
Thèse

présentée à

l'Université Bordeaux 1

E
ole do
torale de Mathématiques et Informatique

par

Paul Lemaître

pour obtenir le grade de

Do
teur

Spé
ialité : Mathématiques appliquées

Analyse de sensibilité en �abilité des

stru
tures

Dire
teur de thèse : M. Pierre Del Moral

Soutenue le 18 mars 2014 devant la 
ommission d'examen 
omposée de

M. Josselin Garnier Professeur Université Paris VII Rapporteur

M. Bertrand Iooss Cher
heur Senior EDF R& D Co-en
adrant

M. François Legland Dir. de Re
her
he INRIA Rennes Rapporteur

M. Emmanuel Remy Cher
heur Expert EDF R& D Examinateur

M. Jér�me Sara

o Professeur Inst. Poly. de Bordeaux Examinateur





Cette thèse est une grande aventure qui 
ommença en dé
embre 2008, à Lyngby, Danemark. A


ette époque, jeune étudiant Erasmus en quête d'un stage de 4ème année, j'ai vu arriver dans ma

boîte mail une proposition de stage en analyse d'in
ertitudes au CEA de Cadara
he. Un ami, que je

dénon
e plus tard, m'a aidé à passer le 
ap du "j'ai pas le niveau" et m'a poussé à 
andidater. Bien

m'en a pris, 
ar 
e stage fut le début d'une fru
tueuse 
ollaboration. C'est le moment de remer
ier

toutes les personnes sans qui la thèse n'aurait tout simplement pas été possible.

Que 
e soit à Tunis, Cadara
he, Chatou ou à Villard de Lans, Bertrand Iooss a su faire montre

d'une grande humanité et de 
ompéten
es s
ienti�ques très poussées sous 
ouvert d'une 
arapa
e

punk. Je lui suis très re
onnaissant de m'avoir transmis une bonne partie de ses 
onnaissan
es, je

l'espère pas uniquement statistiques.

Mer
i à Fabri
e Gamboa pour m'avoir permis de �nir ma thèse dans de bonnes 
onditions, je

lui suis in�niment re
onnaissant de m'avoir a

epté 
omme 
obureau ("room servi
e") pour les 5

derniers mois.

Je remer
ie Pierre Del Moral d'avoir a

epté de m'en
adrer au titre de dire
teur de thèse. De la

même façon, je sais gré à Josselin Garnier et François Le Gland d'avoir patiemment relu 
ette thèse

et d'avoir apporté des remarques pertinentes me permettant d'améliorer le résultat. Mer
i aussi à

Jér�me Sara

o pour avoir a

epté de faire partie du jury.

Une bonne partie de ma gratitude va à Aurélie Arnaud pour son en
adrement orienté appli
ations.

De la même façon, je suis parti
ulièrement re
onnaissant envers Emmanuel "Manu" Remy, pour

m'avoir supporté dans son 
ouloir à des heures que le 
ode du travail réprouve, pour ses 
onnaissan
es

sur la physique des réa
teurs et pour ses (très) patientes rele
tures.

Ma re
onnaissan
e va également à Agnès Lagnoux pour m'avoir en
adré lors d'un 
ourt mais

e�
a
e séjour de re
her
he à l'UPS �n 2012.

C'est l'o

asion pour moi de dire la gratitude que j'ai envers Didier Larrauri pour m'avoir au-

torisé à prolonger ma thèse a�n de la �nir dans de bonnes 
onditions. J'ai pu appré
ier pendant


ette thèse d'être entouré de 
ollègues à la fois sympathiques et e�
a
es, pointus en statistiques et

en appli
atif. Mes hommages à tout MRI, T-55 et T-57 en tête. En parti
ulier, je remer
ie Mathieu

pour son aide sur la partie logi
ielle et Mi
hael pour son savoir des ar
anes du 
al
ul numérique

ainsi que Merlin pour avoir patiemment é
outé mes élu
ubrations, notamment sur la partie "pertur-

bation des paramètres" des DMBRSI. À mon "on
le de thèse" Ni
olas, j'adresse mes plus sin
ères

remer
iements. Mer
i de m'avoir rassuré à plusieurs o

asions sur l'avenir de 
ette thèse. Et bien

sûr, salutations sportives pour mes deux 
ollègues de salle de sport Popi et Fafa.

