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Motivation

Motivation I

A Probabilistic constraint is a constraint of the type

ϕ(x) := P[g(x , ξ)  0] � p, (1)

where g : R
n ⇥ R

m ! R
k is a map, ξ 2 R

m a (multi-variate) random

variable

Such constraints arise in many applications. For instance cascaded Reser-

voir management.

We care for further understanding of differentiability of probability func-

tions
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Classics

Some differentiability properties of PCs I

General differentiability statements exist and represent the gradient as

an involved integral over a “surface” and “volume” . A key condition is

that {z 2 R
m : g(x , z)  0} is bounded locally around a point x (e.g.,

[Uryas’ev(2009)]).
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Classics

Some differentiability properties of PCs II

Specific formulas such as the following, allow for efficient computation in

practice:

Lemma ([Prékopa(1970), Prékopa(1995)])

Let ξ be an m-dimensional Gaussian random vector with mean µ 2 R
m and

positive definite variance-covariance matrix Σ. Then the distribution function

Fξ(z) := P[ξ  z] is continuously differentiable and in any fixed z 2 R
m the

following holds:

∂Fξ

∂zi

(z) = fξi
(zi)Fξ̃(zi )

(z1, ..., zi�1, zi+1, ..., zm), i = 1, ...,m. (2)

Here ξ̃(zi) is a Gaussian random variable with mean µ̂ 2 R
m�1 and (m �

1) ⇥ (m � 1) positive definite covariance matrix Σ̂. Let Di
m denote the m-

th order identity matrix from which the ith row has been deleted. Then µ̂ =
Di

m(µ+Σ
�1
ii (zi �µi)Σi) and Σ̂ = Di

m(Σ�Σ
�1
ii ΣiΣ

T
i )(D

i
m)

T, where Σi is the i-th

column of Σ.
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Classics

Some differentiability properties of PCs III

ϕ(x) := P[ξ  x ] ([Prékopa(1970)]) We have

∂ϕ

∂xi

= fµi ,Σii
(xi)P[ξ̃  x̃ ]

ϕ(x) := P[A(x)ξ  α(x)] ([van Ackooij et al.(2011)])

ϕ(x) := P[Aξ  α(x)] ([Henrion and Möller(2012)])

Other cases involve distribution functions of Dirichlet

([Szántai(1985), Gouda and Szántai(2010)])

and multi-variate Gamma ([Prékopa and Szántai(1979)]) random variables
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Setting

Setting

Consider the probabilistic constraint :

ϕ(x) := P[g(x , ξ)  0] � p, (3)

where g : Rn ⇥ R
m ! R

p is a continuously differentiable map (convex in

the second argument), ξ ⇠ N (µ,Σ) a (multi-variate) Gaussian random

variable.
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Setting

Motivation

We would like to dispose of a gradient formulae for the case

ϕ(x) := P[hc, ηi  h(x)],

where c � 0, c 2 R
m, and η 2 R

m is a log-normal random variable

We can cast this into the general case by defining the mapping

g(x , z) = hc, exp(z)i � h(x).

Then ϕ(x) = P[g(x , ξ)  0] with ξ ⇠ N (µ,Σ).

In fact by redefining g we may assume w.l.o.g. that ξ ⇠ N (0,R).
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Inherent non-smoothness

Inherent non-smoothness

It is tempting to believe that “nice” properties of g carry forth to ϕ. For

instance, if g is smooth enough, that ϕ will be at least continuously differ-

entiable.

Though “nasty laws” for ξ can be expected to have side-effects, nice laws

may not.

Let us first show that such considerations are dangerous.
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Inherent non-smoothness

Inherent non-smoothness: counterexample

Differentiability need not hold:

Proposition

Let g : R2 ⇥ R
2 ! R be defined by

g (x1, x2, z1, z2) := x
2
1 e

h(z1) + x2z2 � 1, where h(t) := �1 � 2 log(1 �Φ(t))

and Φ is the cumulative distribution function of the one-dimensional standard

Gaussian distribution. Let ξ ⇠ N (0, I2) and x̄ = (0, 1). Then, the following

holds true:

1 g is continuously differentiable.

