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Introduction
o

Motivation

Motivation |

m A Probabilistic constraint is a constraint of the type

p(x) :==P[g(x, &) < 0] = p, (1)

where g : R" x R™ — R¥ is a map, £ € R™ a (multi-variate) random
variable

m Such constraints arise in many applications. For instance cascaded Reser-
voir management.

m We care for further understanding of differentiability of probability func-
tions
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Introduction

@00

Classics

Some differentiability properties of PCs |

m General differentiability statements exist and represent the gradient as
an involved integral over a “surface” and “volume”. A key condition is
that {z € R™ : g(x,z) < 0} is bounded locally around a point x (e.g.,
[Uryas’ev(2009)]).
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Introduction

oeo

Classics

Some differentiability properties of PCs |l

m Specific formulas such as the following, allow for efficient computation in
practice:

Lemma ([Prékopa(1970), Prékopa(1995

Let ¢ be an m-dimensional Gaussian random vector with mean 1. € R™ and
positive definite variance-covariance matrix . Then the distribution function
Fe(z) := P[¢ < Zz] is continuously differentiable and in any fixed z € R™ the
following holds:

OF, :
—8; (2) = fe(2) Feppy (215 e Zimty Zigty ooy Zm), i =1, i m. @)
1

Here £(z;) is a Gaussian random variable with mean fi € R’”*‘ and (m —
1) x (m — 1) positive definite covariance matrix >. Let D, denote the m-
th order identity matrix from which the ith row has been deleted. Then fi =
Dpy(p+%; " (zi — w)Xi) and ¥ = Dip(X — X' 2,5])(D,)", where ¥; is the i-th
column of X.

u L oeDF
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Introduction

ooe

Classics

Some differentiability properties of PCs |

B o(x) :=P[¢ < x] ([Prékopa(1970)]) We have

0 .
o = (0PI < 5]

B o(x) := P[A(x)¢ < a(x)] ([van Ackooij et al.(2011)])
B o(x) := P[A¢ < a(x)] ([Henrion and Méller(2012)])
m Other cases involve distribution functions of Dirichlet

([Szantai(1985), Gouda and Szantai(2010)])
and multi-variate Gamma ([Prékopa and Szantai(1979)]) random variables
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Differentiability: setting

Differentiability: setting
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Differentiability: setting
[ Je]

Setting

Setting

m Consider the probabilistic constraint :
e(x) :==Plg(x,§) <0] > p, ©)

where g : R” x R™ — RP is a continuously differentiable map (convex in
the second argument), £ ~ N(u, ) a (multi-variate) Gaussian random
variable.
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Differentiability: setting
oe

Setting

Motivation

m We would like to dispose of a gradient formulae for the case

e(x) :==P[{c,n) < h(x)],
where ¢ > 0,c € R™, and n € R™ is a log-normal random variable
m We can cast this into the general case by defining the mapping
g(x, 2) = (c,exp(2)) — h(x).
m Then o(x) = P[g(x, &) < 0] with & ~ N (i, X).

m In fact by redefining g we may assume w.l.o.g. that ¢ ~ A/(0, R).

< ~epF
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Differentiability: setting

[ Jelelele}

Inherent non-smoothness

Inherent non-smoothness

m |t is tempting to believe that “nice” properties of g carry forth to ¢. For
instance, if g is smooth enough, that ¢ will be at least continuously differ-
entiable.

m Though “nasty laws” for £ can be expected to have side-effects, nice laws
may not.

m Let us first show that such considerations are dangerous.

< ~epF
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Differentiability: setting
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Inherent non-smoothness

Inherent non-smoothness: counterexample

Differentiability need not hold:

Proposition
Let g : R? x R? — R be defined by

9 (X1, X, 21, 22) = x2e"*) 4 xo20 — 1, where h(t) ;= —1—2log(1 — d(t))

and & is the cumulative distribution function of the one-dimensional standard
Gaussian distribution. Let ¢ ~ N (0, k) and X = (0,1). Then, the following
holds true:

E g is continuously differentiable.
g is convex in the second argument.
g(x,0)=g(0,1,0,0) <O0.
B  is not differentiable at x.
-
~ 5 EDF

12/56



Differentiability: setting
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Inherent non-smoothness

Inherent non-smoothness: counterexample

Graph of a non-differentiable probability function
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Differentiability: setting
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Inherent non-smoothness

Inherent non-smoothness: several components

Things may also go wrong when p > 1, i.e., g has several components:

Example

Let £ have a one-dimensional standard Gaussian distribution and define

g(X1, X2, X3,&) = (§ — X1, — X2, =€ — Xa).