Cette thèse n'aurait pas vu le jour sans le fort support dans tous les moments di�
iles que j'ai

eu de la part de mes amis. En parti
ulier je remer
ie le trio parisien formé par Jean-Phi, Thierno et

Nessie, pour les bons moments et les autres. Des poutoux à Morgane et Diday. Il me faut également

tirer mon 
hapeau à l'équipe toulousaine, Dra
o et Maria en tête. Je remer
ie également Bébert

(il sait pourquoi). Big up à Raphaël, pour m'avoir e�
a
ement 
onseillé sur tout l'interfaçage ave


l'Université de Bordeaux. Mention spé
iale à Petit Paul, Agathe, Alex et Mélo pour l'anglais. Par

ailleurs, je suis redevable à 
eux qui prendront la peine de poser un RTT pour aller jusqu'à Bordeaux

le jour de ma soutenan
e, Fly, Quentin, Jeb et tonton Vip - hop dénon
é. En�n, je ne peux 
on
lure

sans une pensée pour Mathieu.

Pour �nir, mes sentiments vont vers ma famille, en parti
ulier mes parents et mes deux s÷urs

qui furent pendant 
ette épreuve la dé�nition même d'indéfe
tible.





Résumé étendu

Introdu
tion

Analyse d'in
ertitudes et expérien
es numériques

On présente i
i brièvement le 
adre général de 
ette thèse : l'exploitation d'un modèle numérique.

Un modèle est i
i une représentation mathématique d'un phénomène physique et son traitement est

e�e
tué au travers d'un système de 
al
ul.

Ce modèle possède des entrées et des sorties (ou réponses). I
i, toutes 
es quantités seront


onsidérées s
alaires mais d'autres types pourraient être envisagés, modales par exemple. En fon
tion

d'un jeu de données d'entrée, le 
ode de 
al
ul va produire un jeu de réponses après un 
ertain temps

de 
al
ul. Le 
adre des 
odes déterministes est utilisé : un même jeu d'entrée produira toujours le

même jeu de sortie. Dans 
e rapport, il sera parfois fait un abus de langage en assimilant le 
ode au

modèle, pour des raisons de lisibilité.

Une notion essentielle est la quantité d'intérêt. Il est en e�et possible que 
e ne soit pas une valeur

de sortie qui intéresse l'expérimentateur, mais plut�t une plage de valeurs ou une quantité dé�nie

à partir des sorties. Il est don
 primordial avant toute étude de dé�nir quelle est la quantité d'intérêt.

L'analyse de sensibilité est dé�nie par Saltelli et al. [89℄ 
omme l'étude de la façon dont

l'in
ertitude sur une quantité de sortie du modèle peut être attribuée aux di�érentes sour
es d'in
ertitudes

dans les variables d'entrée.

L'analyse de sensibilité d'un modèle numérique peut servir à déterminer les variables d'entrée qui


ontribuent le plus à un 
ertain 
omportement d'une sortie, déterminer 
elles sans in�uen
e ou 
elles

qui vont interagir à travers le modèle. Le but peut être de 
omprendre le modèle, de le simpli�er, ou

en
ore de prioriser le re
ueil de données pour mieux modéliser une variable d'entrée. Une appro
he

ré
ente est l'appro
he dite globale. L'ensemble du domaine de variation des variables d'entrée est

alors étudié. La plupart des te
hniques sont développées dans une appro
he indépendante du modèle

("model free"), 
'est-à-dire sans émettre d'hypothèses sur le 
omportement du modèle 
omme par

exemple la linéarité ou la monotonie.

Fiabilité des stru
tures

On 
her
he à répondre au problème industriel de savoir si une stru
ture ou un 
omposant peut résister

à des 
ontraintes qui lui sont appliquées. L'appro
he basée sur des essais et mesures est possible,

mais peut s'avérer di�
ile pour des raisons de 
oûts ou de risques. Parfois, l'expérimentation est

impossible. Des modèles numériques sont alors utilisés 
omme représentation appro
hée de la réalité

in
luant 
ertains mé
anismes (
omme par exemple 
eux de la dégradation, de la propagation des

�ssures...).

A�n d'exploiter 
omplètement le modèle, les in
ertitudes sur les paramètres d'entrées du 
ode

(essentiellement des grandeurs physiques) sont modélisées par des variables aléatoires. Le modèle
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Résumé étendu

représente don
 la stru
ture, dotée d'une 
ertaine résistan
e, et l'environnement, qui engendre une

solli
itation. Le 
al
ul pour un jeu d'entrées �xées permet d'obtenir un 
ritère de défaillan
e qui

amène à une réponse binaire : la stru
ture est défaillante pour 
es entrées ou non défaillante.

Le fait d'in
lure les in
ertitudes 
omme des variables aléatoires permet de modéliser le risque


omme une probabilité de défaillan
e. Cette appro
he est plus �ne qu'une appro
he déterministe où

les grandeurs sont �xées à des valeurs nominales.