2 g is convex in the second argument.

3 g (x̄ , 0) = g (0, 1, 0, 0) < 0.

4 ϕ is not differentiable at x̄ .
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Inherent non-smoothness

Inherent non-smoothness: counterexample

Graph of a non-differentiable probability function
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Inherent non-smoothness

Inherent non-smoothness: several components

Things may also go wrong when p > 1, i.e., g has several components:

Example

Let ξ have a one-dimensional standard Gaussian distribution and define

g(x1, x2, x3, ξ) := (ξ � x1, ξ � x2,�ξ � x3).

Then, with Φ referring to the one-dimensional standard Gaussian distribution

function, one has that

ϕ(x1, x2) = max{min{Φ(x1),Φ(x2)}� Φ(x3), 0}.

Clearly ϕ fails to be differentiable at x̄ := (0, 0,�1), while {z : g(x̄ , z)  0} =
[�1, 0] is compact and satisfies Slater’s condition in the description via g.
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Inherent non-smoothness

Inherent non-smoothness: the need for additional conditions

From these discussion it is clear that some conditions needs to be ap-

pended in order to avoid some degeneracy

Essentially two conditions are needed: bounded growth on rx g, some

LICQ type of regularity.

15 / 56



Introduction Differentiability: setting Differentiability: results (Sub-)Differentiability Summary

Evaluating the probability

Evaluating P

Let Sm�1 :=
�

z 2 R
m
�

�

Pm
i=1 z2

i = 1
 

be the euclidian unit-sphere of Rm.

Let ξ ⇠ N (0,R) be given and L be such that R = LLT.

It is well known that ξ = ηLζ, where η has a chi-distribution with m de-

grees of freedom and ζ is uniformly distributed over Sm�1
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Evaluating the probability

Evaluating P II

As a consequence if M ✓ R
m is Lebesgue measurable

We have

P[ξ 2 M] =

Z

v2Sm−1

µη ({r � 0 : rLv \ M 6= ;}) dµζ (4)

Efficient sampling schemes for such integrals are provided by [Deák(1986),

Deák(2000)]

In our case M(x) = {z 2 R
m : g(x , z)  0} is a convex (hence Lebesgue

measurable) set.
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Evaluating the probability

Growth control

We cannot allow for unbounded growth of the mapping g. We thus define:

Definition

We say that g satisfies the exponential growth condition at x if there exist

constants δ0,C > 0 and a neighbourhood U(x) such that

�

�rx g
�

x
0, z

��

�  δ0 exp(kzk) 8x
0 2 U(x) 8z : kzk � C.
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The one component case

The case p = 1

We define the sets of finite and infinite directions:

F (x) :=
n

v 2 S
m�1|9r > 0 : g (x , rLv) = 0

o

I(x) :=
n

v 2 S
m�1|8r > 0 : g (x , rLv) 6= 0

o

.

For each x 2 R
n with g(x , 0) < 0 and v 2 F (x) we can find a unique

ρx,v (x , v) > 0 such that g(x , ρx,v (x , v)Lv) = 0.

Numerically this value can be computed by a simple application of Newton-

Rhapson.
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The one component case

The case p = 1: main result

Theorem ([van Ackooij and Henrion(2014)])

Let g : Rn ⇥ R
m ! R be a continuously differentiable function which is con-

vex with respect to the second argument. Consider the probability function ϕ

defined as ϕ(x) = P[g(x , ξ)  0], where ξ ⇠ N (0,R) has a standard Gaus-

sian distribution with correlation matrix R. Let the following assumptions be

satisfied at some x̄:

1 g (x̄ , 0) < 0.

