of PCs II

Specific formulas such as the following, allow for efficient computation in practice:

Lemma ([Prékopa(1970), Prékopa(1995)])

Let ξ be an *m*-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^m$ and positive definite variance-covariance matrix Σ . Then the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is continuously differentiable and in any fixed $z \in \mathbb{R}^m$ the following holds:

$$\frac{\partial F_{\xi}}{\partial z_{i}}(z) = f_{\xi_{i}}(z_{i})F_{\tilde{\xi}(z_{i})}(z_{1},...,z_{i-1},z_{i+1},...,z_{m}), i = 1,...,m.$$
(2)

Here $\tilde{\xi}(z_i)$ is a Gaussian random variable with mean $\hat{\mu} \in \mathbb{R}^{m-1}$ and $(m-1) \times (m-1)$ positive definite covariance matrix $\hat{\Sigma}$. Let D_m^i denote the mth order identity matrix from which the ith row has been deleted. Then $\hat{\mu} = D_m^i(\mu + \Sigma_{ii}^{-1}(z_i - \mu_i)\Sigma_i)$ and $\hat{\Sigma} = D_m^i(\Sigma - \Sigma_{ii}^{-1}\Sigma_i\Sigma_i^{\mathsf{T}})(D_m^i)^{\mathsf{T}}$, where Σ_i is the *i*-th column of Σ .

(日) (日) (日) (日) (日)

Introduction	Differentiability: setting	Differentiability: results	(Sub-)Differentiability			
0 000	00 00000 000	0000 0000000	000 0000000000 0000			
Classics						
Some differentiability properties of PCs III						

• $\varphi(x) := \mathbb{P}[\xi \leq x]$ ([Prékopa(1970)]) We have

$$rac{\partial arphi}{\partial x_i} = f_{\mu_i, \Sigma_{ii}}(x_i) \mathbb{P}[ilde{\xi} \leq ilde{x}]$$

•
$$\varphi(x) := \mathbb{P}[A(x)\xi \le \alpha(x)]$$
 ([van Ackooij et al.(2011)])

- $\varphi(x) := \mathbb{P}[A\xi \le \alpha(x)]$ ([Henrion and Möller(2012)])
- Other cases involve distribution functions of Dirichlet ([Szántai(1985), Gouda and Szántai(2010)]) and multi-variate Gamma ([Prékopa and Szántai(1979)]) random variables

Differentiability: setting	Differentiability: results		
00 00000 000	0000 0000000	000 0000000000 0000	

1 Introduction

- Motivation
- Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability

	Differentiability: setting ●O ○○○○○ ○○○	Differentiability: results 0000 00000000	(Sub-)Differentiability 000 0000000000 0000	
Setting				
Setting				

Consider the probabilistic constraint :

$$\varphi(\mathbf{x}) := \mathbb{P}[g(\mathbf{x},\xi) \le \mathbf{0}] \ge \mathbf{p},\tag{3}$$

where $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ is a continuously differentiable map (convex in the second argument), $\xi \sim \mathcal{N}(\mu, \Sigma)$ a (multi-variate) Gaussian random variable.

	Differentiability: setting O● ○○○○○ ○○○	Differentiability: results 0000 00000000	(Sub-)Differentiability 000 0000000000 0000	
Setting				
Motivation				

We would like to dispose of a gradient formulae for the case

 $\varphi(\mathbf{x}) := \mathbb{P}[\langle \mathbf{c}, \eta \rangle \leq h(\mathbf{x})],$

where $c \ge 0, c \in \mathbb{R}^m$, and $\eta \in \mathbb{R}^m$ is a log-normal random variable

We can cast this into the general case by defining the mapping

$$g(x,z) = \langle c, \exp(z) \rangle - h(x)$$

• Then $\varphi(x) = \mathbb{P}[g(x,\xi) \leq 0]$ with $\xi \sim \mathcal{N}(\mu, \Sigma)$.

In fact by redefining g we may assume w.l.o.g. that $\xi \sim \mathcal{N}(0, R)$.

	Differentiability: setting	Differentiability: results		
	00 • 0000 000	0000 0000000	000 0000000000 0000	
Inherent non-smooth	iness			

Inherent non-smoothness

- It is tempting to believe that "nice" properties of g carry forth to φ. For instance, if g is smooth enough, that φ will be at least continuously differentiable.
- Though "nasty laws" for ξ can be expected to have side-effects, nice laws may not.
- Let us first show that such considerations are dangerous.

