# Differentiability of probability function involving non-linear mappings of Gaussian random vectors 

## W. van Ackooij ${ }^{1}$

${ }^{1}$ OSIRIS Department
EDF R\&D
7 Boulevard Gaspard Monge; 9120 Palaiseau ; France

GDR Mascot, 13/05/2016

## Outline

1 Introduction

- Motivation
- Classics

2 Differentiability: setting
■ Setting
■ Inherent non-smoothness

- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting

■ A characterization of the Clarke-subdifferential
■ (M-Sub)Differentiability

1 Introduction

- Motivation
- Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability


## Motivation I

■ A Probabilistic constraint is a constraint of the type

$$
\begin{equation*}
\varphi(x):=\mathbb{P}[g(x, \xi) \leq 0] \geq p \tag{1}
\end{equation*}
$$

where $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is a map, $\xi \in \mathbb{R}^{m}$ a (multi-variate) random variable

■ Such constraints arise in many applications. For instance cascaded Reservoir management.

■ We care for further understanding of differentiability of probability functions

## Some differentiability properties of PCs I

■ General differentiability statements exist and represent the gradient as an involved integral over a "surface" and "volume". A key condition is that $\left\{z \in \mathbb{R}^{m}: g(x, z) \leq 0\right\}$ is bounded locally around a point $x$ (e.g., [Uryas'ev(2009)]).

## Some differentiability properties of PCs II

■ Specific formulas such as the following, allow for efficient computation in practice:

## Lemma ([Prékopa(1970), Prékopa(1995)I)

Let $\xi$ be an m-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^{m}$ and positive definite variance-covariance matrix $\Sigma$. Then the distribution function $F_{\xi}(z):=\mathbb{P}[\xi \leq z]$ is continuously differentiable and in any fixed $z \in \mathbb{R}^{m}$ the following holds:

$$
\begin{equation*}
\frac{\partial F_{\xi}}{\partial z_{i}}(z)=f_{\xi_{i}}\left(z_{i}\right) F_{\tilde{\xi}\left(z_{i}\right)}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{m}\right), i=1, \ldots, m \tag{2}
\end{equation*}
$$

Here $\tilde{\xi}\left(z_{i}\right)$ is a Gaussian random variable with mean $\hat{\mu} \in \mathbb{R}^{m-1}$ and ( $m-$ 1) $\times(m-1)$ positive definite covariance matrix $\hat{\Sigma}$. Let $D_{m}^{i}$ denote the $m$ th order identity matrix from which the ith row has been deleted. Then $\hat{\mu}=$ $D_{m}^{i}\left(\mu+\Sigma_{i i}^{-1}\left(z_{i}-\mu_{i}\right) \Sigma_{i}\right)$ and $\hat{\Sigma}=D_{m}^{i}\left(\Sigma-\Sigma_{i i}^{-1} \Sigma_{i} \Sigma_{i}^{\top}\right)\left(D_{m}^{i}\right)^{\top}$, where $\Sigma_{i}$ is the $i$-th column of $\Sigma$.

## Some differentiability properties of PCs III

■ $\varphi(x):=\mathbb{P}[\xi \leq x]$ ([Prékopa(1970)]) We have

$$
\frac{\partial \varphi}{\partial x_{i}}=f_{\mu_{i}, \Sigma_{i j}}\left(x_{i}\right) \mathbb{P}[\tilde{\xi} \leq \tilde{x}]
$$

■ $\varphi(x):=\mathbb{P}[\boldsymbol{A}(x) \xi \leq \alpha(x)]$ ([van Ackooij et al.(2011)])
■ $\varphi(x):=\mathbb{P}[\boldsymbol{A} \xi \leq \alpha(x)]$ ([Henrion and Möller(2012)])
■ Other cases involve distribution functions of Dirichlet ([Szántai(1985), Gouda and Szántai(2010)]) and multi-variate Gamma ([Prékopa and Szántai(1979)]) random variables

1 Introduction

- Motivation
- Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability


## Setting

- Consider the probabilistic constraint :

$$
\begin{equation*}
\varphi(x):=\mathbb{P}[g(x, \xi) \leq 0] \geq p, \tag{3}
\end{equation*}
$$

where $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is a continuously differentiable map (convex in the second argument), $\xi \sim \mathcal{N}(\mu, \Sigma)$ a (multi-variate) Gaussian random variable.

