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INTRODUCTION



INDUSTRIAL CONTEXT

We study a mock-up of a water pressured nuclear reactor during
an intermediate break loss of caolant accident in the primary Loop.
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Figure — The replica of a water
pressured reactor, with the hot and

cold leg.

Figure — CATHARE temperature

output for nominal parameters.




DETERMINISTIC METHOD

(m,...,m¢)  ~+ | COMPUTER MODEL | ~
| —
uncertain input parameters
/ N Tostd Fund r:d:urf:ccch:Fcrzu.lm -\\

¥

Our use-case is a thermal-hydraulic computer experiment (CATHARE},
which simulates a intermediate break loss of coolant accident. The
variable of interest is the peak cladding temperature.




PROBABILISTIC MODELIZATION

(Xi.....,Xs) ~ | COMPUTER MODEL | ~ Y
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Let & be our computer code, the autput distribution writes
Fp(h) =PL(G(X) < h).




PROBABILISTIC MODELIZATION

(Xi....,Xs) ~ | COMPUTER MODEL | ~ Y
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Let & be our computer code, the output distribution writes




PROBABILISTIC MODELIZATION

(X.,...,Xs) ~ [ COMPUTER MODEL | ~ VY
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The quantity of interest {here a quantile) depends on the input
distributions gs.




PROBABILISTIC MODELIZATION

(X......Xs) ~ | COMPUTER MODEL | =~ VY
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0UQ caonsists in finding the optimum of the quantity of interest
over a set of input distribution g © A,




UNCERTAINTY MODELIZATION

We consider robustness by finding hounds on a quantity of interest

p € PX) — o(p)

- We optimize the quantity of interest over a measure space .4

sup o)
ped

= The measure space .A should be compatible with the data, it
should effectively represent the uncertainty on the
distribution.



THE MOMENT CLASS

In this work we will focus on two different optimization space.

- The moment class !

il
A = {(J"'{'lﬁ vy J“'ri] € HP(‘EM u'.f.']) | E,uz[X}] é ‘(-:-Ej} E f = ]-: vy A'Ti} 3

i=1

- and the unimodal moment class

o)
Al = {Unimodalu C HP([I{,H@D | E, [X7] = c_E” L= 13‘”,1‘\-‘};} .

i=1

Probtem : this is an optimization over an infinite non parametric space...



REDUCTION THEOREM



QUASI-CONVEX FUNCTION

A function ¢ is said to be quasi-convex if

d(Az+ (1 = A)y) < max {é(z): o(y)}

Convexity Quasi-convexity

TNAX ¢ A o
5 mMax ¢
[ee.b] b




QUASI-CONVEX FUNCTION

[From the Bauer maximum principle, a convex function on aj
5

campact convex set reaches its maximum on the extreme point

Convexity Quasi-convexily

inax ¢ max ¢
[sr,1] b

a b t b

~+The Bauer maximum principle remains true for quasi-canvex
function.



REDUCTION THEOREM

Reduction thearem




REDUCTION THEOREM

Reduction thearem

~+ What are the extreme points of the {unimodal) moment class ?




EXTREME POINTS CHARACTERIZATION (1/2)

Extreme points of the moment class




PHYSICAL ILLUSTRATION

First approach

You are given lkg of sand to arrange however you wish on a seesaw
balanced around = = 0.

- Haow much mass can you pur an fhe region ¢ > a?
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PHYSICAL ILLUSTRATION

First approach

You are given lkg of sand to arrange however you wish on a seesaw
balanced around = = 0.

- Haow much mass can you pur an fhe region ¢ > a?