	Differentiability: setting ○○ ○●○○○ ○○○	Differentiability: results 0000 00000000	(Sub-)Differentiability 000 0000000000 0000			
Inherent non-smoothness						
Inherent non-smoothness: counterexample						

Differentiability need not hold:

Proposition

Let $g:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ be defined by

 $g(x_1, x_2, z_1, z_2) := x_1^2 e^{h(z_1)} + x_2 z_2 - 1$, where $h(t) := -1 - 2\log(1 - \Phi(t))$

and Φ is the cumulative distribution function of the one-dimensional standard Gaussian distribution. Let $\xi \sim \mathcal{N}(0, l_2)$ and $\bar{x} = (0, 1)$. Then, the following holds true:

- 1 g is continuously differentiable.
- 2 g is convex in the second argument.
- 3 $g(\bar{x},0) = g(0,1,0,0) < 0.$
- 4 φ is not differentiable at \bar{x} .

	Differentiability: setting	Differentiability: results		
	00 00●00 000	0000 0000000	000 0000000000 0000	
Inherent non-smoothness				

Inherent non-smoothness: counterexample

Graph of a non-differentiable probability function

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	
Inherent non-smoot	hness			

Inherent non-smoothness: several components

Things may also go wrong when p > 1, i.e., g has several components:

Example

Let ξ have a one-dimensional standard Gaussian distribution and define

$$g(x_1, x_2, x_3, \xi) := (\xi - x_1, \xi - x_2, -\xi - x_3).$$

Then, with Φ referring to the one-dimensional standard Gaussian distribution function, one has that

$$\varphi(x_1, x_2) = \max\{\min\{\Phi(x_1), \Phi(x_2)\} - \Phi(x_3), 0\}.$$

Clearly φ fails to be differentiable at $\bar{x} := (0, 0, -1)$, while $\{z : g(\bar{x}, z) \le 0\} = [-1, 0]$ is compact and satisfies Slater's condition in the description via g.

(日) (周) (日) (日) (日)

14/56

Differentiability: setting	Differentiability: results		
00 0000● 000	0000 0000000	000 0000000000 0000	

Inherent non-smoothness

Inherent non-smoothness: the need for additional conditions

- From these discussion it is clear that some conditions needs to be appended in order to avoid some degeneracy
- Essentially two conditions are needed: bounded growth on $\nabla_x g$, some LICQ type of regularity.

	Differentiability: setting	Differentiability: results		
	00 00000 •00	0000 0000000	000 0000000000 0000	
Evaluating the probabil	ity			
Evaluating	P			

• Let
$$\mathbb{S}^{m-1} := \left\{ z \in \mathbb{R}^m \left| \sum_{i=1}^m z_i^2 = 1 \right. \right\}$$
 be the euclidian unit-sphere of \mathbb{R}^m .

Let $\xi \sim \mathcal{N}(0, R)$ be given and *L* be such that $R = LL^{\mathsf{T}}$.

It is well known that ξ = ηLζ, where η has a chi-distribution with m degrees of freedom and ζ is uniformly distributed over S^{m-1}

	Differentiability: setting	Differentiability: results		
	00 00000 0●0	0000 0000000	000 0000000000 0000	
Evaluating the probal	oility			
Evaluating	aℙII			

• As a consequence if $M \subseteq \mathbb{R}^m$ is Lebesgue measurable

We have

$$\mathbb{P}[\xi \in M] = \int_{v \in \mathbb{S}^{m-1}} \mu_{\eta} \left(\{ r \ge 0 : rLv \cap M \neq \emptyset \} \right) d\mu_{\zeta}$$
(4)

- Efficient sampling schemes for such integrals are provided by [Deák(1986), Deák(2000)]
- In our case M(x) = {z ∈ ℝ^m : g(x, z) ≤ 0} is a convex (hence Lebesgue measurable) set.