Soit X = (X1, ...Xd) le ve
teur aléatoire d−dimensionnel (dont la densité fX est 
onnue) des

variables d'entrée (s
alaires) du modèle numérique. On s'intéresse à 
e que la valeur s
alaire Y ∈ R

renvoyée par la fon
tion de défaillan
e G du modèle (ou fon
tion d'état-limite du modèle) soit plus

faible qu'un 
ertain seuil k (usuellement 0) : 
'est le 
ritère de défaillan
e. La stru
ture est défaillante

pour un jeu d'entrée x si y = G(x) ≤ k (où x = (x1, ..., xd) ∈ Rd
est une réalisation de X et k un

seuil usuellement �xé à 0). L'ensemble de l'espa
e sur lequel 
et évènement se produit est appelé

domaine de défaillan
e Df . La surfa
e dé�nie par {x ∈ Rd, G(x) = k} est dite surfa
e d'état-limite.

La probabilité que l'évènement se produise est notée Pf , probabilité de défaillan
e. On a :

Pf = P(G(X) ≤ k)

=

ˆ

Df

fX(x)dx

=

ˆ

Rd

1G(x)≤kfX(x)dx

= E[1G(X)≤k]

La 
omplexité des modèles et le possible grand nombre de variables d'entrée fait que, dans le 
as

général, on ne peut pas 
al
uler la valeur exa
te de la probabilité de défaillan
e. On peut 
epen-

dant estimer 
ette quantité (qui est une espéran
e mathématique) à l'aide de diverses méthodes

numériques. La base de la �abilité des stru
tures est de fournir une estimation de Pf et une in
erti-

tude autour de 
ette estimation. Cette estimation permet ensuite de répondre à la question initiale

de la résistan
e de la stru
ture.

Obje
tifs de la thèse

Le but de 
ette thèse est le développement de te
hniques d'analyse de sensibilité quand la quantité

d'intérêt est une probabilité de dépassement de seuil (
e qui équivaut à une probabilité de défaillan
e

dans le 
ontexte de la �abilité des stru
tures). Les 
ontraintes du 
ode CWNR qui a motivé le travail

de thèse doivent être prises en 
ompte. La probabilité de défaillan
e dans le 
as le moins pénalisant

(7 variables) a un ordre de grandeur attendu de 10−5
. Si possible, les méthodes développées doivent

être en relation ave
 l'estimation de Pf et doivent produire une estimation de l'erreur faite lors de

l'estimation des indi
es de sensibilité et de Pf .

Organisation de la thèse

La thèse est divisée en quatre 
hapitres.

Le premier 
hapitre est une revue des stratégies existantes pour estimer des probabilités de

défaillan
e et des te
hniques d'analyse de sensibilité.

Le se
ond 
hapitre est 
onsa
ré à la dé�nition de mesures de sensibilité ave
 pour but la produ
-

tion d'un 
lassement de variables (variable ranking).

6



Le troisième 
hapitre présente une méthode originale pour estimer l'importan
e de 
ha
une des

variables d'entrée sur une probabilité de défaillan
e. Cette méthode se 
on
entre sur l'impa
t d'une

modi�
ation de densité d'entrée sur la probabilité de défaillan
e produite en sortie.

Le quatrième 
hapitre présente une appli
ation des méthodes étudiées sur le 
as CWNR, 
as réel

qui a motivé la thèse.

Méthodes de 
lassement de variables

Le se
ond 
hapitre présente deux méthodes permettant de 
lasser les variables d'entrée en fon
tion

de leur in�uen
e sur la sortie (binaire). De plus, 
es méthodes sont des sous-produits de l'estimation

de la probabilité de défaillan
e Pf .

En e�et la première te
hnique propose de faire usage de mesures dérivées de l'ajustement de

forêts aléatoires sur un é
hantillon de type Monte-Carlo. Un rappel sur les arbres binaires puis sur

les forêts aléatoires est proposé, puis l'étude de deux indi
es (Gini Importan
e et Mean De
rease

A

ura
y) mesurant l'importan
e des variables sur la quantité d'intérêt binaire est proposé.

La se
onde te
hnique mesure l'é
art, à 
haque étape d'une méthode de type subset simulation,

entre les densités d'entrée et les densités sa
hant que le sous-ensemble est atteint.

La dé�nition informelle est la suivante : l'indi
e de sensibilité est dé�ni pour la variable i et
l'étape du subset k 
omme la distan
e entre la fon
tion de répartition (f.d.r.) empirique et la f.d.r.

théorique de la variable. Considérant M étapes de subset ave
 k = 1 . . .M ; et en notant :

F k
n,i = Fi(x|Ak),

la f.d.r. empirique de la ième variable sa
hant que le seuil Ak a été dépassé. L'indi
e proposé s'é
rit


omme suit :

δSSi (Ak) = d(F k
n,i, Fi),

où Fi est la f.d.r. de la ième variable, et d est une distan
e. Une variable in�uente aura un grand

é
art en f.d.r alors qu'une variable non-in�uente aura un faible é
art en f.d.r., don
 un faible indi
e.