2 g satisfies the exponential growth condition at x̄

Then, ϕ is continuously differentiable on a neighbourhood U of x̄ and it holds

for all x 2 U that:

rϕ (x) = �

Z

v2F (x)

χ (ρx,v (x , v))rx g (x , ρx,v (x , v) Lv)

hrzg (x , ρx,v (x , v) Lv) , Lvi
dµζ(v).
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The one component case

Theorem

The previous Theorem remains true if the growth condition is replaced by the

condition that the set {z|g(x̄ , z)  0} is bounded. Then, the formula becomes

rϕ (x) = �

Z

v2Sm−1

χ (ρx,v (x , v))rx g (x , ρx,v (x , v) Lv)

hrzg (x , ρx,v (x , v) Lv) , Lvi
dµζ(v)
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More than one component

The case p > 1

When p > 1 we can define

g
m(x , z) = max

j=1,...,p
gj(x , z), (5)

Evidently, the probability function can be written as ϕ(x) = P(gm(x , ξ) 
0).

For each x 2 R
n with g(x , 0) < 0 and v 2 F (x) we can find a unique

ρx,v (x , v) > 0 such that gm(x , ρx,v (x , v)Lv) = 0. However this ρx,v is no

longer smooth!

The sets of finite and infinite directions can be defined with respect to gm

or alternatively as unions (intersections) of their counterparts with respect

to each component of g.
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More than one component

The case p > 1: main result

Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed x̄ 2 R
n:

1 gm (x̄ , 0) < 0.

2 gj satisfies the exponential growth condition at x̄ for all j = 1, ..., p.

Then, ϕ is locally Lipschitz continuous on a neighbourhood U of x̄ and it holds

that

∂
c
ϕ (x) ✓

Z

v2F (x)

Co

⇢

�
χ (ρ̂ (x , v))rx gj (x , ρ̂ (x , v) Lv)

hrzgj (x , ρ̂ (x , v) Lv) , Lvi

�

�

�

�

j 2 Ĵ (x , v)

�

dµζ(v)

(6)

for all x 2 U. Here,

Ĵ (x , v) := {j 2 {1, . . . , p}|gj(x , ρ̂ (x , v) Lv) = 0} (v 2 F (x))
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More than one component

The case p > 1: A first discussion

Note that in the case p > 1, under the same conditions as for the case

p = 1, we have a weaker results: local Lipschitz continuity and an outer

estimate of the clarke-subdifferential

The earlier example showed that this is inherent and not a weakness of

the analysis.
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More than one component

The case p > 1: R2CQ

Definition

For any x 2 R
n and z 2 R

m we denote by

I (x , z) := {j 2 {1, . . . , p} |gj (x , z) = 0} (7)

the active index set of g at (x , z). We say that the inequality system g (x , z) 
0 satisfies the Rank-2-Constraint Qualification (R2CQ) at x 2 R

n if

rank {rzgj (x , z) ,rzgi (x , z)} = 2 8i, j 2 I (x , z) , i 6= j (8)

8z 2 R
m : g (x , z)  0. (9)
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More than one component

The case p > 1: R2CQ < LICQ

Note that (R2CQ) is substantially weaker than the usual Linear Inde-

pendence Constraint Qualification (LICQ) common in nonlinear optimiza-

tion and requiring the linear independence of all gradients to active con-

straints.
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More than one component

The case p > 1: An auxiliary result

Lemma ([van Ackooij and Henrion(2016)])

Let x̄ 2 R
n be given such that

1 gm (x̄ , 0) < 0.

2 g satisfies (R2CQ) at x̄ .

Then, µζ (M
0) = 0 for M 0 :=

�

v 2 S
m�1|9r > 0 : g (x̄ , rLv)  0, #I (x̄ , rLv) � 2

 

,

where L is the regular matrix in the decomposition R = LLT .
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More than one component

The case p > 1: smoothness

Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed x̄ 2 R
n:

1 gm (x̄ , 0) < 0.

2 gj satisfies the exponential growth condition at x̄ for all j = 1, ..., p.