	Differentiability: setting	Differentiability: results			
	00 00000 00●	0000 0000000	000 0000000000 0000		
Evaluating the probat	pility				
Crowth control					

We cannot allow for unbounded growth of the mapping g. We thus define:

Definition

1.1.1.1.1

We say that *g* satisfies the **exponential growth condition** at *x* if there exist constants δ_0 , C > 0 and a neighbourhood U(x) such that

$$\left\|
abla_{x} g\left(x',z
ight)
ight\| \leq \delta_{0} \exp(\left\|z
ight\|) \quad orall x' \in U(x) \; orall z: \left\|z
ight\| \geq C_{x}$$

Differentiability: setting	Differentiability: results		
00 00000 000	0000 0000000	000 0000000000 0000	

1 Introductio

- Motivation
- Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	
The one component of	case			
The case	n – 1			

We define the sets of finite and infinite directions:

$$\begin{aligned} F(x) &:= \qquad \left\{ v \in \mathbb{S}^{m-1} | \exists r > 0 : g(x, rLv) = 0 \right\} \\ I(x) &:= \qquad \left\{ v \in \mathbb{S}^{m-1} | \forall r > 0 : g(x, rLv) \neq 0 \right\}. \end{aligned}$$

For each $x \in \mathbb{R}^n$ with g(x, 0) < 0 and $v \in F(x)$ we can find a unique $\rho^{x,v}(x, v) > 0$ such that $g(x, \rho^{x,v}(x, v)Lv) = 0$.

• Numerically this value can be computed by a simple application of Newton-Rhapson.

Introduction	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
0 000		0000 0000000	000 00000000000 0000	

The one component case

The case p = 1: Illustration

Differentiability: setting	Differentiability: results		
00 00000 000	0000 0000000	000 0000000000 0000	

The one component case

The case p = 1: main result

Theorem ([van Ackooij and Henrion(2014)])

Let $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be a continuously differentiable function which is convex with respect to the second argument. Consider the probability function φ defined as $\varphi(x) = \mathbb{P}[g(x,\xi) \leq 0]$, where $\xi \sim \mathcal{N}(0,R)$ has a standard Gaussian distribution with correlation matrix R. Let the following assumptions be satisfied at some \bar{x} :

1 $g(\bar{x}, 0) < 0.$

2 g satisfies the exponential growth condition at \bar{x}

Then, φ is continuously differentiable on a neighbourhood U of \bar{x} and it holds for all $x \in U$ that:

$$\nabla\varphi(\mathbf{x}) = -\int_{\mathbf{v}\in F(\mathbf{x})} \frac{\chi(\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v}))\nabla_{\mathbf{x}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})L\mathbf{v})}{\langle\nabla_{\mathbf{z}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})L\mathbf{v}),L\mathbf{v}\rangle} d\mu_{\zeta}(\mathbf{v}).$$

22/56

	Differentiability: setting 00 00000 000	Differentiability: results 000● 00000000
The one component	case	

Summary

Theorem

The previous Theorem remains true if the growth condition is replaced by the condition that the set $\{z|g(\bar{x},z) \leq 0\}$ is bounded. Then, the formula becomes

$$\nabla\varphi(\mathbf{x}) = -\int_{\mathbf{v}\in\mathbb{S}^{m-1}} \frac{\chi(\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v}))\nabla_{\mathbf{x}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})\,\mathbf{L}\mathbf{v})}{\langle\nabla_{\mathbf{z}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})\,\mathbf{L}\mathbf{v}),\mathbf{L}\mathbf{v}\rangle}d\mu_{\zeta}(\mathbf{v})$$

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	
More than one comp	onent			

The case p > 1

• When p > 1 we can define

$$g^{m}(x,z) = \max_{j=1,...,p} g_{j}(x,z),$$
 (5)

Evidently, the probability function can be written as $\varphi(x) = \mathbb{P}(g^m(x,\xi) \le 0)$.

- For each $x \in \mathbb{R}^n$ with g(x, 0) < 0 and $v \in F(x)$ we can find a unique $\rho^{x,v}(x, v) > 0$ such that $g^m(x, \rho^{x,v}(x, v)Lv) = 0$. However this $\rho^{x,v}$ is no longer smooth!
- The sets of finite and infinite directions can be defined with respect to g^m or alternatively as unions (intersections) of their counterparts with respect to each component of g.

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	
More than one comp	oonent			

The case p > 1: main result

Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed $\bar{x} \in \mathbb{R}^n$:

1
$$g^m(\bar{x},0) < 0.$$

2 g_j satisfies the exponential growth condition at \bar{x} for all j = 1, ..., p.