## Motivation

■ We would like to dispose of a gradient formulae for the case

$$
\varphi(x):=\mathbb{P}[\langle c, \eta\rangle \leq h(x)]
$$

where $c \geq 0, c \in \mathbb{R}^{m}$, and $\eta \in \mathbb{R}^{m}$ is a log-normal random variable
■ We can cast this into the general case by defining the mapping

$$
g(x, z)=\langle c, \exp (z)\rangle-h(x)
$$

■ Then $\varphi(x)=\mathbb{P}[g(x, \xi) \leq 0]$ with $\xi \sim \mathcal{N}(\mu, \Sigma)$.
■ In fact by redefining $g$ we may assume w.l.o.g. that $\xi \sim \mathcal{N}(0, R)$.

## Inherent non-smoothness

■ It is tempting to believe that "nice" properties of $g$ carry forth to $\varphi$. For instance, if $g$ is smooth enough, that $\varphi$ will be at least continuously differentiable.

■ Though "nasty laws" for $\xi$ can be expected to have side-effects, nice laws may not.

■ Let us first show that such considerations are dangerous.

## Inherent non-smoothness: counterexample

Differentiability need not hold:

## Proposition

Let $g: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by
$g\left(x_{1}, x_{2}, z_{1}, z_{2}\right):=x_{1}^{2} e^{h\left(z_{1}\right)}+x_{2} z_{2}-1$, where $h(t):=-1-2 \log (1-\Phi(t))$ and $\Phi$ is the cumulative distribution function of the one-dimensional standard Gaussian distribution. Let $\xi \sim \mathcal{N}\left(0,1_{2}\right)$ and $\bar{x}=(0,1)$. Then, the following holds true:
$1 g$ is continuously differentiable.
$\boxed{g} g$ is convex in the second argument.
3 $g(\bar{x}, 0)=g(0,1,0,0)<0$.
$4 \varphi$ is not differentiable at $\bar{x}$.

## Inherent non-smoothness: counterexample



## Inherent non-smoothness: several components

Things may also go wrong when $p>1$, i.e., $g$ has several components:

## Example

Let $\xi$ have a one-dimensional standard Gaussian distribution and define

$$
g\left(x_{1}, x_{2}, x_{3}, \xi\right):=\left(\xi-x_{1}, \xi-x_{2},-\xi-x_{3}\right) .
$$

Then, with $\Phi$ referring to the one-dimensional standard Gaussian distribution function, one has that

$$
\varphi\left(x_{1}, x_{2}\right)=\max \left\{\min \left\{\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right\}-\Phi\left(x_{3}\right), 0\right\} .
$$

Clearly $\varphi$ fails to be differentiable at $\bar{x}:=(0,0,-1)$, while $\{z: g(\bar{x}, z) \leq 0\}=$ $[-1,0]$ is compact and satisfies Slater's condition in the description via $g$.

## Inherent non-smoothness: the need for additional conditions

■ From these discussion it is clear that some conditions needs to be appended in order to avoid some degeneracy

■ Essentially two conditions are needed: bounded growth on $\nabla_{x} g$, some LICQ type of regularity.

## Evaluating $\mathbb{P}$

$■$ Let $\mathbb{S}^{m-1}:=\left\{z \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} z_{i}^{2}=1\right\}$ be the euclidian unit-sphere of $\mathbb{R}^{m}$.

- Let $\xi \sim \mathcal{N}(0, R)$ be given and $L$ be such that $R=L L^{\top}$.

■ It is well known that $\xi=\eta L \zeta$, where $\eta$ has a chi-distribution with $m$ degrees of freedom and $\zeta$ is uniformly distributed over $\mathbb{S}^{m-1}$

## Evaluating $\mathbb{P}$ II

- As a consequence if $M \subseteq \mathbb{R}^{m}$ is Lebesgue measurable
- We have

$$
\begin{equation*}
\mathbb{P}[\xi \in M]=\int_{v \in \mathbb{S}^{m-1}} \mu_{\eta}(\{r \geq 0: r L v \cap M \neq \emptyset\}) d \mu_{\zeta} \tag{4}
\end{equation*}
$$

■ Efficient sampling schemes for such integrals are provided by [Deák(1986), Deák(2000)]

■ In our case $M(x)=\left\{z \in \mathbb{R}^{m}: g(x, z) \leq 0\right\}$ is a convex (hence Lebesgue measurable) set.

