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• Fire safety: conformity of a smoke extraction system 

• Expensive experiments  use of numerical models 

 

 

 

 

 

 

 

       Real Experiment      Fire Dynamics Simulator (FDS) 

• Images from [Kerber, 2005] 
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• Main properties of the considered simulators: 

1. Multi-fidelity 

2. Tunable cost 

3. Stochastic outputs 
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Properties of numerical models 
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Simulator 𝑥 𝑍 



 

 

• Multi-fidelity: same physical phenomenon 
 several models with various accuracy 
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Multi-fidelity 
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Low fidelity High fidelity 

Simulator 𝑥, 𝑡  𝑍 



 

 

• Cost of observation: function of the fidelity 𝐶 𝑡  

• Cheap simulation, but low fidelity 

• High fidelity simulation, but time-consuming 
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Tunable cost 
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Simulator 𝑥, 𝑡  𝑍 



 

 

• Stochastic: same input  different outputs 
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Stochastic outputs 
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Simulator 𝑥, 𝑡  𝑍 ∼ ℙ𝑥,𝑡sim 



 

 

• Probability of exceeding a critical threshold 𝑧𝑐𝑟𝑖𝑡 𝑝 𝑥, 𝑡𝐻𝐹 = ℙ𝑥,𝑡𝐻𝐹𝑠𝑖𝑚 𝑍 > 𝑧𝑐𝑟𝑖𝑡  

• 𝑡𝐻𝐹: the highest-fidelity level  
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Quantity of Interest 
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Simulator 𝑥, 𝑡  𝑍 ℙ𝑥,𝑡𝐻𝐹sim 𝑍 > 𝑧𝑐𝑟𝑖𝑡  



 

 

• Goal: selecting 𝑥1, 𝑡1 , … , 𝑥𝑛, 𝑡𝑛  to estimate the function 𝑝 

with a minimal cost 𝐶 𝑡1 +⋯+ 𝐶 𝑡𝑛  

• Observations 𝑥𝑖 , 𝑡𝑖; 𝑧𝑖 1≤𝑖≤𝑛 Estimation 𝑝 𝑛 of 𝑝 
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Design of experiments 
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• Goal: selecting 𝑥1, 𝑡1 , … , 𝑥𝑛, 𝑡𝑛  to estimate the function 𝑝 

with a minimal cost 𝐶 𝑡1 +⋯+ 𝐶 𝑡𝑛  

 

• Sequential design 

• use the 𝑛 first observations to select the 𝑛 + 1 𝑡ℎ observation 
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Sequential design of experiments 
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1. Introduction 

 

2. Sequential design of experiments 

 

3. Academic example 
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• Prior distribution: 

• Output 𝑍 at 𝑥, 𝑡 follows a normal distribution 𝑍|𝜉 ∼ 𝒩 𝜉 𝑥, 𝑡 , 𝜆 𝑥, 𝑡  

• Mean function 𝜉: Gaussian process 𝜉 ∼ 𝒢𝒫 𝑚, 𝑘  

 

• Posterior distribution: kriging 

• Mean function 𝜉|𝜒𝑛  𝜉|𝜒𝑛 ∼ 𝒢𝒫 𝑚𝑛, 𝑘𝑛  
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Model of the simulator 
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• Mean function 𝜉 𝑥, 𝑡 =  𝜉𝐿𝐹 𝑥 if 𝑡 = 1𝜌𝜉𝐿𝐹 𝑥 + 𝛿 𝑥 if 𝑡 = 2 

• 𝜉𝐿𝐹: low-fidelity simulator 

• 𝜉𝐻𝐹 = 𝜌𝜉𝐿𝐹 + 𝛿: high-fidelity simulator, linked to the low-fidelity by a linear 

relationship 

 

Covariance function 𝑘 𝑥, 𝑡 , 𝑥′, 𝑡′ =  𝑘𝐿𝐹 𝑥, 𝑥′ 𝑖𝑓 𝑡 = 𝑡′ = 1𝜌𝑘𝐿𝐹 𝑥, 𝑥′ 𝑖𝑓 𝑡 ≠ 𝑡′𝜌2𝑘𝐿𝐹 𝑥, 𝑥′ + 𝑘𝛿 𝑥, 𝑥′ 𝑖𝑓 𝑡 = 𝑡′ = 2 

• 𝑘𝐿𝐹: covariance of the low-fidelity simulator 

• 𝑘𝛿: covariance of the difference between high- and low-fidelity levels 

• 𝜌: correlation between the low- and high-fidelity levels 

•      [Kennedy and O’Hagan, 2000], [Le Gratiet and Cannamela, 2015] 
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Auto-regressive multi-fidelity covariance 
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• Mean function 𝜉 𝑥, 𝑡 = 𝜉0 𝑥 + 𝜖 𝑥, 𝑡  