Then, φ is locally Lipschitz continuous on a neighbourhood U of \bar{x} and it holds that

$$\partial^{c}\varphi(x) \subseteq \int_{v \in F(x)} \operatorname{Co}\left\{-\frac{\chi(\hat{\rho}(x,v))\nabla_{x}g_{j}(x,\hat{\rho}(x,v)Lv)}{\langle \nabla_{z}g_{j}(x,\hat{\rho}(x,v)Lv),Lv \rangle}\middle| j \in \hat{\mathcal{J}}(x,v)\right\} d\mu_{\zeta}(v)$$
(6)

for all $x \in U$. Here,

$$\hat{\mathcal{J}}(x,v) := \{ j \in \{1, \dots, p\} | g_j(x, \hat{\rho}(x, v) \, Lv) = 0 \} \quad (v \in F(x))$$

・ロン ・回 と ・ ヨン 「ヨ

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	
More than one compo	onent			

The case p > 1: A first discussion

- Note that in the case p > 1, under the same conditions as for the case p = 1, we have a weaker results: local Lipschitz continuity and an outer estimate of the clarke-subdifferential
- The earlier example showed that this is inherent and not a weakness of the analysis.

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	
More than one compo	onent			

The case p > 1: R2CQ

Definition

For any $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$ we denote by

$$\mathcal{I}(x,z) := \{ j \in \{1, \dots, p\} | g_j(x,z) = 0 \}$$
(7)

the active index set of *g* at (*x*, *z*). We say that the inequality system $g(x, z) \le 0$ satisfies the *Rank-2-Constraint Qualification* (*R*2*CQ*) at $x \in \mathbb{R}^n$ if

rank {
$$\nabla_z g_j(x,z), \nabla_z g_i(x,z)$$
} = 2 $\forall i, j \in \mathcal{I}(x,z), i \neq j$ (8)

$$\forall z \in \mathbb{R}^m : g(x, z) \le 0.$$
 (9)

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 0000000	000 0000000000 0000	
More than one comr	onent			

The case p > 1: R2CQ < LICQ

Note that (R2CQ) is substantially weaker than the usual Linear Independence Constraint Qualification (LICQ) common in nonlinear optimization and requiring the linear independence of all gradients to active constraints.

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 00000000	000 0000000000 0000	
More than one comp	onent			

The case p > 1: An auxiliary result

Lemma ([van Ackooij and Henrion(2016)])

Let $\bar{x} \in \mathbb{R}^n$ be given such that

1 $g^m(\bar{x},0) < 0.$

2 g satisfies (R2CQ) at \bar{x} .

Then, $\mu_{\zeta}(M') = 0$ for $M' := \{ v \in \mathbb{S}^{m-1} | \exists r > 0 : g(\bar{x}, rLv) \leq 0, \ \#\mathcal{I}(\bar{x}, rLv) \geq 2 \}$, where L is the regular matrix in the decomposition $R = LL^{T}$.

	Differentiability: setting	Differentiability: results		
	00 00000 000	0000 00000000	000 0000000000 0000	
More than one comr	opont			

The case p > 1: smoothness

Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed $\bar{x} \in \mathbb{R}^n$:

1
$$g^m(\bar{x},0) < 0.$$

- **2** g_j satisfies the exponential growth condition at \bar{x} for all j = 1, ..., p.
- 3 (R2CQ) is satisfied

Then, φ is Fréchet differentiable at \bar{x} and the gradient formula:

$$\nabla\varphi(\bar{x}) = -\int_{v\in F(\bar{x}),\#\hat{\mathcal{J}}(\bar{x},v)=1} \frac{\chi\left(\hat{\rho}\left(\bar{x},v\right)\right)\nabla_{x}g_{j(v)}\left(\bar{x},\hat{\rho}\left(\bar{x},v\right)Lv\right)}{\left\langle\nabla_{z}g_{j(v)}\left(\bar{x},\hat{\rho}\left(\bar{x},v\right)Lv\right),Lv\right\rangle}d\mu_{\zeta}(v), \quad (10)$$

holds true.

If (R2CQ) is satisfied locally around \bar{x} , then, φ is continuously differentiable at \bar{x} .