Then, with ® referring to the one-dimensional standard Gaussian distribution
function, one has that

o(x1, x2) = max{min{®(x1), P(x2)} — ®(x3),0}.
Clearly ¢ fails to be differentiable at x := (0,0, —1), while {z : g(x,z) < 0} =
[-1,0] is compact and satisfies Slater’s condition in the description via g.
.
~ 5 EDF
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Differentiability: setting
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Inherent non-smoothness

Inherent non-smoothness: the need for additional conditions

m From these discussion it is clear that some conditions needs to be ap-
pended in order to avoid some degeneracy

m Essentially two conditions are needed: bounded growth on Vg, some
LICQ type of regularity.

< ~epF
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Differentiability: setting

€00
Evaluating the probability

Evaluating P

m LetS™ ' :={zeR"|X, zf =1} be the euclidian unit-sphere of R™.
m Let £ ~ N(0, R) be given and L be such that R = LLT.

m |t is well known that £ = nL¢, where n has a chi-distribution with m de-
grees of freedom and ¢ is uniformly distributed over S™

< ~epF
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Differentiability: setting

0®0
Evaluating the probability

Evaluating P Il

m As a consequence if M C R” is Lebesgue measurable

m We have

Plee M= [ (r=0:mvam 20 duc o)

vesm—1

m Efficient sampling schemes for such integrals are provided by [Deak(1986),
Dedk(2000)]

m Inourcase M(x) = {z € R™ : g(x,z) < 0}is a convex (hence Lebesgue
measurable) set.
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Differentiability: setting

ooe
Evaluating the probability

Growth control

We cannot allow for unbounded growth of the mapping g. We thus define:

Definition
We say that g satisfies the exponential growth condition at x if there exist
constants do, C > 0 and a neighbourhood U(x) such that

[Vxg (x',2)|| < doexp(llz]]) VX € U(x)Vz:|z| > C.
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Differentiability: results

Differentiability: results

< ~epF

19/56



Differentiability: results
[ Jelele)

The one component case

The case p =1

m We define the sets of finite and infinite directions:
F(x):= {v es"3r>0:g(x, rLv) = o}

I(x) := {v eS™Vr>0:g(x,rLv) # 0} .

m For each x € R” with g(x,0) < 0 and v € F(x) we can find a unique
p'(x,v) > 0such that g(x, p*"(x, v)Lv) = 0.

m Numerically this value can be computed by a simple application of Newton-
Rhapson.
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The anc compenent case

The case p = 1: lllustration
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(o]

The one component case

The case p = 1: main result

Letg : R" x R™ — R be a continuously differentiable function which is con-
vex with respect to the second argument. Consider the probability function ¢
defined as p(x) = Plg(x, &) < 0], where £ ~ N (0, R) has a standard Gaus-
sian distribution with correlation matrix R. Let the following assumptions be
satisfied at some X :

H g(x,0) <0.

g satisfies the exponential growth condition at x
Then, ¢ is continuously differentiable on a neighbourhood U of x and it holds
for all x € U that:

B (P (%,¥)) Vg (%, 5 (x, V) Lv)
L B e e UL

vEF(x)
& —eDF

22/56



Differentiability: results
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The one component case

The previous Theorem remains true if the growth condition is replaced by the
condition that the set {z|g(x, z) < 0} is bounded. Then, the formula becomes

~ X (P (%)) Vg (%, 5 (%, V) LV)
Vo= [ g T T ()

vesm—1
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Differentiability: results
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More than one component

The case p > 1

® When p > 1 we can define
9"(x,2) = max_g(x,2), (5)
j=1,....p
m Evidently, the probability function can be written as ¢(x) = P(9"(x, &) <
0).

m For each x € R" with g(x,0) < 0 and v € F(x) we can find a unique
p*Y(x,v) > 0 such that g"(x, p*"(x, v)Lv) = 0. However this p*" is no
longer smooth!

m The sets of finite and infinite directions can be defined with respect to g”
or alternatively as unions (intersections) of their counterparts with respect
to each component of g.