EXTREME POINTS CHARACTERIZATION (2/2)

Extreme points of the unimodal moment class




REDUCTION THEOREM FOR A PROBABILITY OF FAILURE

Consider the quantity of interest to be a probability of failure (PoF].
~+ it is a linear function of the input measure, thus is quasi-convex.
Over the moment class .A*, the optimal PoF can be computed on
the set of discrete finite input distributions ;

sup ¢(p) = sup Fulh),
pe A pe At

= sup P, (G(X1,....Xy) <h),
HEAT

M+l Ng+l



DISCRETE MEASURES

Let enforce N moment constraints on a measure E,[X7] = ¢; .
0UQ theorem guaranties the optimal measure to be supported on
atmost N + 1 points :

N+1

p= Z Wil
i—1

We have the following system of constraint equations :

4
W - ...+ Wy =1
W T - ... 1+ WNL1TN4L =]
- N
W] T WNsLENyL = N

~= The weights are uniquely determined by the positions.



DISCRETE MEASURES

Let enforce N moment constraints on a measure E,[X7] = ¢; .

0UQ theorem guaranties the optimal measure to be supported on

atmost N + 1 points :
N+l

p= Z Wil
i—1

We have the following system of constraint equations :

4
W - ...+ Wy =1
W T - ... 1+ WNL1TN4L =]
- N
W] T WNsLENyL = N
0< w <1 A




GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let u be supported on [0, 1] such that E,[X] = 0.5 and
E,[X%] =03

3
A = {;1 =Y wid, € P([0,1]) | E,[X] = 0.5, E,[X* = 0.3} :

i=1



GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let u be supported on [0, 1] such that E,[X] = 0.5 and
E,[X%] =03

3
A* — {,,_ =Y wid,, € P((0,1]) | E,[X] = 0.5, E,[X¥ = 0.3} :
i=1
1

v x=(0.1,0.1,0.9) gives weights w = (0.05,0.73,0.22)

x  x=(0.1,0.3,0.9) gives weights w = (—0.19,0.92,0.27)



GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let u be supported on [0, 1] such that E,[X] = 0.5 and
B, [X% =03

3
A* = {;1 = wid, € P([0,1]) | E,[X] = 0.5, B, [X* = 0.3} 7

i=1
=

v x=(0.1,0.1,0.9) gives weights w = (0.03,0.73,0.22)
X  x = (0.1,0.3,0.9) gives weights w = (—0.19,0.92, 0.27)

VA\A:{X—(QL ?}?;)&01 ,!'J—Zwasr CA}

How to optimize over and explore the manifold Va ?



POSSIBLE WAYS OF OPTIMIZING

- Optimization under constraints ; the position and the weight
must satisfy the Vandermonde system.

- Optimization by rewriting the objective function : changing the

parameterization of the problem so that the constraint are
naturally enforced in the objective function.



POSSIBLE WAYS OF OPTIMIZING

- Optimization under constraints ; the position and the weight
must satisfy the Vandermonde system.

- Optimization by rewriting the objective function : changing the
parameterization of the problem so that the constraint are
naturally enforced in the objective function.

\—) Canonical moments allows to efficiently ex-
plore the set of optimization A~




CANONICAL MOMENTS
PARAMETERIZATION



CLASSICAL MOMENTS PROBLEM
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~= Moment sequence of I/



CLASSICAL MOMENTS PROBLEM

AT
Lo | =
Ll
e
R

~~ Moment sequence of /|0,

g

~+ Moment sequence aof [0, 2]

0S|

Conclusion : there is no relation between the classical moments
and the intrinsic structure of the distribution.



MOMENT SPACE

We define the moment space M,, =

{en(p) = (e, v} [ e PN} -
Given ¢,, € intM,, we define the ex- =
treme values GEJ - 5
2 Co 7777777777 .
(;L_, = max {c e, ) £ _-"l-i'.,,,_,_l} o :
) . - vz
Coqr =min{c: (e, oo tn e} € My} § y s
' 1
They represent the maximum and !
minimum value of the {n + 1)th mo- 0 - 1
ment a measure can have, when its ) ! .
moments up to order n equal to e,,. First moment