• 𝜉0: ideal simulator (Ex: mesh size = 0) 

• 𝜖: system error between ideal and real simulators at 𝑡 
 

Covariance function 𝑘 𝑥, 𝑡 , 𝑥′, 𝑡′ = 𝑘0 𝑥, 𝑥′ + 𝑟 𝑡, 𝑡′ ⋅ 𝑘𝜖 𝑥, 𝑥′  

• 𝑘0: covariance of 𝜉0  

• 𝑘𝜖: covariance of 𝜖 according to 𝑥 

• 𝑟: rules the decrease of the error 

• [Picheny and Ginsbourger, 2013], [Tuo et al., 2014] 
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Non-stationary multi-fidelity covariance 
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• Probability of exceeding the critical threshold: 𝑝 𝑥, 𝑡 = ℙ𝑥,𝑡𝑠𝑖𝑚 𝑍 > 𝑧crit 𝜒𝑛 = Φ 𝜉 𝑥, 𝑡 − 𝑧𝑐𝑟𝑖𝑡𝜆 𝑥, 𝑡  

 

• First and second moments 

• Expectation:𝔼𝑛 𝑝 𝑥, 𝑡 = Φ 𝑢𝑛 𝑥, 𝑡 = 𝑝 𝑛 𝑥, 𝑡  

Variance: 𝕍𝑎𝑟𝑛 𝑝 𝑥, 𝑡 = Φ2 𝑢𝑛 𝑥, 𝑡 , 𝑢𝑛 𝑥, 𝑡 ; 𝑟𝑛 𝑥, 𝑡 − Φ2 𝑢𝑛 𝑥, 𝑡  

• 𝑢𝑛 𝑥, 𝑡 = 𝑚𝑛 𝑥,𝑡 −𝑧𝑐𝑟𝑖𝑡𝜎𝑛2 𝑥,𝑡 +𝜆 𝑥,𝑡  𝑟𝑛 𝑥, 𝑡 = 𝜎𝑛2 𝑥,𝑡𝜎𝑛2 𝑥,𝑡 +𝜆 𝑥,𝑡  

• 𝜎𝑛2 𝑥, 𝑡 = 𝑘𝑛 𝑥, 𝑡 , 𝑥, 𝑡  

• Φ: cumulative distribution function (cdf) of the normal distribution Φ2: cdf of the bivariate normal distribution 
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Probability of exceeding the critical threshold 
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• Measure of uncertainty 𝐻𝑛 = 𝔼𝑛 𝑝 𝑛 ⋅, 𝑡𝐻𝐹 − 𝑝 ⋅, 𝑡𝐻𝐹 2 =  𝕍𝑎𝑟𝑛 𝑝 𝑥, 𝑡𝐻𝐹 𝑑𝑥𝕏  

• 𝕃2-norm of the error of the estimator at the highest level of fidelity 
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Measure of uncertainty 

The 22nd march 2017 Sequential design of experiments on a stochastic multi-fidelity simulator 



• Measure of uncertainty 𝐻𝑛 = 𝔼𝑛 𝑝 𝑛 ⋅, 𝑡𝐻𝐹 − 𝑝 ⋅, 𝑡𝐻𝐹 2 =  𝕍𝑎𝑟𝑛 𝑝 𝑥, 𝑡𝐻𝐹 𝑑𝑥𝕏  

 

• Stepwise uncertainty reduction algorithm 𝑥𝑛+1, 𝑡𝑛+1 = argmin𝑥,𝑡 𝔼𝑛 𝐻𝑛+1 𝑋𝑛+1 = 𝑥, 𝑇𝑛+1 = 𝑡  

 

• [Vazquez and Bect, 2009] 
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Stepwise Uncertainty Reduction 
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• Measure of uncertainty 𝐻𝑛 = 𝔼𝑛 𝑝 𝑛 ⋅, 𝑡𝐻𝐹 − 𝑝 ⋅, 𝑡𝐻𝐹 2 =  𝕍𝑎𝑟𝑛 𝑝 𝑥, 𝑡𝐻𝐹 𝑑𝑥𝕏  

 

• Stepwise uncertainty reduction algorithm 𝑥𝑛+1, 𝑡𝑛+1 = argmin𝑥,𝑡 𝔼𝑛 𝐻𝑛+1 𝑋𝑛+1 = 𝑥, 𝑇𝑛+1 = 𝑡  

 

• Analytical expression 𝔼𝑛 𝐻𝑛+1 𝑋𝑛+1 = 𝑥, 𝑇𝑛+1 = 𝑡=  Φ2 𝑢𝑛 𝑦, 𝑡𝐻𝐹 , 𝑢𝑛 𝑦, 𝑡𝐻𝐹 ; 𝑟𝑛 𝑦, 𝑡𝐻𝐹 −Φ2 𝑢𝑛 𝑦, 𝑡𝐻𝐹 , 𝑢𝑛 𝑦, 𝑡𝐻𝐹 ; 𝑟𝑛 𝒙, 𝒕 , 𝑦, 𝑡𝐻𝐹 𝑑𝑦𝕏  