3 (R2CQ) is satisfied

Then, ϕ is Fréchet differentiable at x̄ and the gradient formula:

rϕ(x̄) = �

Z

v2F (x̄),#Ĵ (x̄,v)=1

χ (ρ̂ (x̄ , v))rx gj(v) (x̄ , ρ̂ (x̄ , v) Lv)
⌦

rzgj(v) (x̄ , ρ̂ (x̄ , v) Lv) , Lv
↵ dµζ(v), (10)

holds true.

If (R2CQ) is satisfied locally around x̄, then, ϕ is continuously differentiable at

x̄ .
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More than one component

One last remark

The condition g(x , 0) < 0 is not very restrictive as the following result shows:

Lemma

With g and ϕ as before, let the following assumptions be satisfied at some x̄:

1 There exists some z̄ such that g(x̄ , z̄) < 0.

2 ϕ(x̄) > 1/2.

Then, g(x̄ , 0) < 0.
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Motivation and Setting

Motivation

Let us consider the special case wherein ϕ results from

ϕ(x) := P[Bξ  h(x)], (11)

with ξ ⇠ N (µ,Σ), Σ � 0.

When B is of full rank then, BT
ΣB � 0 too and differentiability follows from

classic results.

However in many applications B has more rows than columns (for in-

stance when coming from Gale-Hoffmann inequalities): ϕ is no longer

smooth.
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Motivation and Setting

Motivation

Example

Let m = 1, k = 2, ξ ⇠ N (0, 1) and B be given by

B =

✓

1

1

◆

.

Then it is readily observed that ϕ(x) = P[Bξ  x ] = P[ξ  min {x1, x2}]. As a

consequence ϕ fails to be differentiable on the line x1 = x2 as is readily seen

on the figure:
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Motivation and Setting

Setting

Without loss of generality we concentrate on ϕ(z) = P[ξ  z], with ξ ⇠
N (0,Σ) and Σ ⌫ 0.

We may also assume that Σii = 1 for all i without loss of generality (as oth-

erwise either the system contains a redundant constraint (locally around

z), or ϕ fails to be continuous in z).
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A characterization of the Clarke-subdifferential

Correlation graph

Definition

Let Σ be an m⇥m covariance matrix having all diagonal entries equal to 1. Let

G(Σ) = (V ,E) denote the (undirected) graph on the vertex set V = {1, ...,m}
and with edge set E = E+[E� = {(i, j) : i 6= j,Σji = 1}[{(i, j) : i 6= j,Σji = �1}.

The graph G(Σ) (which may contain isolated vertices) will be called the corre-

lation graph associated with Σ.
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A characterization of the Clarke-subdifferential

Correlation graph: Example

Example

Consider the 4 ⇥ 4 covariance matrix Σ defined as follows:

Σ =

0

B

B

@

1 �1 1 �1

�1 1 �1 1

1 �1 1 �1

�1 1 �1 1

1

C

C

A

,

then the correlation graph:
1

2

3

4

-
+

--
+

-

is obtained
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A characterization of the Clarke-subdifferential

Correlation graph

The correlation graph features Q connected components (each being ei-

ther an isolated vertex or a complete subgraph (a clique)).

Each connected component Gq = (V q ,Eq) is bipartite and can be sep-

arated into a left and right side Lq ,Rq : elements within Lq are positively

correlated, elements in Lq are negatively correlated to those in Rq .
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A characterization of the Clarke-subdifferential

Correlation graph and z

Definition

Let G(Σ) = (V ,E) be a correlation graph:

Given an arbitrary z 2 R
m, we will say that z is auto-referenced if there

exists an arc (i, j) 2 E such that zj = Σjizi (in other words, such that

zj = zi if (i, j) 2 E+ or such that zj = �zi if (i, j) 2 E�).

An auto-referenced point z 2 R
m will be called changeable if there exists

(i, j) 2 E such that zk � zi for all (k , i) 2 E+ and zk � �zi for all

(k , i) 2 E�.