Figure : representation of M



CANONICAL MOMENTS

The nth canonical moment is defined as

Pu = iU-n.(C) =

Cp — Cp

Properties of canonical moments

> p, € [0, 1],

- The canonical moments are invariants by affine

transformation. Which means we can always transform a
measure supported on a, b| to [0, 1]




LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

. 141 .
Given a measure ji = Z;i w;d,., we have two representations of

the same polynomial 7
= [|ts roots are the measure support points :

141

Pr(m =] =.
i=1



LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure ji = Z;H'l w;d,., we have two representations of

the same polynomial 7
= [|ts roots are the measure support points :

n+1

Py H(z z)

- |ts coefficients are function of a sequence of the measure
cananical moments p = (p1, ...,  Panat) !

Py (z2)=wop)+e1(P)e+ -+ vn (p)z-n-i-l _



EFFECTIVE PARAMETERIZATION

Let p ¢ A" ={ St wd, cPab]) | By (X = g_f;gw}



EFFECTIVE PARAMETERIZATION

i AT

The supporl of 4 is the reols of a polynomial
PLa= H,i—ll fw )

‘!D-n. |1



EFFECTIVE PARAMETERIZATION

i AT

The supporl of 4 is the reols of a polynomial
ey =TI )

‘P-K.H

Coefficients are defined with a sequence of cananical moments
Fro —walpl—i(pla+ o 4 gapi (Pl

-+



EFFECTIVE PARAMETERIZATION

i AT

The supporl of 4 is the reols of a polynomial
ey =TI )

‘P-K.H

Coefficients are defined with a sequence of cananical moments
Fro —walpl—i(pla+ o 4 gapi (Pl

-+

sethy constraints in g, 1[* 11



EFFECTIVE PARAMETERIZATION

i AT

We can explore the whole set A”
using a parameterization in ]0, 1]+,

sethy constraints in g, 1[* 11



GENERATION OF ADMISSIBLE MEASURES

Theorem




SET OF ADMISSIBLE MEASURES

k& g
= Consider p in [0, 1] and lwo momenl conslrainls : ¢; = 0.5 and ¢ = 0.3
equivalent to p; = 0.5 and p; = 0.2.
= We generate randomly (ps, 1, ps) € [0. 1] and compute for every sequence
P: whose roots constitute the coordinates of the points.
= The point coordinates correspaond to the suppaort of a discrete measure in 4.



SET OF ADMISSIBLE MEASURES

{pa, pr,os) € (0, 1]

qa <.

*71 g
= Consider p in [0, 1] and lwo momenl conslrainls : ¢; = 0.5 and ¢ = 0.3
equivalent to p; = 0.5 and p; = 0.2.
= We generate randomly (ps, 1, ps) € [0. 1] and compute for every sequence
P: whose roots constitute the coordinates of the points.
= The point coordinates correspaond to the suppaort of a discrete measure in 4.



ALGORITHM

Algorithumn 1 POF COMPUTATION

Inputs - lower bounds. 1= (h, ... {)

- upper bounds, = {, ... )

- constraints sequences of moments, ¢; = (2%, ., ¢!y and its
corresponding sequences of canonical moments, p; = (g:ﬂ1::,_ FPN pEN":') for
<7< .
function POF(p,™ ™ ;J'iQJ"‘_l':, e ;Ji—_‘l‘c'ﬁ'“; . \p,l;;e‘i\;”_H}}

fori=1,...,ddo
fG."k: l””,:'\"-g do

!’.[H—I"'—
O (R (SN R T T
L

. “[ N 1%+
T : = roots( £},
11 PR = . Ty N
wh el = weighta! LT ey,
e R R i 2re A U B B 1y I ) i :
Feturm 211_1 B e B G K L T




ILLUSTRATION



INDUSTRIAL CONTEXT

Qur use-case is a thermal-hydraulic computer experiment
{CATHARE), which simulates a intermediate break loss Of coolant
accident. The variable of interest is the peak cladding temperature.
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Figure — The replica of a water Figure — CATHARE temperature
pressured reactor, with the hot and  output for nominal parameters.
cold Leg.