Des travaux sont menés sur le 
hoix de la distan
e d en fon
tion du besoin de l'analyste.

Ces deux méthodes peuvent don
 être vues 
omme des sous-produits de te
hniques d'estimation

de la probabilité de défaillan
e.

Méthode basée sur une perturbation des densités (DMBRSI)

Dans le troisième 
hapitre, de nouveaux indi
es de sensibilité pour la �abilité sont proposés. Cet

indi
e de sensibilité est basé sur une modi�
ation des densités et est adapté aux probabilités de

défaillan
e. Une méthode pour estimer de tels indi
es est proposée.

Ces indi
es re�ètent l'impa
t d'une modi�
ation d'une densité d'entrée sur la probabilité de

défaillan
e Pf . Ils sont indépendants de la perturbation dans le sens où l'utilisateur peut 
hoisir la

perturbation adaptée à son problème.

Pour des raisons de simpli
ité, un s
héma d'é
hantillonnage Monte-Carlo 
lassique est 
onsid-

éré par la suite, bien que le pro
essus d'estimation a été étendu aux méthodes subset et tirages

d'importan
e. Les indi
es de sensibilité peuvent être estimés en utilisant seulement le jeu de simu-

lations déjà utilisé pour estimer la probabilité de défaillan
e Pf . Ce
i limite le nombre d'appels au


ode de 
al
ul, 
omme mentionné dans les 
ontraintes du 
as industriel CWNR.

Le 
hapitre est organisé de la façon suivante : en premier lieu, les indi
es et leurs propriétés

théoriques sont présentées ainsi qu'une méthode d'estimation. En se
ond lieu, plusieurs méthodes
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Résumé étendu

de perturbation des densités sont présentées. Ces modi�
ations peuvent être 
lassées en deux grandes

familles : minimisation de Kullba
k-Leibler et perturbation des paramètres. Le 
omportement des

indi
es proposés est testé sur des 
as tests, puis les avantages et problèmes restants sont �nalement

dis
utés.

Le 
hapitre 3 est une version étendue du papier par Lemaître et 
oauteurs [63℄.

Indi
e DMBRSI

Soit une entrée unidimensionnelle Xi de densité fi, on appelle Xiδ ∼ fiδ l'entrée perturbée 
orre-

spondante.

La probabilité de défaillan
e modi�ée devient :

Piδ =

ˆ

1{G(x)<0}
fiδ(xi)

fi(xi)
f(x)dx

où xi est la i
ème


omposante du ve
teur x.

L'indi
e DMBRSI a la forme suivante.

Dé�nition On dé�nit les indi
es de sensiblité basés sur une modi�
ation des lois (Density Modi-

�
ation Based Reliability Sensitivity Indi
es - DMBRSI) 
omme la quantité Siδ :

Siδ =

[
Piδ

Pf
− 1

]
1{Piδ≥Pf} +

[
1− Pf

Piδ

]
1{Piδ<Pf} =

Piδ − Pf

Pf · 1{Piδ≥Pf} + Piδ · 1{Piδ<Pf}
.

Estimation

Un estimateur P̂N de Pf peut être 
al
ulé en utilisant un plan d'expérien
e de N points. Par la

suite, N est 
onsidéré 
omme étant assez grand pour que le 
ontexte de la théorie asymptotique

s'applique. Par ailleurs, un é
hantillonnage de type Monte-Carlo standard est utilisé pour simpli�er

les 
al
uls. On é
rit alors

P̂N =
1

N

N∑

n=1

1{G(xn)<0}

où x1, · · · ,xN
sont des réalisations indépendantes de X. La loi forte des grands nombres et le

théorème limite 
entrale (TLC) assurent que pour presque toutes les réalisations, P̂N −−−−→
N→∞

Pf et

√
N

Pf (1− Pf )
(P̂N − Pf )

L−−−−→
N→∞

N (0, 1).

Le 
adre Monte-Carlo permet d'estimer Piδ de façon 
onsistante sans nouvel appel au 
ode de


al
ul G, grâ
e à une te
hnique de tirage d'importan
e "inverse" (reverse importan
e sampling):

P̂iδN =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )
.

Ce
i est très intéressant quand le 
ode de 
al
ul G est 
oûteux en temps de 
al
ul ( Be
kman and

M
Key, Hesterberg [8, 45℄).