	Differentiability: setting 00 00000 0000	Differentiability: results ○○○○ ○○○○○○●	(Sub-)Differentiability 000 0000000000 0000	
More than one comp	onent			
One last i	remark			

The condition g(x, 0) < 0 is not very restrictive as the following result shows:

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
000	00 00000 000	0000 0000000	000 0000000000 0000	

1 Introductio

- Motivation
- Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability

			(Sub-)Differentiability	
	00 00000 000	0000 0000000	•00 0000000000 0000	
Motivation and Setting				
Motivation				

 \blacksquare Let us consider the special case wherein φ results from

$$\varphi(\mathbf{x}) := \mathbb{P}[B\xi \le h(\mathbf{x})],\tag{11}$$

- 日本 - 4 日本 - 4 日本 - 4 日本

with $\xi \sim \mathcal{N}(\mu, \Sigma), \Sigma \succ 0$.

- When *B* is of full rank then, $B^{\mathsf{T}}\Sigma B \succ 0$ too and differentiability follows from classic results.
- However in many applications B has more rows than columns (for instance when coming from Gale-Hoffmann inequalities): φ is no longer smooth.

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00 00000 000	0000 0000000	0●0 0000000000 0000	
Motivation and Setting				

Motivation

Example

Let $m = 1, k = 2, \xi \sim \mathcal{N}(0, 1)$ and *B* be given by

$$B = \left(\begin{array}{c} 1\\1\end{array}\right).$$

Then it is readily observed that $\varphi(x) = \mathbb{P}[B\xi \le x] = \mathbb{P}[\xi \le \min\{x_1, x_2\}]$. As a consequence φ fails to be differentiable on the line $x_1 = x_2$ as is readily seen on the figure:

・ロット (雪) (日) (日) 日

34/56

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00000 000		0000000000 0000	
Motivation and Setting	1			
Setting				

- Without loss of generality we concentrate on φ(z) = P[ξ ≤ z], with ξ ~ N(0,Σ) and Σ ≥ 0.
- We may also assume that Σ_{ii} = 1 for all *i* without loss of generality (as otherwise either the system contains a redundant constraint (locally around *z*), or φ fails to be continuous in *z*).

			(Sub-)Differentiability		
	00 00000 000	0000 0000000	000 •000000000 0000		
A characterization of the Clarke-subdifferential					

Correlation graph

Definition

Let Σ be an $m \times m$ covariance matrix having all diagonal entries equal to 1. Let $G(\Sigma) = (V, E)$ denote the (undirected) graph on the vertex set $V = \{1, ..., m\}$ and with edge set $E = E^+ \cup E^- = \{(i, j) : i \neq j, \Sigma_{ji} = 1\} \cup \{(i, j) : i \neq j, \Sigma_{ji} = -1\}$. The graph $G(\Sigma)$ (which may contain isolated vertices) will be called the correlation graph associated with Σ .

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00 00000 000	0000 0000000	000 0000000000 0000	
A characterization of the Clarke-subdifferential				

Correlation graph: Example

Example

Consider the 4 \times 4 covariance matrix Σ defined as follows:

37/56

	Differentiability: setting 00 00000 0000	Differentiability: results 0000 00000000	(Sub-)Differentiability ○○○ ○○●○○○○○○○		
A characterization of the Clarke-subdifferential					
Correlation	graph				

- The correlation graph features Q connected components (each being either an isolated vertex or a complete subgraph (a clique)).
- Each connected component $G^q = (V^q, E^q)$ is bipartite and can be separated into a left and right side L^q, R^q : elements within L^q are positively correlated, elements in L^q are negatively correlated to those in R^q .

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00 00000 000	0000 0000000	000 0000000000 0000	
A characterization of	f the Clarke-subdifferential			

Correlation graph and z

Definition

Let $G(\Sigma) = (V, E)$ be a correlation graph:

- Given an arbitrary $z \in \mathbb{R}^m$, we will say that *z* is *auto-referenced* if there exists an arc $(i, j) \in E$ such that $z_j = \sum_{ji} z_i$ (in other words, such that $z_j = z_i$ if $(i, j) \in E^+$ or such that $z_j = -z_i$ if $(i, j) \in E^-$).
- An auto-referenced point $z \in \mathbb{R}^m$ will be called *changeable* if there exists $(i,j) \in E$ such that $z_k \geq z_i$ for all $(k,i) \in E^+$ and $z_k \geq -z_i$ for all $(k,i) \in E^-$.