## Growth control

We cannot allow for unbounded growth of the mapping $g$. We thus define:

## Definition

We say that $g$ satisfies the exponential growth condition at $x$ if there exist constants $\delta_{0}, C>0$ and a neighbourhood $U(x)$ such that

$$
\left\|\nabla_{x} g\left(x^{\prime}, z\right)\right\| \leq \delta_{0} \exp (\|z\|) \quad \forall x^{\prime} \in U(x) \forall z:\|z\| \geq C .
$$

1 Introduction
－Motivation
－Classics

2 Differentiability：setting
－Setting
－Inherent non－smoothness
－Evaluating the probability
3 Differentiability：results
－The one component case
－More than one component
4 （Sub－）Differentiability
－Motivation and Setting
－A characterization of the Clarke－subdifferential
－（M－Sub）Differentiability

## The case $p=1$

- We define the sets of finite and infinite directions:

$$
\begin{aligned}
F(x) & := & \left\{v \in \mathbb{S}^{m-1} \mid \exists r>0: g(x, r L v)=0\right\} \\
I(x) & := & \left\{v \in \mathbb{S}^{m-1} \mid \forall r>0: g(x, r L v) \neq 0\right\}
\end{aligned}
$$

■ For each $x \in \mathbb{R}^{n}$ with $g(x, 0)<0$ and $v \in F(x)$ we can find a unique $\rho^{x, v}(x, v)>0$ such that $g\left(x, \rho^{x, v}(x, v) L v\right)=0$.

■ Numerically this value can be computed by a simple application of NewtonRhapson.

## The case $p=1$ : Illustration



## The case $p=1$ : main result

## Theorem (Ivan Ackooii and Henrion(2014)I)

Let $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a continuously differentiable function which is convex with respect to the second argument. Consider the probability function $\varphi$ defined as $\varphi(x)=\mathbb{P}[g(x, \xi) \leq 0]$, where $\xi \sim \mathcal{N}(0, R)$ has a standard Gaussian distribution with correlation matrix $R$. Let the following assumptions be satisfied at some $\bar{x}$ :
$1 \mathrm{~g}(\bar{x}, 0)<0$.
$\boxed{2}$ satisfies the exponential growth condition at $\bar{x}$
Then, $\varphi$ is continuously differentiable on a neighbourhood $U$ of $\bar{x}$ and it holds for all $x \in U$ that:

$$
\nabla \varphi(x)=-\int_{v \in F(x)} \frac{\chi\left(\rho^{x, v}(x, v)\right) \nabla_{x} g\left(x, \rho^{x, v}(x, v) L v\right)}{\left\langle\nabla_{z} g\left(x, \rho^{x, v}(x, v) L v\right), L v\right\rangle} d \mu_{\zeta}(v) .
$$

## Theorem

The previous Theorem remains true if the growth condition is replaced by the condition that the set $\{z \mid g(\bar{x}, z) \leq 0\}$ is bounded. Then, the formula becomes

$$
\nabla \varphi(x)=-\int_{v \in \mathbb{S}^{m-1}} \frac{\chi\left(\rho^{x, v}(x, v)\right) \nabla_{x} g\left(x, \rho^{x, v}(x, v) L v\right)}{\left\langle\nabla_{z} g\left(x, \rho^{x, v}(x, v) L v\right), L v\right\rangle} d \mu_{\zeta}(v)
$$

## The case $p>1$

$\square$ When $p>1$ we can define

$$
\begin{equation*}
g^{m}(x, z)=\max _{j=1, \ldots, p} g_{j}(x, z) \tag{5}
\end{equation*}
$$

■ Evidently, the probability function can be written as $\varphi(x)=\mathbb{P}\left(g^{m}(x, \xi) \leq\right.$ $0)$.

■ For each $x \in \mathbb{R}^{n}$ with $g(x, 0)<0$ and $v \in F(x)$ we can find a unique $\rho^{x, v}(x, v)>0$ such that $g^{m}\left(x, \rho^{x, v}(x, v) L v\right)=0$. However this $\rho^{x, v}$ is no longer smooth!

■ The sets of finite and infinite directions can be defined with respect to $g^{m}$ or alternatively as unions (intersections) of their counterparts with respect to each component of $g$.