Dans la thèse, les propriétés asymptotiques des estimateurs de Pf et Siδ sont étudiées.
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Stratégies de perturbation

La Se
tion 3.3 propose plusieurs méthodes de perturbations. On insiste sur le fait que les DMBRSI

et les te
hniques d'estimation présentées restent valides pour toute perturbation tant que des 
on-

traintes sur le support sont respe
tées. I
i on se fo
alise sur deux familles de méthodes. Dans la

première, la densité perturbée est 
elle minimisant la divergen
e de Kullba
k-Leibler sous des 
on-

traintes �xées par l'utilisateur. Plusieurs 
ontraintes sont proposées (perturbation de la moyenne,

de la varian
e et des quantiles). L'usage de la se
onde méthode est 
onseillé quand l'utilisateur veut

tester la sensibilité de Pf aux paramètres des distributions. Chaque se
tion est introduite par un

exemple jouet.

Cette se
tion illustre la 
apa
ité des DMBRSI à traiter des obje
tifs d'analyse de sensibilité

di�érents. L'utilisateur est invité à proposer de nouvelles perturbations qui répondraient à ses

obje
tifs.

Appli
ation au 
as CWNR

Le quatrième 
hapitre présente l'appli
ation des méthodes développées au 
as CWNR. Ce 
as est

présenté dans l'organisation de la thèse, page 24. On rappelle que 
e modèle de type "boîte-noire"


onstitue la motivation initiale de 
e travail.

Pour estimer Pf , la méthode FORM (voir Se
tion 1.2.2.2) et un Monte-Carlo naïf (voir Se
tion

1.2.1.1) ont été utilisées. Les résultats produits par la méthode Monte-Carlo sont 
onsidérés 
omme

étant la référen
e dans 
e 
hapitre.

La partie analyse de sensibilité est 
onsa
rée à la mise en ÷uvre de trois méthodes : premièrement,

les fa
teurs d'importan
e FORM (voir Se
tion 1.3.2.2). Ensuite, des forêts aléatoires (voir Se
tion

2.2) sont 
onstruites sur l'é
hantillon Monte-Carlo et des mesures de sensibilité sont dérivées. Pour

�nir, les DMBRSI (voir Chapitre 3) sont utilisés. Plusieurs perturbations (moyenne, quantile et

paramètres) sont testées.

Ce 
hapitre est divisé en trois se
tions prin
ipales, se 
on
entrant 
ha
une sur des 
as de dimen-

sion 
roissante (3, 5 et 7 variables probabilisées), où plus la dimension est petite, plus le 
as est

pénalisant.

Les 
on
lusions de 
e 
hapitre sont les suivantes :

� en 
e qui 
on
erne la partie estimation de Pf , la méthode de Monte-Carlo reste la référen
e

sur un 
ode industriel. Le désavantage majeur est bien entendu le temps de 
al
ul né
essaire.

� En 
e qui 
on
erne la partie analyse de sensibilité, les forêts aléatoires produisent des résultats


ontestables, 
ar les modèles ajustés sont de mauvaise qualité. La méthode est don
 peu


on
luante pour l'instant.

� Les DMBRSI semblent une méthode adaptée pour e�e
tuer une analyse de sensibilité sur une

probabilité de défaillan
e. Plusieurs ajustements et 
on�gurations ont été testées.

Axes de re
her
hes futures

Les méthodes présentées dans le Chapitre 2 peuvent être améliorées. Plus spé
i�quement, il y a un

besoin d'améliorer les 
lassi�eurs binaires (forêts aléatoires). Les indi
es MDA 
ouplés à la subset

simulation doivent être implémentés. Une autre perspe
tive d'amélioration, en utilisant les indi
es

δSSi (Ak), est de mener un travail in
luant la théorie des 
opules.
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Résumé étendu

Les DMBRSI introduits dans le Chapitre 3 présentent eux aussi plusieurs perspe
tives d'amélioration.

La grande partie des travaux sera 
onsa
rée à l'amélioration des indi
es Siδ en termes de rédu
tion

de varian
e et d'appels au 
ode de 
al
ul. Le 
ouplage des estimateurs ave
 la subset simulation

doit aussi être perfe
tionné. Une perturbation basée sur l'entropie pourrait également être proposée,

mais des 
al
uls plus poussés doivent être menés pour obtenir une solution du problème de minimi-

sation de la divergen
e de Kullba
k-Leibler. Un autre axe serait de 
hanger la métrique/divergen
e.

Par ailleurs, une autre idée pourrait être la prise en 
ompte des dépendan
es entre variables et de

perturber 
ette dépendan
e entre marginales via la théorie des 
opules.

Des perspe
tives plus larges sont à 
onsidérer, en parti
ulier l'utilisation de méthodes séquen-

tielles 
ouplées ave
 des méta-modèles (Be
t et al. [9℄) est à étudier.