The arc $(i, j) \in E$ will occasionally be referred to as an auto-referencing (a changeable) arc with respect to z if z is auto-referenced (changeable).

《日》《圖》《日》《日》 모님

39/56

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00 00000 000	0000 0000000	000 0000000000 0000	
A characterization of	f the Clarke subdifferential			

Correlation graph: Example

Example

Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
00 00000 000	0000 0000000	000 0000000000 0000	

Correlation graph: Example 2

Example

		(Sub-)Differentiability	
00 00000 000	0000 00000000	000 0000000000 0000	

A characterization of the Clarke-subdifferential

A first result

Theorem ([van Ackooij and Minoux(2015)])

Let ξ be an *m*-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^m$ and covariance matrix Σ having all diagonal entries equal to 1. Then for arbitrary not-changeable $z - \mu \in \mathbb{R}^m$, the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is locally Lipschitz at *z* and $\partial^c F_{\xi}(z) = \{v\}$, where for arbitrary *i*=1,...,*m*:

$$v_i = f_{\xi_i}(z_i) F_{\tilde{\xi}(z_i)}(z_1, ..., z_{i-1}, z_{i+1}, ..., z_m).$$
(12)

Here $\partial^c F_{\xi}(z)$ denotes the Clarke-subdifferential of F_{ξ} and $\tilde{\xi}(z_i)$ is an m-1 dimensional Gaussian random vector (familiar from classic results)

	Differentiability: setting 00 00000 0000	Differentiability: results 0000 0000000	(Sub-)Differentiability ○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○		
A characterization of the Clarke-subdifferential					
The famil	iar associated Gau	ussian			

- f_{ξ_i} is the one dimensional Gaussian density of ξ_i
- Let D_m^i denote the $(m-1) \times m$ matrix deduced from the $m \times m$ identity matrix by deleting the *i*th row.

$$\hat{\mu} = D^i_m(\mu + \Sigma^{-1}_{ii}(z_i - \mu_i)\Sigma_i)$$

$$\hat{\boldsymbol{\Sigma}} = \boldsymbol{D}_m^i (\boldsymbol{\Sigma} - \boldsymbol{\Sigma}_{ii}^{-1} \boldsymbol{\Sigma}_i \boldsymbol{\Sigma}_i^{\mathsf{T}}) (\boldsymbol{D}_m^i)^{\mathsf{T}},$$

where Σ_i is the *i*-th column of Σ and Σ_{ii} is the *i*-th element of the main diagonal of Σ .

Differentiability: setting	Differentiability: results	(Sub-)Differentiability	Summary
00 00000 000	0000 0000000	000 00000000000 0000	

A characterization of the Clarke-subdifferential

And changeable points?

Proposition ([van Ackooij and Minoux(2015)])

Let $G^q = (V^q, E^q)$, be the connected q = 1, ..., Q components of the correlation graph and (L^q, R^q) be the associated bipartition. Let *z* be changeable. Define $J \subseteq \{1, ..., Q\}$ as the set of all *q* for which either $|V^q| = 1$ or no changeable arc exists in V^q . For each remaining $q \in \{1, ..., Q\} \setminus J$, pick $l^q \in L^q$, $r^q \in R^q$ such that $z_{l^q} \leq z_p$ for all $p \in L^q$ and $z_{r^q} \leq z_p$ for all $p \in R^q$. If R^q is empty, r^q should be interpreted as being "empty". Then the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is locally Lipschitz at *z* and $v \in \partial^c F_{\xi}(z)$, where for arbitrary *i*=1,...,*m*:

$$v_{i} = \begin{cases} f_{\xi_{i}}(z_{i})F_{\tilde{\xi}(z_{i})}(z_{1},...,z_{i-1},z_{i+1},...,z_{m}) & \text{if} & i \in \cup_{j \in J}V^{j} \\ f_{\xi_{i}}(z_{i})F_{\tilde{\xi}(z_{i})}(z_{1},...,z_{i-1},z_{i+1},...,z_{m}) & \text{if} & \exists q \in \{1,...,Q\} \setminus J, i \in \{I^{q}, \\ 0 & \text{otherwise} \end{cases}$$

(13)

44/56

《曰》《曰》《曰》《曰》《曰》

Moreover $\partial^c F_{\xi}(z)$ contains at least two elements.