• 𝑟𝑛 𝑥, 𝑡 , 𝑦, 𝑡𝐻𝐹 = 𝑘 𝑥,𝑡 , 𝑦,𝑡𝐻𝐹 2
𝜎𝑛2 𝑥,𝑡 +𝜆 𝑥,𝑡 ⋅ 𝜎𝑛2 𝑦,𝑡𝐻𝐹 +𝜆 𝑦,𝑡𝐻𝐹  
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Stepwise Uncertainty Reduction 
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• Different costs 𝐶 𝑥, 𝑡  of observations 
 Trade-off between 𝐻𝑛 reduction and cost 𝐶 𝑥, 𝑡  

 

• [Huang et al. 2006], [Le Gratiet and Cannamela, 2015]: comparison 
between benefit and cost 
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Cost of observation 
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• Maximum Speed of Uncertainty Reduction (MSUR) 𝑥𝑛+1, 𝑡𝑛+1 = argmax𝑥,𝑡 𝐻𝑛 − 𝔼𝑛 𝐻𝑛+1 𝑋𝑛+1 = 𝑥, 𝑇𝑛+1 = 𝑡𝐶 𝑥, 𝑡  

• MSUR = Benefit/Cost 

• Adaptable for any measure of uncertainty 𝐻𝑛 

• If 𝐶 is constant  equivalent to SUR algorithm 
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Maximum Speed of Uncertainty Reduction 
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• If the cost depends only on the level 𝐶 𝑥, 𝑡 = 𝐶 𝑡  

 

Algorithm: separate optimization of the point 𝑥 and the 

level 𝑡 
 

1. 𝑥⋆ 𝑡 = argmin𝑥 𝔼𝑛 𝐻𝑛+1 𝑋𝑛+1 = 𝑥, 𝑇𝑛+1 = 𝑡  

2. 𝑡𝑛+1 = argmax𝑡 𝐻𝑛−𝔼𝑛 𝐻𝑛+1 𝑋𝑛+1=𝑥⋆ 𝑡 ,𝑇𝑛+1=𝑡𝐶 𝑡  

3. 𝑥𝑛+1 = 𝑥⋆ 𝑡𝑛+1  
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Simplification 
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3. Academic example 

a. Presentation of the example 

b. Comparison of sequential designs of experiments 
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• Consider a damped harmonic simulator with random drive 𝑋 𝑡 + 2𝜁𝜔0𝑋 𝑡 + 𝜔02𝑋 𝑡 = 𝑊 𝑡  

• 𝜔0: the undamped angular frequency 

• 𝜁: the damping ratio 

• 𝑊: a Brownian motion, with spectral density 𝑆 = 1 

• Initial conditions: 𝑋 𝑡 = 0 = 0, 𝑋 𝑡 = 0 = 0 

 

 

 

 

 

 

 

• [Au and Beck, 2001] 
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Stochastic damped harmonic oscillator 
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• Consider a damped harmonic simulator with random drive 𝑋 𝑡 + 2𝜁𝜔0𝑋 𝑡 + 𝜔02𝑋 𝑡 = 𝑊 𝑡  

 

• Ideal simulator 𝐹: 𝜔0, 𝜁 ↦ max0≤𝑡≤𝑡end=30 log 𝑋 𝑡  

26 

Simulator 
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log ⋅  



• Approximation by an explicit Exponential Euler Scheme 𝑋 𝑛 ⋅ 𝑑𝑡 ≈ 𝑋 𝑛 

• Multi-fidelity simulator 𝑓: 𝜔0, 𝜁, 𝑑𝑡 ↦ max0≤𝑛≤ 𝑡end𝑑𝑡 log 𝑋 𝑛  

 

 

 

 

     𝑑𝑡 = 1 s               𝑑𝑡 = 0.2 s     𝑑𝑡 = 0.05 s         𝑑𝑡 = 0.01 s 

• [Jentzen and Kloeden, 2009] 
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Academic multi-fidelity simulator 
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• The output distribution at 𝜔0, 𝜁, 𝑑𝑡  can be approximated 

by a normal distribution 

 

• 105 simulations at 𝜔0 = 15.708 rad/s and 𝜁 = 0.2 

 

 

 

 

 

     𝑑𝑡 = 1 s               𝑑𝑡 = 0.2 s     𝑑𝑡 = 0.05 s         𝑑𝑡 = 0.01 s 
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Output distributions at a fixed input 
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• Mean function 𝜉 