The arc (i , j) 2 E will occasionally be referred to as an auto-referencing (a

changeable) arc with respect to z if z is auto-referenced (changeable).

39 / 56



Introduction Differentiability: setting Differentiability: results (Sub-)Differentiability Summary

A characterization of the Clarke-subdifferential

Correlation graph: Example

Example

Consider again z = (1,�2, 1,�1) and

Σ =

0

B

B

@

1 �1 1 �1

�1 1 �1 1

1 �1 1 �1

�1 1 �1 1

1

C

C

A

,

z1 = 1

z2 = �2

z3 = 1

z4 = �1

-

+

--

+

-

Then z is auto-referenced (blue), but not changeable (�2 � �1 is false).
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A characterization of the Clarke-subdifferential

Correlation graph: Example 2

Example

Consider again z = (2,�2, 3,�1) and

Σ =

0

B

B

@

1 �1 1 �1

�1 1 �1 1

1 �1 1 �1

�1 1 �1 1

1

C

C

A

,

z1 = 2

z2 = �2

z3 = 3

z4 = �1

-

+

--

+

-

Then z is changeable (green) (argmins among the partitions Lq ,Rq).
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A characterization of the Clarke-subdifferential

A first result

Theorem ([van Ackooij and Minoux(2015)])

Let ξ be an m-dimensional Gaussian random vector with mean µ 2 R
m and

covariance matrix Σ having all diagonal entries equal to 1. Then for arbitrary

not-changeable z � µ 2 R
m, the distribution function Fξ(z) := P[ξ  z] is

locally Lipschitz at z and ∂cFξ(z) = {v}, where for arbitrary i=1,...,m:

vi = fξi
(zi)Fξ̃(zi )

(z1, ..., zi�1, zi+1, ..., zm). (12)

Here ∂cFξ(z) denotes the Clarke-subdifferential of Fξ and ξ̃(zi) is an m � 1

dimensional Gaussian random vector (familiar from classic results)
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A characterization of the Clarke-subdifferential

The familiar associated Gaussian

fξi
is the one dimensional Gaussian density of ξi

ξ̃(zi) ⇠ N (µ̂, Σ̂)

Let Di
m denote the (m � 1) ⇥ m matrix deduced from the m ⇥ m identity

matrix by deleting the i th row.

µ̂ = Di
m(µ+ Σ

�1
ii (zi � µi)Σi)

Σ̂ = D
i
m(Σ� Σ

�1
ii ΣiΣ

T
i )(D

i
m)

T,

where Σi is the i-th column of Σ and Σii is the i-th element of the main

diagonal of Σ.
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A characterization of the Clarke-subdifferential

And changeable points?

Proposition ([van Ackooij and Minoux(2015)])

Let Gq = (V q ,Eq), be the connected q = 1, ...,Q components of the correla-

tion graph and (Lq ,Rq) be the associated bipartition. Let z be changeable.

Define J ✓ {1, ...,Q} as the set of all q for which either |V q | = 1 or no change-

able arc exists in V q . For each remaining q 2 {1, ...,Q} \ J, pick lq 2 Lq ,

r q 2 Rq such that zlq  zp for all p 2 Lq and zrq  zp for all p 2 Rq . If Rq is

empty, r q should be interpreted as being “empty".

Then the distribution function Fξ(z) := P[ξ  z] is locally Lipschitz at z and

v 2 ∂cFξ(z), where for arbitrary i=1,...,m:

vi =

8

<

:

fξi
(zi)Fξ̃(zi )

(z1, ..., zi�1, zi+1, ..., zm) if i 2 [j2JV j

fξi
(zi)Fξ̃(zi )

(z1, ..., zi�1, zi+1, ..., zm) if 9q 2 {1, ...,Q} \ J, i 2 {lq , r

0 otherwise

(13)

Moreover ∂cFξ(z) contains at least two elements.
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A characterization of the Clarke-subdifferential