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00 00000 000	0000 0000000	000 0000000000 0000	
A characterization of the Clarke-subdifferential				

A final definition

Definition

Let $z \in \mathbb{R}^m$ be arbitrary. Define the set $\mathcal{E}(z)$ as the set of all v defined according to previous formula, where we enumerate all possible choices of l^q , r^q for each q. For a specific q if V^q contains a changeable arc with one endpoint in L^q and the other endpoint in R^q we adjoin to this set of choices, $v \in \mathbb{R}^m$, with $v_p = 0$ for $p \in V^q$.

Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
00 00000 000	0000 0000000	000 000000000 0000	

A characterization of the Clarke-subdifferential

The main result

Theorem ([van Ackooij and Minoux(2015)]),

Let ξ be an *m*-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^m$ and covariance matrix Σ having all diagonal entries equal to 1. Then the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is continuously differentiable if and only if $z - \mu$ is not changeable.

Moreover F_{ξ} is locally Lipschitz at z and

$$\partial^{c} F_{\xi}(z) = \operatorname{co}\left(\mathcal{E}(z)\right), \tag{14}$$

46/56

where co(B) denotes the convex hull of set $B \subseteq \mathbb{R}^m$.

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00 00000 000	0000 0000000	000 0000000000 • 000	
(M-Sub)Differentiability				

Linear maps as a special case: another formula

When seeing the linear situation, i.e., $\varphi(x) := \mathbb{P}[A\xi \le x]$, as a special case of nonlinear *g* we get:

Corollary

Let $\xi \sim \mathcal{N}(0, R)$ for some positive definite correlation matrix R admitting a decomposition $R = LL^T$. Fix any $\bar{x} \in \mathbb{R}^n$ such that $\bar{x}_j > 0$ for all $j \in \{1, \dots, p\}$. Finally assume that any two active rows of the matrix A are linearly independent:

$$Az \leq \bar{x}, A_i z = \bar{x}_i, A_j z = \bar{x}_j, i \neq j \Longrightarrow \text{rank} \{A_i, A_j\} = 2.$$
 (15)

Then, φ is continuously differentiable at \bar{x} and it holds that

$$\frac{\partial \varphi}{\partial x_j}(\bar{x}) = \int_{\left\{ v \in \mathbb{S}^{m-1} | A_j L v > 0, \bar{x}_j = \hat{\rho}(v) A_j L v \right\}} \frac{\chi(\hat{\rho}(v))}{A_j L v} d\mu_{\zeta}(v) \quad (j = 1, \dots, p).$$
(16)

47/56

			(Sub-)Differentiability	
	00 00000 000	0000 0000000	000 0000000000 0000	
(M-Sub)Differentiabili	ty			
Somo not	ation			

We introduce the following equivalence class within the index set {1,..., p} of rows of the matrix A:

$$i \sim j \iff \exists \lambda \in \mathbb{R} : A_i = \lambda A_j, \ \bar{x}_i = \lambda \bar{x}_j.$$

- By the assumption x
 _j > 0 for all j ∈ {1,..., p}, i ∼ j implies that λ > 0 in the defining relation.
- Moreover $i \approx j$ implies that rows A_i and A_j of A are linearly independent.

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability		
	00 00000 000	0000 0000000	000 0000000000 0000		
(M-Sub)Differentiabili	ty				
Some notation					

- Denote by $\tilde{p} \leq p$ the number of different equivalence classes [*i*].
- We may assume (w.l.o.g) that the first \tilde{p} rows of A belong to different equivalence classes.

Now, for any
$$i = 1, \ldots, \tilde{p}$$
 that

$$A_{j}z \leq x_{j} \quad \forall j \in [i] \Longleftrightarrow A_{i}z \leq h_{i}(x) := \min_{j \in [i]} \lambda_{j}^{-1}x_{j}.$$
(17)

49/56

• We denote by \tilde{A} the submatrix of first \tilde{p} rows of A.