• 105 simulations 

• 0 ≤ 𝜔0 ≤ 30 rad/s, 0 ≤ 𝜁 ≤ 1 - Grid: 100 × 100 

 

 

 

 

 

    𝑑𝑡 = 1 s             𝑑𝑡 = 0.2 s      𝑑𝑡 = 0.05 s       𝑑𝑡 = 0.01 s 
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Mean function 
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• Critical threshold 𝑧𝑐𝑟𝑖𝑡 = −3 

 

 

 

 

 

 

 

    𝑑𝑡 = 1 s             𝑑𝑡 = 0.2 s      𝑑𝑡 = 0.05 s       𝑑𝑡 = 0.01 s 
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Threshold 
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• True probability of exceeding the threshold 𝑝 𝜔0, 𝜁; 𝑑𝑡  

 

 

 

 

 

 

 

    𝑑𝑡 = 1 s             𝑑𝑡 = 0.2 s      𝑑𝑡 = 0.05 s       𝑑𝑡 = 0.01 s 
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Probability of exceeding the threshold 
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• Computation time 𝐶 𝑑𝑡  : linear in 1/𝑑𝑡.  
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Computation time 
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Time step 𝒅𝒕 1 s 0.2 s 0.05 s 0.01 s 

CPU Time (ms) 0.799 ms 1.85 ms 5.78 ms 26.7 ms 

Cost function 𝑪 𝒅𝒕  0.030 ¤ 0.069 ¤ 0.217 ¤ 1.00 ¤ 



 

 

1. Introduction 

 

2. Sequential design of experiments 

 

3. Academic example 

a. Presentation of the example 

b. Comparison of sequential designs of experiments 
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• Target: probability of exceeding the threshold at the 

highest level of fidelity 𝑑𝑡 = 0.01 s 

 

• Initial design: Nested LHS on 5 levels 

 

 

• [Qian, 2009] 

• Initial budget: 9.87 ¤ 

1 ¤ = cost for 1      observation   at the level 𝑑𝑡 = 0.01 s 

      = cost for 1.96 observations at the level 𝑑𝑡 = 0.02 s 

      = cost for 33.4 observations at the level 𝑑𝑡 = 1 s 

      = … 
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Definition of the problem 
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𝒅𝒕 (s) 1.00 0.50 0.33 0.25 0.20 0.17 0.10 0.05 0.02 0.01 

Nb. points 180 60 20 10 5 0 0 0 0 0 



• Initial budget: 9.87 ¤ 

Supplementary budget: 10 ¤ 

• 6 designs of experiments (DoE) 

• 5 Single level DoE 

• Multi-level DoE 
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Comparison between designs of experiments 
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Sequential design Criterion 
Nb. Points 

Initial design 
Nb. Points 

Final design 

Single level (𝑑𝑡 = 0.17 𝑠) SUR 275 275+145 = 420 

Single level (𝑑𝑡 = 0.10 𝑠) SUR 275 275 + 85 = 360 

Single level (𝑑𝑡 = 0.05 𝑠) SUR 275 275 + 46 = 321 

Single level (𝑑𝑡 = 0.02 𝑠) SUR 275 275 + 19 = 294 

Single level (𝑑𝑡 = 0.01 𝑠) SUR 275 275 + 10 = 285 

Multi-level MSUR 275 275 +   ? =     ? 



• Initial budget: 9.87 ¤ 

Supplementary budget: 10 ¤ 

• 6 designs of experiments (DoE) 

• 5 Single level DoE 

• Multi-level DoE 

 

• Same model: 

• Same covariance function 

• Hyper-parameters estimated on a large design 

• Fixed hyper-parameters during the sequential designs 

• Each DoE: 12 repetitions 
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Comparison between designs of experiments 
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𝕃2-error on the probability function  𝑝 𝑛 𝑥, 𝑡𝐻𝐹 − 𝑝 𝑥, 𝑡𝐻𝐹 2𝑑𝑥0;30 × 0;1  𝑡𝐻𝐹 = 0.01 s 
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Criteria of comparison 
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𝕃2-error on the probability function 

 

 

 

 

 

 

 

• Low-fidelity levels are biased 

High-fidelity levels are slow 

• In this example, multi-fidelity finds the best trade-off 
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Multi-fidelity is better 
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• Goal: sequential design of experiments to estimate 

probability on stochastic multi-fidelity numerical models 

 

• New SUR criteria to estimate probability of exceeding a 

threshold on stochastic simulator 

 

• Adaptation to multi-fidelity model  Maximum Speed of 

Uncertainty Reduction (MSUR) 

•  MSUR = (Uncertainty Reduction)/Cost 

 

• Results on an academic example  automatic trade-off 

between cost and fidelity 

 39 

Conclusion 
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Thank you for your attention! 
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• Mean function 𝜉 and variance function 𝜆 
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