Ré
emment, Fort et al. [35℄ ont introduit de nouveaux indi
es de sensibilité pouvant être 
onsid-

érés 
omme une généralisation des indi
es de Sobol'. La notion de fon
tion de 
ontraste adaptée au

besoin est introduite. Cet indi
e doit être testé et 
omparé ave
 les DMBRSI dans un travail futur.
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es Ŝiδ for the �ood 
ase with a mean perturbation . . . . . . . . . . . . . 156

3.38 5th per
entile perturbation on the �ood 
ase . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.39 1st quartile perturbation on the �ood 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.40 Median perturbation on the �ood 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.41 3rdquartile perturbation on the �ood 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.42 95th per
entile perturbation on the �ood 
ase . . . . . . . . . . . . . . . . . . . . . . . . 159

3.43 Parameters perturbation on the �ood test 
ase. The indi
es 
orresponding to Q are

plotted in green: dark green for the lo
ation parameter and light green for the s
ale

parameter. The indi
es 
orresponding to Ks are plotted as follows: bla
k for the mean,

dark grey for the standard deviation. The indi
es of the mode of Zv are plotted in red

while the ones 
orresponding to the mode of Zm are plotted in blue. . . . . . . . . . . . 160

4.1 Estimated indi
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Context, obje
tives and outline

On 
omputer experiments

Numeri
al simulation is the pro
ess that allows to reprodu
e a physi
al phenomenon with a 
omputer.

This phenomenon is represented via a mathemati
al model, and this model is solved during a


omputation time.

The numeri
al simulation 
an be 
ostly, due to the time needed to prepare the set of inputs or

to the possibly large number of 
al
ulations needed. Moreover, the result of the simulation may

be un
ertain, thus this s
ienti�
 topi
 is often referred to as numeri
al experiments. The use of

simulation in 
on
eption and safety of an industrial system equipment - two appli
ative domains of

interest in this thesis - has grown over the last de
ades.

Un
ertainty quanti�
ation and sensitivity analysis

We brie�y present the general framework of our work: the study of a deterministi
 numeri
al model.

As explained before, a model is a mathemati
al representation of a 
omplex physi
al phenomenon.

This model re
eives inputs and produ
es outputs (or responses). For the sake of simpli
ity, these

quantities will be 
onsidered as s
alar and 
ontinuous but other types 
ould be 
onsidered, modal

for instan
e. Given a 
ertain input value, the model produ
es a 
ertain output after 
omputation.

The deterministi
 framework is 
onsidered here, that is to say that a given set of input values always

produ
es the same output values.

Consider the quantity of interest. It might be possible that the experimenter is interested in a

quantity de�ned from one or several outputs. It is therefore of outmost importan
e to �rst de�ne

above all study the quantity of interest.

Some parameters (su
h as physi
al values) are not pre
isely 
hara
terized due to a la
k of data

or variability for instan
e, therefore these parameters 
an be seen as random variables. Some

other inputs will be 
onsidered as known and modelled by deterministi
 values. Let us denote

X = (X1, ...Xd) the d−dimensional random ve
tor (with known density fX) of random (s
alar)

input variables of the numeri
al model. Let us also denote by t the p-dimensional ve
tor of de-

terministi
 input. Let us 
onsider without loss of generality, a single output Y ∈ R de�ned as

Y = G(X, t) where G is the deterministi
 model. The quantity of interest is Z or a fun
tion of

it. In the following, we will denote Y = G(X). Also, it is important to noti
e that in the whole

thesis, independent inputs will be 
onsidered, although the study of models with dependent inputs

is a major �eld of resear
h.

Figure 1 summarizes the referen
e framework for un
ertainty treatment (de Ro
quigny et al.

[30℄). The breakdown of the study in several steps is done as follows:
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Context, obje
tives and outline

Figure 1: Un
ertainty study referen
e framework

� Step A, problem spe
i�
ation: the obje
tives are de�ned, as well as the model used, the

quantity of interest and the input variables (some of whi
h are 
onsidered un
ertain).

� Step B, quanti�
ation of un
ertainty sour
es: the input variables 
onsidered un
ertain are

modelled by random distributions. This step is done 
ollaborating with experts and 
olle
ting

data points.

� Step C, propagation of un
ertainty sour
es: the quantity of interest is evaluated a

ording to

the un
ertainty on the input variables de�ned in step B.

� Step C', sensitivity analysis: the relative un
ertainty 
ontribution of ea
h input on the output's

un
ertainty is evaluated.

The generi
ness allows this framework to address numerous problems. This thesis will mainly fo-


uses on Step C', even if this step 
annot easily be separated from Step C.

Sensitivity analysis (SA) is de�ned by Saltelli et al. [89℄ as �the study of how the un
ertainty in

the output of a model 
an be apportioned to di�erent sour
es of un
ertainty in the model input�. It

may be used to determine the most 
ontributing input variables to an output behaviour. It 
an also

be used to determine non-in�uential inputs, or as
ertain some intera
tion e�e
ts within the model.