A final definition

Definition

Let z 2 R
m be arbitrary. Define the set E(z) as the set of all v defined accord-

ing to previous formula, where we enumerate all possible choices of lq , r q for

each q. For a specific q if V q contains a changeable arc with one endpoint in

Lq and the other endpoint in Rq we adjoin to this set of choices, v 2 R
m, with

vp = 0 for p 2 V q .
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A characterization of the Clarke-subdifferential

The main result

Theorem ([van Ackooij and Minoux(2015)])

Let ξ be an m-dimensional Gaussian random vector with mean µ 2 R
m and

covariance matrix Σ having all diagonal entries equal to 1. Then the distribu-

tion function Fξ(z) := P[ξ  z] is continuously differentiable if and only if z �µ
is not changeable.

Moreover Fξ is locally Lipschitz at z and

∂
c
Fξ(z) = co (E(z)), (14)

where co (B) denotes the convex hull of set B ✓ R
m.
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(M-Sub)Differentiability

Linear maps as a special case: another formula

When seeing the linear situation, i.e., ϕ(x) := P[Aξ  x ], as a special case of

nonlinear g we get:

Corollary

Let ξ ⇠ N (0,R) for some positive definite correlation matrix R admitting a

decomposition R = LLT . Fix any x̄ 2 R
n such that x̄j > 0 for all j 2 {1, . . . , p}.

Finally assume that any two active rows of the matrix A are linearly indepen-

dent:

Az  x̄ , Aiz = x̄i , Ajz = x̄j , i 6= j =) rank {Ai ,Aj} = 2. (15)

Then, ϕ is continuously differentiable at x̄ and it holds that

∂ϕ

∂xj

(x̄) =

Z

{v2Sm−1|Aj Lv>0,x̄j=ρ̂(v)Aj Lv}

χ (ρ̂ (v))

AjLv
dµζ(v) (j = 1, . . . , p) . (16)
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(M-Sub)Differentiability

Some notation

We introduce the following equivalence class within the index set {1, . . . , p}
of rows of the matrix A:

i ⇠ j () 9λ 2 R : Ai = λAj , x̄i = λx̄j .

By the assumption x̄j > 0 for all j 2 {1, . . . , p}, i ⇠ j implies that λ > 0 in

the defining relation.

Moreover i ⌧ j implies that rows Ai and Aj of A are linearly independent.
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(M-Sub)Differentiability

Some notation

Denote by p̃  p the number of different equivalence classes [i].

We may assume (w.l.o.g) that the first p̃ rows of A belong to different

equivalence classes.

Now, for any i = 1, . . . , p̃ that

Ajz  xj 8j 2 [i] () Aiz  hi(x) := min
j2[i]

λ
�1
j xj . (17)

We denote by Ã the submatrix of first p̃ rows of A.
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(M-Sub)Differentiability

A fine characterization of the M-subdifferential

We can then show

Theorem ([van Ackooij and Henrion(2016)])

Let ξ ⇠ N (0,R) for some positive definite correlation matrix R admitting a

decomposition R = LLT . Fix any x̄ 2 R
n such that x̄j > 0 for all j 2 {1, . . . , p}.

Then, ϕ is locally Lipschitz continuous and its Mordukhovich subdifferential

can be estimated from above by

∂
M
ϕ(x̄) ✓

p̃
X

i=1

Z

S

χ (ρ̂ (v))

ÃiLv
dµζ(v) ·

[

n

λ
�1
j ej |j 2 [i] : λ�1

j x̄j = hi(x̄)
o

,

where

ρ̂ (v) := min
n

ȳj/(AjLv)|j 2 {1, . . . , p̃} : ÃjLv > 0
o

.

and

S :=
n

v 2 S
m�1|ÃiLv > 0, ȳi = ρ̂ (v) ÃiLv

o

.
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Summary

In this talk we have discussed several aspects related to differentiability of

chance constraints
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