< ~epF

24/56



Differentiability: results
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More than one component

The case p > 1: main result

Theorem ([van Ackooij and Henrion(2016

Let the following conditions be satisfied at some fixed x € R":
| g"(x,0) <0.
g; satisfies the exponential growth condition at x forallj =1, ..., p.

Then, ¢ is locally Lipschitz continuous on a neighbourhood U of X and it holds
that

¢ X (A (X, V) Vxgj (X, p (X, V) Lv)
e x) < / CO{_ (V2gi (x,p (x v)Lv), Lv)

jedw, v)} due(v)
vEF(x)

(6)
for all x € U. Here,
j(x, v)={je{1,...,pHgi(x,p(x,v)Lv) =0} (ve F(x))
< cepF
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Differentiability: results
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More than one component

The case p > 1: A first discussion

m Note that in the case p > 1, under the same conditions as for the case
p = 1, we have a weaker results: local Lipschitz continuity and an outer
estimate of the clarke-subdifferential

m The earlier example showed that this is inherent and not a weakness of
the analysis.

< ~epF
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Differentiability: results
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More than one component

The case p > 1: R2CQ

Definition
For any x € R" and z € R™ we denote by
Z(x,z):={je{1,...,p}g;(x,2z) =0} (7)

the active index set of g at (x, z). We say that the inequality system g (x, z) <
0 satisfies the Rank-2-Constraint Qualification (R2CQ) at x € R" if

rank {Vzgj (X7Z) ; Vzgi (sz)} =2 VI,] € I(X,Z) o 7£] (8)
VzeR":g(x,z) <0. 9)
.
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Differentiability: results
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More than one component

The case p > 1: R2CQ < LICQ

m Note that (R2CQ) is substantially weaker than the usual Linear Inde-
pendence Constraint Qualification (LICQ) common in nonlinear optimiza-
tion and requiring the linear independence of all gradients to active con-

straints.

< ~epF
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Differentiability: results
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More than one component

The case p > 1: An auxiliary result

Lemma (Jvan Ackooij and Henrion(2016
Letx € R" be given such that

g™ (x,0) < 0.
g satisfies (R2CQ) at X.

Then, pec (M) =0forM := {v e S" "3r > 0: g(X,rLv) <0, #I(X,rLv) > 2},
where L is the regular matrix in the decomposition R = LLT.

< ~epF
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Differentiability: results
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More than one component

The case p > 1: smoothness

Theorem ([van Ackooij and Henrion(2016

Let the following conditions be satisfied at some fixed x € R":
H g”"(x,0) <0.
g; satisfies the exponential growth condition at x forallj =1, ..., p.
(R2CQ) is satisfied

Then, ¢ is Fréchet differentiable at x and the gradient formula:

- X(ﬁ()_(, V)) ng/(v) ()_(7ﬁ()_(7 V) LV)
V(X) = — / — duc(v), (10)
& A (Vg o) L) vy <)
VEF(X),#J (X,v)=
holds true.
If (R2CQ) is satisfied locally around X, then, o is continuously differentiable at
X.

< ~epF
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Differentiability: results
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More than one component

One last remark

The condition g(x, 0) < 0 is not very restrictive as the following result shows:

With g and ¢ as before, let the following assumptions be satisfied at some X :
There exists some z such that g(x,z) < 0.
o(X) > 1/2.

Then, g(x,0) < 0.

< ~epF
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(Sub-)Differentiability
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(Sub-)Differentiability
[ Jole}

Motivation and Setting

Motivation

m Let us consider the special case wherein ¢ results from
e(x) :=P[BE < h(x)], (11)
with ¢ ~ NV (u, X), £ = 0.

m When Bis of full rank then, B"SB > 0 too and differentiability follows from
classic results.

m However in many applications B has more rows than columns (for in-

stance when coming from Gale-Hoffmann inequalities): ¢ is no longer
smooth.