The obje
tives of SA are numerous; one 
an mention model understanding, model simplifying or

fa
tor prioritisation.

There are many appli
ation examples, for instan
e Makowski et al. [67℄ analyse, for a 
rop

model predi
tion, the 
ontribution of 13 geneti
 parameters on the varian
e of two outputs. Another
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example is given in the work of Varet [99℄ where the aim of SA is to determine the most in�uential

inputs among a great number (around 60), for an air
raft infrared signature simulation model.

In nu
lear engineering �eld, Auder et al. [5℄ study the in�uential inputs on thermohydrauli
al

phenomena o

urring during an a

idental s
enario, while Iooss et al. [50℄ and Volkova et al. [100℄


onsider the environmental assessment of industrial fa
ilities.

The �rst histori
al approa
h to sensitivity analysis is known as the lo
al approa
h. The impa
t of

small perturbations of the inputs on the output is studied. These small perturbations o

ur around

nominal values (the mean of a random variable for instan
e). This is a 
ounterpart to the partial

derivatives of the model in 
ertain points of the input spa
e. Most of these methods (some of them

will be itemized in se
tion 1.3.2) make strong assumptions on the model and/or on the inputs (in

terms of linearity, normality, ...).

A se
ond approa
h, more re
ent due to the development of 
omputational power is known as

the global approa
h. The whole variation range of the inputs is therein 
onsidered. An appli
ative

introdu
tion 
an be found in Iooss [49℄. Most te
hniques (some of them will be de�ned in se
tion

1.3.1 and tested in se
tions 1.4 and 1.5) are developed in an independent approa
h (�model free�),

without making assumptions su
h as linearity or monotony.

Stru
tural reliability

Consider the industrial problem of knowing if a stru
ture, subje
t to physi
al loads or 
onstraints,

goes undamaged or goes to a state of failure. This will be referred as stru
tural reliability. A

�trial and measures� approa
h might be possible, but 
an be di�
ult to manage for safety or 
osts

reason. Within this 
ontext, 
omputer models are used in order to assess the safety of 
omplex

systems. These models are then used as an approximate representation of the reality, in
luding

some me
hanisms su
h as �aw propagation, fri
tion laws...

In order to 
ompletely use the model, un
ertainties on the model inputs (essentially physi
al

values) are modelled by random variables. The model is therefore representing the stru
ture gifted

with a 
ertain toughness and the environment providing a load. Computation for a �xed set of

inputs allows to obtain a failure 
riterion leading to a binary response: for this set of inputs, the

stru
ture fails or behaves soundly.

The fa
t that un
ertainties are modelled by random variables enables risk modelling as a failure

probability. This approa
h is more subtle than a deterministi
 approa
h where inputs are �xed to

nominal values (generally penalized).

One is interested in the fa
t that the value Y ∈ R given by the failure fun
tion G is smaller than

a given threshold k (usually 0): it is the failure 
riterion. The stru
ture is failing for a given set of

input x if y = G(x) ≤ 0, where x = (x1, ..., xd) ∈ Rd
is a realization of X. The part of spa
e in whi
h

this event o

urs is 
alled failure domain, denoted Df . The surfa
e de�ned by {x ∈ Rd, G(x) = 0}
is 
alled limit-state surfa
e. The probability for the event to o

ur is denoted Pf , failure probability.

One has:

Pf = P(G(X) ≤ 0) (1)

=

ˆ

Df

fX(x)dx (2)

=

ˆ

Rd

1G(x)≤0fX(x)dx (3)

= E[1G(X)≤0] (4)
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The 
omplexity of models and the possible great number of inputs make di�
ult, in a general


ase, to 
ompute the exa
t value of Pf . However, it 
an be estimated (sin
e written under the form

of a mathemati
al expe
tation) with the help of several methods that will be itemized in se
tion 1.2.

The primer of stru
tural safety is to provide an estimation of Pf and some un
ertainty surrounding

this estimation. It 
an be used to answer the original question of the stru
ture supporting the loads.

Context: 
omponent within nu
lear rea
tor (CWNR)

This 
ase-study provided the initial motivation for this work. It fo
uses on the reliability and risk

analysis of a nu
lear power plant 
omponent. However the results of this thesis must be 
onsidered

as textbook exer
ises, whi
h 
an not be used to draw 
on
lusions about the integrity or safety

assessment of nu
lear power plants.

During the normal operation of a nu
lear power plant, the 
omponent within nu
lear rea
tor

(CWNR) is exposed to ageing me
hanisms. In order to assess the integrity of the 
omponent, it has

been demonstrated that a postulated manufa
turing �aw 
an withstand severe me
hani
al loads.