## The case $p>1$ : main result

## Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed $\bar{x} \in \mathbb{R}^{n}$ :
$1 g^{m}(\bar{x}, 0)<0$.
$2 g_{j}$ satisfies the exponential growth condition at $\bar{x}$ for all $j=1, \ldots, p$.
Then, $\varphi$ is locally Lipschitz continuous on a neighbourhood $U$ of $\bar{x}$ and it holds that

$$
\begin{equation*}
\partial^{c} \varphi(x) \subseteq \int_{v \in F(x)} \operatorname{Co}\left\{\left.-\frac{\chi(\hat{\rho}(x, v)) \nabla_{x} g_{j}(x, \hat{\rho}(x, v) L v)}{\left\langle\nabla_{z} g_{j}(x, \hat{\rho}(x, v) L v), L v\right\rangle} \right\rvert\, j \in \hat{\mathcal{J}}(x, v)\right\} d \mu_{\zeta}(v) \tag{6}
\end{equation*}
$$

for all $x \in U$. Here,

$$
\hat{\mathcal{J}}(x, v):=\left\{j \in\{1, \ldots, p\} \mid g_{j}(x, \hat{\rho}(x, v) L v)=0\right\} \quad(v \in F(x))
$$

## The case $p>1$ : A first discussion

■ Note that in the case $p>1$, under the same conditions as for the case $p=1$, we have a weaker results: local Lipschitz continuity and an outer estimate of the clarke-subdifferential

■ The earlier example showed that this is inherent and not a weakness of the analysis.

## The case $p>1$ : R2CQ

## Definition

For any $x \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{m}$ we denote by

$$
\begin{equation*}
\mathcal{I}(x, z):=\left\{j \in\{1, \ldots, p\} \mid g_{j}(x, z)=0\right\} \tag{7}
\end{equation*}
$$

the active index set of $g$ at $(x, z)$. We say that the inequality system $g(x, z) \leq$ 0 satisfies the Rank-2-Constraint Qualification (R2CQ) at $x \in \mathbb{R}^{n}$ if

$$
\begin{align*}
\operatorname{rank}\left\{\nabla_{z} g_{j}(x, z), \nabla_{z} g_{i}(x, z)\right\}=2 & \forall i, j \in \mathcal{I}(x, z), i \neq j  \tag{8}\\
& \forall z \in \mathbb{R}^{m}: g(x, z) \leq 0 \tag{9}
\end{align*}
$$

## The case $p>1$ : R2CQ < LICQ

■ Note that (R2CQ) is substantially weaker than the usual Linear Independence Constraint Qualification (LICQ) common in nonlinear optimization and requiring the linear independence of all gradients to active constraints.

## The case $p>1$ : An auxiliary result

## Lemma ([van Ackooij and Henrion(2016)I)

Let $\bar{x} \in \mathbb{R}^{n}$ be given such that
$1 g^{m}(\bar{x}, 0)<0$.
$2 g$ satisfies $(R 2 C Q)$ at $\bar{x}$.
Then, $\mu_{\zeta}\left(M^{\prime}\right)=0$ for $M^{\prime}:=\left\{v \in \mathbb{S}^{m-1} \mid \exists r>0: g(\bar{x}, r L v) \leq 0, \# \mathcal{I}(\bar{x}, r L v) \geq 2\right\}$, where $L$ is the regular matrix in the decomposition $R=L L^{T}$.

## The case $p>1$ : smoothness

## Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed $\bar{x} \in \mathbb{R}^{n}$ :
$1 g^{m}(\bar{x}, 0)<0$.
$2 g_{j}$ satisfies the exponential growth condition at $\bar{x}$ for all $j=1, \ldots, p$.
3 (R2CQ) is satisfied
Then, $\varphi$ is Fréchet differentiable at $\bar{x}$ and the gradient formula:

$$
\begin{equation*}
\nabla \varphi(\bar{x})=-\int_{v \in F(\bar{x}), \# \hat{\mathcal{J}}(\bar{x}, v)=1} \frac{\chi(\hat{\rho}(\bar{x}, v)) \nabla_{x} g_{j(v)}(\bar{x}, \hat{\rho}(\bar{x}, v) L v)}{\left\langle\nabla_{z} g_{j(v)}(\bar{x}, \hat{\rho}(\bar{x}, v) L v), L v\right\rangle} d \mu_{\zeta}(v) \tag{10}
\end{equation*}
$$

holds true.
If (R2CQ) is satisfied locally around $\bar{x}$, then, $\varphi$ is continuously differentiable at $\bar{x}$.

## One last remark

The condition $g(x, 0)<0$ is not very restrictive as the following result shows:

## Lemma

With $g$ and $\varphi$ as before, let the following assumptions be satisfied at some $\bar{x}$ :
1 There exists some $\bar{z}$ such that $g(\bar{x}, \bar{z})<0$.
$2 \varphi(\bar{x})>1 / 2$.
Then, $g(\bar{x}, 0)<0$.