MOMENT CONSTRAINTS FOR CATHARE

Variable

n"10
n“22
no25
o2

n"12
n"o

n"14
n15
n13

Initial distribution

Second order

Bounds {truncated) Mean moment
[0.1, 10 LogNormal(0,0.76)  1.33 3.02
0.12.8] Normal(6.4,1.27) 6.1 15.39
1.1, 16.57) Normal(13.79  13.83 192.22
[—44.9, 63.5] Unidform{—44.9,63.5) 9.3 1065
(0.1, 10)] LogNormul(D, 0.76) 1.33 3.02
|0.1. 10| LogNormal(0,0.76) 1.33 3.02
0.235.3.45 LogNormal(—0.1,0.43) 0.99 1.19
[0.1,3]  LogNormal(—0.6,0.57) 0.6 0.55
[0.1.10] LogNormal(0,0.76) 1.33 3.02

Table — Correspaonding moment constraints of the 9 most influential
inputs of the CATHARE model. Two moment constraints are enfarced,
that correspond to the mean and the variance of each input distribution,



QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

Let denote Q,(+) the quantile of order p of a distribution .

e o)

a2

Qr.}-(}u'l)_ Q{t(ﬂ?)
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Why is the quantile a quasi-convex function of the measure?

Let denote Q,(+) the quantile of order p of a distribution .
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QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

Let denote Q,(+) the quantile of order p of a distribution .

e o)

a2

Aptp {1 — A)pia

[ B R L

Qr.}'(;u'l)_ Qf_}:(’\ﬁ’il"l‘[] _’\)J“"?) Q”(Ju?)
< max{ Q. (pt1); Qulpi2) }

~= Far the same reason, the superquantile is a quasi-convex

function of the measure.
Jdréme StenoesMBSCOTRUM O mDSo0apm
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OPTIMIZATION FOR CATHARE
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OPTIMIZATION FOR CATHARE
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UNCERTAINTY TAINTING THE METAMODEL {

We recall the probability of failure £,,(%) is computed as

;i?ﬁx Fu(h) = ;E?ﬁt Pu(G(X1,....,Xa) < h).

N1 N+l
_ : A1) () ) .
= F}?ﬁ Do D wh ]l{(:(x}l"‘;...,m};")gh} :

ip=1 iy=1

~~ The simple approach takes G(x) as the predictor of the kriging
metamodel ¥ (x, 8).



UNCERTAINTY TAINTING THE METAMODEL (2,

~ We propose to compute F, (k) for several trajectories of the
metamodel, and minimize a quantile of the resulting sample.

inf Fﬁ,(h )= inf [E“#,(éf(Xh e Xy 8) < h-) \

e A neA
N+l N+l )
_ - U} bdy _
= . Z D BEE A L a 01201 -
ig=1 '

get o sample for different ~ealization of the gaussian process



OPTIMIZATION FOR CATHARE
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CONCLUSION AND PERSPECTIVES

= The reduction theorem gives the basis for numerical optimization of
the guantity of interest.

- The moment class and unimodal moment class have very interesting
topological structure.

= The canonical moment parameterization is well suited for explaoring
the extreme points, thus fastening the global optimization.

= Inequality moment constraints can also be enforced.



CONCLUSION AND PERSPECTIVES

= The reduction theorem gives the basis for numerical optimization of
the guantity of interest.

- The moment class and unimodal moment class have very interesting
topological structure.

= The canonical moment parameterization is well suited for explaoring
the extreme points, thus fastening the global optimization.

= Inequality moment constraints can also be enforced.

- The framewark is limited to classical moment constraints. The
guantile class is also interesting for engineering applications.

= The raw global optimization could be refine for instance by computing
gradient of the guantity of interest.

- The computation is subject to the curse of dimensionality. Reducing
the input dimension is a mandatory first step.
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