	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	
	00 00000 000	0000 0000000	000 0000000000 000	
(M-Sub)Differentiabi	lity			

A fine characterization of the *M*-subdifferential

We can then show

Theorem ([van Ackooij and Henrion(2016)])

Let $\xi \sim \mathcal{N}(0, R)$ for some positive definite correlation matrix R admitting a decomposition $R = LL^T$. Fix any $\bar{x} \in \mathbb{R}^n$ such that $\bar{x}_j > 0$ for all $j \in \{1, ..., p\}$. Then, φ is locally Lipschitz continuous and its Mordukhovich subdifferential can be estimated from above by

$$\partial^{M}\varphi(\bar{x}) \subseteq \sum_{i=1}^{\tilde{p}} \int_{\mathfrak{S}} \frac{\chi\left(\hat{\rho}\left(\nu\right)\right)}{\tilde{A}_{i}L\nu} d\mu_{\zeta}(\nu) \cdot \bigcup \left\{\lambda_{j}^{-1}\boldsymbol{e}_{j}|j\in[i]:\lambda_{j}^{-1}\bar{x}_{j}=h_{i}(\bar{x})\right\},$$

where

$$\hat{
ho}(\mathbf{v}) := \min\left\{ \overline{\mathbf{y}}_j/(\mathbf{A}_j L \mathbf{v}) | j \in \{1, \dots, \widetilde{\mathbf{p}}\} : \widetilde{\mathbf{A}}_j L \mathbf{v} > \mathbf{0} \right\}.$$

and

$$\mathfrak{S} := \left\{ \boldsymbol{v} \in \mathbb{S}^{m-1} | \tilde{\boldsymbol{A}}_i \boldsymbol{L} \boldsymbol{v} > \boldsymbol{0}, \bar{\boldsymbol{y}}_i = \hat{\rho} \left(\boldsymbol{v} \right) \tilde{\boldsymbol{A}}_i \boldsymbol{L} \boldsymbol{v} \right\}.$$

< 四 > < 回 > < 回 > < 回 > < 三 > < 三 > 三

	Differentiability: setting 00 00000 000	Differentiability: results 0000 0000000	(Sub-)Differentiability 000 0000000000 0000	Summary
Summary				

In this talk we have discussed several aspects related to differentiability of chance constraints

Introduction	Differentiability: setting	Differentiability: results	(Sub-)Differentiability	Summary
000	00000	0000000	000000000000000000000000000000000000000	

The references of the discussed works

- W. van Ackooij and R. Henrion. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM Journal on Optimization, 24(4):1864–1889, 2014
- W. van Ackooij and R. Henrion. (sub-) gradient formulae for probability functions of random inequality systems under gaussian distribution. Submitted, WIAS preprint 2230, pages 1–24, 2016

 W. van Ackooij and M. Minoux. A characterization of the subdifferential of singular Gaussian distribution functions. Set Valued and Variational Analysis, 23(3):465–483, 2015. doi: 10.1007/s11228-015-0317-8

Bibliography I

[[Deák(2000)]

]I. Deák.

Subroutines for computing normal probabilities of sets - computer experiences.

Annals of Operations Research, 100:103–122, 2000.

[[Gouda and Szántai(2010)]]A. Gouda and T. Szántai. On numerical calculation of probabilities according to dirichlet distribution.

Annals of Operations Research, 177:185–200, 2010.

Bibliography II

Bibliography III

[[Szántai(1985)] T. Szántai. Numerical evaluation of probabilities concerning multi-dimensional probability distributions.

PhD thesis, Hungarian Academy of Sciences, 1985.

[[Uryas'ev(2009)]

S. Urvas'ev.

Derivatives of probability and integral functions: General theory and examples.

In C. A. Floudas and P. M. Pardalos, editors, *Encyclopedia of Optimiza*tion, pages 658-663. Springer - Verlag, 2nd edition, 2009.

[[van Ackooij and Henrion(2014)]]W. van Ackooij and R. Henrion. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions.

SIAM Journal on Optimization, 24(4):1864–1889, 2014.

Bibliography IV

[[van Ackooij and Henrion(2016)]]W. van Ackooij and R. Henrion. (sub-) gradient formulae for probability functions of random inequality systems under gaussian distribution. Submitted, WIAS preprint 2230, pages 1-24, 2016.

[[van Ackooij and Minoux(2015)]
[W. van Ackooij and M. Minoux. A characterization of the subdifferential of singular Gaussian distribution functions

Set Valued and Variational Analysis, 23(3):465–483, 2015. doi: 10.1007/s11228-015-0317-8.

[[van Ackooij et al.(2011)]
[W. van Ackooij, R. Henrion, A. Möller, and R. Zorgati.

On joint probabilistic constraints with Gaussian Coefficient Matrix. Operations Research Letters, 39:99–102, 2011.