1 Introduction

- Motivation
- Classics

2 Differentiability: setting

- Setting
- Inherent non-smoothness
- Evaluating the probability

3 Differentiability: results

- The one component case
- More than one component

4 (Sub-)Differentiability

- Motivation and Setting
- A characterization of the Clarke-subdifferential
- (M-Sub)Differentiability


## Motivation

- Let us consider the special case wherein $\varphi$ results from

$$
\begin{equation*}
\varphi(x):=\mathbb{P}[B \xi \leq h(x)], \tag{11}
\end{equation*}
$$

with $\xi \sim \mathcal{N}(\mu, \Sigma), \Sigma \succ 0$.

- When $B$ is of full rank then, $B^{\top} \Sigma B \succ 0$ too and differentiability follows from classic results.

■ However in many applications $B$ has more rows than columns (for instance when coming from Gale-Hoffmann inequalities): $\varphi$ is no longer smooth.

## Motivation

## Example

Let $m=1, k=2, \xi \sim \mathcal{N}(0,1)$ and $B$ be given by

$$
B=\binom{1}{1}
$$

Then it is readily observed that $\varphi(x)=\mathbb{P}[B \xi \leq x]=\mathbb{P}\left[\xi \leq \min \left\{x_{1}, x_{2}\right\}\right]$. As a consequence $\varphi$ fails to be differentiable on the line $x_{1}=x_{2}$ as is readily seen on the figure:


## Setting

■ Without loss of generality we concentrate on $\varphi(z)=\mathbb{P}[\xi \leq z]$, with $\xi \sim$ $\mathcal{N}(0, \Sigma)$ and $\Sigma \succeq 0$.

■ We may also assume that $\Sigma_{i i}=1$ for all $i$ without loss of generality (as otherwise either the system contains a redundant constraint (locally around $z$ ), or $\varphi$ fails to be continuous in $z$ ).

## Correlation graph

## Definition

Let $\Sigma$ be an $m \times m$ covariance matrix having all diagonal entries equal to 1 . Let $G(\Sigma)=(V, E)$ denote the (undirected) graph on the vertex set $V=\{1, \ldots, m\}$ and with edge set $E=E^{+} \cup E^{-}=\left\{(i, j): i \neq j, \Sigma_{j i}=1\right\} \cup\left\{(i, j): i \neq j, \Sigma_{j i}=-1\right\}$. The graph $G(\Sigma)$ (which may contain isolated vertices) will be called the correlation graph associated with $\Sigma$.

## Correlation graph: Example

## Example

Consider the $4 \times 4$ covariance matrix $\Sigma$ defined as follows:

$$
\Sigma=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right)
$$

then the correlation graph:

is obtained

## Correlation graph

■ The correlation graph features $Q$ connected components (each being either an isolated vertex or a complete subgraph (a clique)).

■ Each connected component $G^{q}=\left(V^{q}, E^{q}\right)$ is bipartite and can be separated into a left and right side $L^{q}, R^{q}$ : elements within $L^{q}$ are positively correlated, elements in $L^{q}$ are negatively correlated to those in $R^{q}$.

## Correlation graph and $z$

## Definition

Let $G(\Sigma)=(V, E)$ be a correlation graph:
■ Given an arbitrary $z \in \mathbb{R}^{m}$, we will say that $z$ is auto-referenced if there exists an $\operatorname{arc}(i, j) \in E$ such that $z_{j}=\Sigma_{j i} z_{i}$ (in other words, such that $z_{j}=z_{i}$ if $(i, j) \in E^{+}$or such that $z_{j}=-z_{i}$ if $\left.(i, j) \in E^{-}\right)$.
■ An auto-referenced point $z \in \mathbb{R}^{m}$ will be called changeable if there exists $(i, j) \in E$ such that $z_{k} \geq z_{i}$ for all $(k, i) \in E^{+}$and $z_{k} \geq-z_{i}$ for all $(k, i) \in E^{-}$.
The arc $(i, j) \in E$ will occasionally be referred to as an auto-referencing (a changeable) arc with respect to $z$ if $z$ is auto-referenced (changeable).

## Correlation graph: Example

## Example

Consider again $z=(1,-2,1,-1)$ and

$$
\left.\Sigma=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right), \quad z_{2}=-2\right)
$$

Then $z$ is auto-referenced (blue), but not changeable ( $-2 \geq-1$ is false).