'~ eDF
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(Sub-)Differentiability
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Motivation and Setting

Motivation

Example
Letm=1,k=2,¢£~ N(0,1) and B be given by

Then it is readily observed that ¢(x) = P[B¢ < x] = P[¢ < min{xq, X2}]. As a
consequence ¢ fails to be differentiable on the line x; = x; as is readily seen
on the figure:

2 CDF
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(Sub-)Differentiability
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Motivation and Setting

Setting

m Without loss of generality we concentrate on p(z) = P[¢ < Z], with £ ~
N(0,%)and X > 0.

m We may also assume that X; = 1 for all / without loss of generality (as oth-

erwise either the system contains a redundant constraint (locally around
z), or ¢ fails to be continuous in z).

< ~epF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

Correlation graph

Definition

Let X be an m x m covariance matrix having all diagonal entries equal to 1. Let
G(X) = (V, E) denote the (undirected) graph on the vertex set V = {1, ..., m}
and with edge set E = ETUE™ = {(i,j) : i #j,Zi = 1YU{(i,)) : i #j, Zi = —1}.
The graph G(X) (which may contain isolated vertices) will be called the corre-
lation graph associated with X.

< ~epF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

Correlation graph: Example

Consider the 4 x 4 covariance matrix ¥ defined as follows:

then the correlation graph: is obtained
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

Correlation graph

m The correlation graph features Q connected components (each being ei-
ther an isolated vertex or a complete subgraph (a clique)).

m Each connected component G = (V9, E9) is bipartite and can be sep-

arated into a left and right side L9, R9: elements within L9 are positively
correlated, elements in L9 are negatively correlated to those in RY.

'~ eDF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

Correlation graph and z

Definition

Let G(X) = (V, E) be a correlation graph:

m Given an arbitrary z € R™, we will say that z is auto-referenced if there
exists an arc (i,j) € E such that z; = ¥;z (in other words, such that
zi=z;if (i,f) € E* or such that z; = —z if (i,j) € E7).

m An auto-referenced point z € R™ will be called changeable if there exists
(i,j) € E such that zc > z for all (k,i) € Et and zx > —z for all
(k,i) € E~.

The arc (i,j) € E will occasionally be referred to as an auto-referencing (a
changeable) arc with respect to z if z is auto-referenced (changeable).

<'=epF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

Correlation graph: Example

Example

Consider again z = (1,-2,1,—1) and

Then z is auto-referenced (blue), but not changeable (—2 > —1 is false).

< ~epF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

Correlation graph: Example 2

Example

Consider again z = (2,—2,3,—1) and

Then z is changeable (green) (argmins among the partitions L9, R9).

< ~epF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

A first result

Theorem ([van Ackooij and Minoux(2015

Let ¢ be an m-dimensional Gaussian random vector with mean p € R™ and
covariance matrix ¥ having all diagonal entries equal to 1. Then for arbitrary
not-changeable z — . € R™, the distribution function F¢(z) := P[¢ < Z] is
locally Lipschitz at z and 0°F¢(z) = {v}, where for arbitrary i=1,...,m:

Vi = fﬁi(zf)Ff(z,-)(z1 5 coog A=) g ZH g ooog Zm). (12)

Here d°F¢(z) denotes the Clarke-subdifferential of F; and &(z;) is an m — 1
dimensional Gaussian random vector (familiar from classic results)

'~ eDF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

The familiar associated Gaussian

m f, is the one dimensional Gaussian density of ¢;

&(z) ~ N (p, %)

m Let D), denote the (m — 1) x m matrix deduced from the m x m identity
matrix by deleting the ith row.

B = Dp(p+ %, (2 — p)E0)
S = Dip(T - % 55T )(D)',

where Y, is the i-th column of X and X; is the i-th element of the main
diagonal of X.

< ~epF
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A characterization of the Clarke-subdifferential

And changeable points?

Proposition (Jvan Ackooij and Minoux(2015

Let G = (V9, EY), be the connected g = 1, ..., Q components of the correla-
tion graph and (L9, RY) be the associated bipartition. Let z be changeable.
Define J C {1, ..., Q} as the set of all q for which either |V9| = 1 or no change-
able arc exists in V9. For each remaining q € {1,...,Q} \ J, pick 19 € L9,
r? € RI such that ziq < z, forallp € LY and z,a < z, forallp € RI. If R is
empty, r? should be interpreted as being “empty".