## Correlation graph: Example 2

## Example

Consider again $z=(2,-2,3,-1)$ and

$$
\Sigma=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right)
$$



Then $z$ is changeable (green) (argmins among the partitions $L^{q}, R^{q}$ ).

## A first result

## Theorem ([van Ackooij and Minoux(2015)I)

Let $\xi$ be an m-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^{m}$ and covariance matrix $\Sigma$ having all diagonal entries equal to 1. Then for arbitrary not-changeable $z-\mu \in \mathbb{R}^{m}$, the distribution function $F_{\xi}(z):=\mathbb{P}[\xi \leq z]$ is locally Lipschitz at $z$ and $\partial^{c} F_{\xi}(z)=\{v\}$, where for arbitrary $i=1, \ldots, m$ :

$$
\begin{equation*}
v_{i}=f_{\xi_{i}}\left(z_{i}\right) F_{\tilde{\xi}\left(z_{i}\right)}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{m}\right) \tag{12}
\end{equation*}
$$

Here $\partial^{c} F_{\xi}(z)$ denotes the Clarke-subdifferential of $F_{\xi}$ and $\tilde{\xi}\left(z_{i}\right)$ is an $m-1$ dimensional Gaussian random vector (familiar from classic results)

## The familiar associated Gaussian

$\square f_{\xi_{i}}$ is the one dimensional Gaussian density of $\xi_{i}$
■ $\tilde{\xi}\left(z_{i}\right) \sim \mathcal{N}(\hat{\mu}, \hat{\Sigma})$
$\square$ Let $D_{m}^{i}$ denote the $(m-1) \times m$ matrix deduced from the $m \times m$ identity matrix by deleting the ith row.

■ $\hat{\mu}=D_{m}^{i}\left(\mu+\Sigma_{i i}^{-1}\left(z_{i}-\mu_{i}\right) \Sigma_{i}\right)$

$$
\hat{\Sigma}=D_{m}^{i}\left(\Sigma-\Sigma_{i i}^{-1} \Sigma_{i} \Sigma_{i}^{\top}\right)\left(D_{m}^{i}\right)^{\top}
$$

where $\Sigma_{i}$ is the $i$-th column of $\Sigma$ and $\Sigma_{i i}$ is the $i$-th element of the main diagonal of $\Sigma$.

## And changeable points?

## Proposition ([van Ackooij and Minoux(2015)])

Let $G^{q}=\left(V^{q}, E^{q}\right)$, be the connected $q=1, \ldots, Q$ components of the correlation graph and $\left(L^{q}, R^{q}\right)$ be the associated bipartition. Let $z$ be changeable.
Define $J \subseteq\{1, \ldots, Q\}$ as the set of all $q$ for which either $\left|V^{q}\right|=1$ or no changeable arc exists in $V^{q}$. For each remaining $q \in\{1, \ldots, Q\} \backslash J$, pick $I^{q} \in L^{q}$, $r^{q} \in R^{q}$ such that $z_{1 q} \leq z_{p}$ for all $p \in L^{q}$ and $z_{r q} \leq z_{p}$ for all $p \in R^{q}$. If $R^{q}$ is empty, $r^{q}$ should be interpreted as being "empty".
Then the distribution function $F_{\xi}(z):=\mathbb{P}[\xi \leq z]$ is locally Lipschitz at $z$ and $v \in \partial^{c} F_{\xi}(z)$, where for arbitrary $i=1, \ldots, m$ :

$$
v_{i}=\left\{\begin{array}{ccc}
f_{\xi_{i}}\left(z_{i}\right) F_{\tilde{\xi}\left(z_{i}\right)}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{m}\right) & \text { if } & i \in \cup_{j \in J} V^{j}  \tag{13}\\
f_{\xi_{i}}\left(z_{i}\right) F_{\tilde{\xi}\left(z_{i}\right)}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{m}\right) & \text { if } & \exists q \in\{1, \ldots, Q\} \backslash J, i \in\left\{I^{q}, ।\right. \\
0 & \text { otherwise } &
\end{array}\right.
$$

Moreover $\partial^{c} F_{\xi}(z)$ contains at least two elements.

## A final definition

## Definition

Let $z \in \mathbb{R}^{m}$ be arbitrary. Define the set $\mathcal{E}(z)$ as the set of all $v$ defined according to previous formula, where we enumerate all possible choices of $I^{q}, r^{q}$ for each $q$. For a specific $q$ if $V^{q}$ contains a changeable arc with one endpoint in $L^{q}$ and the other endpoint in $R^{q}$ we adjoin to this set of choices, $v \in \mathbb{R}^{m}$, with $v_{p}=0$ for $p \in V^{q}$.

## The main result

## Theorem ([van Ackooij and Minoux(2015)])

Let $\xi$ be an m-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^{m}$ and covariance matrix $\Sigma$ having all diagonal entries equal to 1. Then the distribution function $F_{\xi}(z):=\mathbb{P}[\xi \leq z]$ is continuously differentiable if and only if $z-\mu$ is not changeable.
Moreover $F_{\xi}$ is locally Lipschitz at $z$ and

$$
\begin{equation*}
\partial^{c} F_{\xi}(z)=\operatorname{co}(\mathcal{E}(z)) \tag{14}
\end{equation*}
$$

where co $(B)$ denotes the convex hull of set $B \subseteq \mathbb{R}^{m}$.

## Linear maps as a special case: another formula

When seeing the linear situation, i.e., $\varphi(x):=\mathbb{P}[A \xi \leq x]$, as a special case of nonlinear $g$ we get:

## Corollary

Let $\xi \sim \mathcal{N}(0, R)$ for some positive definite correlation matrix $R$ admitting a decomposition $R=L L^{T}$. Fix any $\bar{x} \in \mathbb{R}^{n}$ such that $\bar{x}_{j}>0$ for all $j \in\{1, \ldots, p\}$. Finally assume that any two active rows of the matrix $A$ are linearly independent:

$$
\begin{equation*}
A z \leq \bar{x}, A_{i} z=\bar{x}_{i}, A_{j} z=\bar{x}_{j}, i \neq j \Longrightarrow \operatorname{rank}\left\{A_{i}, A_{j}\right\}=2 . \tag{15}
\end{equation*}
$$

Then, $\varphi$ is continuously differentiable at $\bar{x}$ and it holds that

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x_{j}}(\bar{x})=\int_{\left\{v \in \mathbb{S}^{m-1} \mid A_{j} L v>0, \bar{x}_{j}=\hat{\rho}(v) A_{j} L v\right\}} \frac{\chi(\hat{\rho}(v))}{A_{j} L v} d \mu_{\zeta}(v) \quad(j=1, \ldots, p) . \tag{16}
\end{equation*}
$$

## Some notation

- We introduce the following equivalence class within the index set $\{1, \ldots, p\}$ of rows of the matrix $A$ :

$$
i \sim j \Longleftrightarrow \exists \lambda \in \mathbb{R}: A_{i}=\lambda A_{j}, \bar{x}_{i}=\lambda \bar{x}_{j} .
$$

■ By the assumption $\bar{x}_{j}>0$ for all $j \in\{1, \ldots, p\}, i \sim j$ implies that $\lambda>0$ in the defining relation.

■ Moreover $i \nsim j$ implies that rows $A_{i}$ and $A_{j}$ of $A$ are linearly independent.

## Some notation

■ Denote by $\tilde{p} \leq p$ the number of different equivalence classes [ $i]$.
■ We may assume (w.l.o.g) that the first $\tilde{p}$ rows of $A$ belong to different equivalence classes.

■ Now, for any $i=1, \ldots, \tilde{p}$ that

$$
\begin{equation*}
A_{j} z \leq x_{j} \quad \forall j \in[i] \Longleftrightarrow A_{i} z \leq h_{i}(x):=\min _{j \in[]} \lambda_{j}^{-1} x_{j} . \tag{17}
\end{equation*}
$$

- We denote by $\tilde{A}$ the submatrix of first $\tilde{p}$ rows of $A$.