Then the distribution function F¢(z) := P[¢ < Z] is locally Lipschitz at z and
v € 8°F¢(z), where for arbitrary i=1,...,m:

fgi(Z,‘)Fg(zl,)(Z1 s ooy Zie1y ZitAy ooy Zm) if i € Ujey Z
Vi = f&,’(zi)Fg(zi)(Zh~-‘7Zi—1:ZI'+17~-7Zf77) if qu {1,...,0}\;]71'6 {/q,l
0 otherwise
(13)

Moreover 9°F¢(z) contains at least two elements.
& S EeDF
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(Sub-)Differentiability
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A characterization of the Clarke-subdifferential

A final definition

Definition

Let z € R™ be arbitrary. Define the set £(z) as the set of all v defined accord-
ing to previous formula, where we enumerate all possible choices of /9, r? for
each q. For a specific g if V9 contains a changeable arc with one endpoint in
L9 and the other endpoint in R we adjoin to this set of choices, v € R”, with
Vo =0 for p € V9.

'~ eDF
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A characterization of the Clarke-subdifferential

The main result

Theorem ([van Ackooij and Minoux(2015

Let ¢ be an m-dimensional Gaussian random vector with mean . € R™ and
covariance matrix ¥ having all diagonal entries equal to 1. Then the distribu-
tion function F¢(z) := IP[¢ < Z] is continuously differentiable if and only if z— 1
is not changeable.

Moreover F¢ is locally Lipschitz at z and

O°Fe(2) = co (E(2)), (14)

where co (B) denotes the convex hull of set B C R™.

< ~epF
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(M-Sub)Differentiability

Linear maps as a special case: another formula

When seeing the linear situation, i.e., ¢(x) := P[A¢ < x], as a special case of
nonlinear g we get:

Corollary

Let ¢ ~ N (0, R) for some positive definite correlation matrix R admitting a

decomposition R = LLT. Fix any X € R" such thatx; > 0 forallje {1,...,p}.
Finally assume that any two active rows of the matrix A are linearly indepen-
dent:
Az <X, Aiz=X;, Aiz=Xj, | # j = rank {A;, A} =2 (15)
Then, ¢ is continuously differentiable at x and it holds that
0p .\ x (A (v)) 7

veSM—1|ALv>0,x;=p(v)A;Lv
] y) J

<'=eDF
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(M-Sub)Differentiability

Some notation

m We introduce the following equivalence class within the index set {1,..., p}
of rows of the matrix A:

iNj<:>3)\€R:A/=)\Aj,)_(/=)\)_(j.

m By the assumption x; > 0 forallj € {1,...,p}, i ~jimplies that A > 0 in
the defining relation.

m Moreover i ~ j implies that rows A; and A; of A are linearly independent.

'~ eDF
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(Sub-)Differentiability
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(M-Sub)Differentiability

Some notation

m Denote by p < p the number of different equivalence classes [/].

m We may assume (w.l.o.g) that the first p rows of A belong to different
equivalence classes.

m Now, forany i=1,..., pthat

Az <X Vjeli] < Az < h(x):=min\"

X;. 17
jem (a7

m We denote by A the submatrix of first p rows of A.

< ~epF
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(M-Sub)Differentiability

A fine characterization of the M-subdifferential

We can then show

Theorem ([van Ackooij and Henrion(2016

Let ¢ ~ N (0,R) for some positive definite correlation matrix R admitting a
decomposition R = LLT. Fix any X € R" such thatx; > 0 forallj € {1,...,p}.
Then, ¢ is locally Lipschitz continuous and its Mordukhovich subdifferential
can be estimated from above by

p A
2w < [ Xp D e - Uy e 55 =0}
where B
(v) == min {y,/(A,-Lv)U e{1,....pt: ALv > o}‘

and B 3
G = {v eS™ ALy > 0,7 = p(v) A,-Lv} .

- S€DF
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Summary

Summary

In this talk we have discussed several aspects related to differentiability of
chance constraints
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