## A fine characterization of the $M$-subdifferential

## We can then show

## Theorem ([van Ackooij and Henrion(2016)])

Let $\xi \sim \mathcal{N}(0, R)$ for some positive definite correlation matrix $R$ admitting a decomposition $R=L L^{T}$. Fix any $\bar{x} \in \mathbb{R}^{n}$ such that $\bar{x}_{j}>0$ for all $j \in\{1, \ldots, p\}$. Then, $\varphi$ is locally Lipschitz continuous and its Mordukhovich subdifferential can be estimated from above by

$$
\partial^{M} \varphi(\bar{x}) \subseteq \sum_{i=1}^{\tilde{p}} \int_{\mathfrak{S}} \frac{\chi(\hat{\rho}(v))}{\tilde{A}_{i} L v} d \mu_{\zeta}(v) \cdot \bigcup\left\{\lambda_{j}^{-1} e_{j} \mid j \in[i]: \lambda_{j}^{-1} \bar{x}_{j}=h_{i}(\bar{x})\right\}
$$

where

$$
\hat{\rho}(v):=\min \left\{\bar{y}_{j} /\left(A_{j} L v\right) \mid j \in\{1, \ldots, \tilde{p}\}: \tilde{A}_{j} L v>0\right\}
$$

and

$$
\mathfrak{S}:=\left\{v \in \mathbb{S}^{m-1} \mid \tilde{A}_{i} L v>0, \bar{y}_{i}=\hat{\rho}(v) \tilde{A}_{i} L v\right\}
$$

## Summary

In this talk we have discussed several aspects related to differentiability of chance constraints

## The references of the discussed works

■ W. van Ackooij and R. Henrion. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM Journal on Optimization, 24(4):1864-1889, 2014

■ W. van Ackooij and R. Henrion. (sub-) gradient formulae for probability functions of random inequality systems under gaussian distribution. Submitted, WIAS preprint 2230, pages 1-24, 2016

■ W. van Ackooij and M. Minoux. A characterization of the subdifferential of singular Gaussian distribution functions.
Set Valued and Variational Analysis, 23(3):465-483, 2015. doi: 10.1007/s11228-015-0317-8

## Bibliography I

固［［Deák（1986）］
］l．Deák．
Computing probabilities of rectangles in case of multinormal distribution． Journal of Statistical Computation and Simulation，26（1－2）：101－114， 1986.

固
［［Deák（2000）］
］l．Deák．
Subroutines for computing normal probabilities of sets－computer experi－ ences．
Annals of Operations Research，100：103－122， 2000.
图［［Gouda and Szántai（2010）］］A．Gouda and T．Szántai． On numerical calculation of probabilities according to dirichlet distribution．

Annals of Operations Research，177：185－200， 2010.

## Bibliography II

囯［［Henrion and Möller（2012）］］R．Henrion and A．Möller． A gradient formula for linear chance constraints under Gaussian distribu－ tion．
Mathematics of Operations Research，37：475－488， 2012.
囯［［Prékopa（1970）］
］A．Prékopa．
On probabilistic constrained programming．
In H．W．Kuhn，editor，Proceedings of the Princeton Symposium on Math．
Prog．，volume 28，pages 113－138， 1970.
图［［Prékopa（1995）］
］A．Prékopa．
Stochastic Programming．
Kluwer，Dordrecht， 1995.
围［［Prékopa and Szántai（1979）］］A．Prékopa and T．Szántai．
On optimal regulation of a storage level with application to the water level regulation of a lake．
European Journal of Operations Research，3：175－189， 1979.

## Bibliography III

击［［Szántai（1985）］
］T．Szántai．
Numerical evaluation of probabilities concerning multi－dimensional prob－ ability distributions．
PhD thesis，Hungarian Academy of Sciences， 1985.

宣
［［Uryas＇ev（2009）］
］S．Uryas＇ev．
Derivatives of probability and integral functions：General theory and ex－ amples．
In C．A．Floudas and P．M．Pardalos，editors，Encyclopedia of Optimiza－ tion，pages 658－663．Springer－Verlag，2nd edition， 2009.
囯［［van Ackooij and Henrion（2014）］］W．van Ackooij and R．Henrion． Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian－like distributions．
SIAM Journal on Optimization，24（4）：1864－1889， 2014.

## Bibliography IV

[[van Ackooij and Henrion(2016)]
]W. van Ackooij and R. Henrion. (sub-) gradient formulae for probability functions of random inequality systems under gaussian distribution.
Submitted, WIAS preprint 2230, pages 1-24, 2016.
囯 [[van Ackooij and Minoux(2015)] ]W. van Ackooij and M. Minoux.
A characterization of the subdifferential of singular Gaussian distribution functions.
Set Valued and Variational Analysis, 23(3):465-483, 2015.
doi: 10.1007/s11228-015-0317-8.
[[van Ackooij et al.(2011)] ]W. van Ackooij, R. Henrion, A. Möller, and R. Zorgati.

On joint probabilistic constraints with Gaussian Coefficient Matrix.
Operations Research Letters, 39:99-102, 2011.