The CWNR me
hani
al model in
ludes three parts. Firstly, a simpli�ed representation of the

loading event, whi
h analyti
ally des
ribes as fun
tions of the time, the temperature T , the pressure
and the heat transfer 
oe�
ient between the environment and the surfa
e of the CWNR. Se
ondly,

a thermo-me
hani
al model of the CWNR thi
kness, in
orporating the CWNR material properties

depending on the temperature. Lastly, an integrity model allowing to evaluate the no
ivity of a

manufa
turing �aw, in
luding di�erent variables: (a) a variable, h, summarizing the dimension of

the �aw, (b) a stress intensity fa
tor, (
) the toughness depending on the temperature at the �aw

and the level of deterioration, whose dis
repan
y with operation time is evaluated with some 
odi�ed

fore
asting formulas. In pra
ti
e, the modelling of the CWNR may assign probabilisti
 distributions

to some physi
al sour
es of un
ertainty. In this manus
ript, a maximum of 7 input physi
al variables

will be 
onsidered as random. Table 1 summarizes the distributions of the independent physi
al

random inputs of the CWNR model. Table A.1 is a reminder of the inputs' densities.

Random var. Distribution Parameters

Thi
kness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, s
ale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (µ) = −1.53, ln (σ) = 0.55

Azimuth �aw (°) Uniform a = 0, b = 360

Altitude (mm) Uniform a = −5096, b = −1438

σ∆TT Gaussian µ = 0, σ = 1

σRes Gaussian µ = 0, σ = 1

Table 1: Distributions of the random physi
al variables of the CWNR model.

Also, for the numeri
al appli
ations over the CWNR model, the random input will be 
onsidered

as 3, 5 or 7 dimensional and will respe
tively 
orrespond to the 3, 5 and 7 �rst random variables

presented in Table 1.

Obje
tives

The aim of this dissertation is the development of sensitivity analysis te
hniques when the quantity of

interest is a probability of ex
eedan
e of a given threshold (whi
h is equivalent to a failure probability
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in the �eld of stru
tural reliability). The 
onstraints of the CWNR 
ode are to be taken into a

ount.

The expe
ted magnitude of the failure probability is less than 10−5
. If possible, the methods must

be related to the estimation of Pf and must provide an estimation of the error made when estimating

sensitivity indi
es as well as an estimation of the error made when estimating Pf .

Outline

The following thesis is organised in four 
hapters.

The �rst 
hapter is an overview of both existing strategies for estimating failure probabilities and

methods of sensitivity analysis. In this 
hapter, states of the art for reliability and sensitivity analysis

(SA) te
hniques will be separately developed. More pre
isely, three main families of reliability

te
hniques will be studied: Monte-Carlo methods, stru
tural reliability methods and sequential

Monte-Carlo methods. Finally, two families of well-known sensitivity analysis te
hniques will be put

to the proof on reliability test 
ases (whi
h are itemized in Appendix B). These te
hniques show

some limitations, 
on�rming the need to develop SA methods fo
used on failure probabilities. A

table (Table 1.13) summarizing the presented methods is proposed, and a dis
ussion on the meaning

of sensitivity analysis in the reliability 
ontext is 
ondu
ted.

The se
ond 
hapter fo
uses on de�ning measures of sensitivity in order to produ
e a variable

ranking. More spe
i�
ally, the use of random forests on a Monte-Carlo sample is proposed in the

�rst pla
e. Two importan
e measures derived from the random forests predi
tors are tested on the

usual 
ases. In the se
ond pla
e, a te
hnique using a sample produ
ed by sequential Monte-Carlo

methods is eli
ited. This last method is based on the departure between the marginal distribution

of an input and its equivalent given the step of the subset method.

The third 
hapter presents an original method to estimate the importan
e of ea
h variable on

a failure probability. This method fo
uses on the impa
t of perturbations upon the original input

densities fi. A general framework de�ning appropriate perturbations is elaborated, then sensitivity

indi
es are presented. An estimation te
hnique of these indi
es that makes no further 
alls to the

model is given. The methodology is then tested on the usual 
ases.

The fourth 
hapter presents the appli
ation of the developed methods to the CWNR 
ase. Several

tunings will be studied to assess or in�rm the ability of the di�erent SA methods to identify in�uential

variables.
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Chapter 1

State of the art for reliability and

sensitivity analysis

1.1 Introdu
tion

The outline of the 
hapter is the following: in Se
tion 1.2, a state of the art for reliability is proposed.

Several te
hniques for estimating failure probabilities are presented. Then in Se
tion 1.3, a review

of Sensitivity Analysis (SA) is given. The appli
ation of a well-known SA method, Sobol' indi
es

(1.3.1.3) on a failure probability, is tested on numerous appli
ation 
ases in Se
tion 1.4. In Se
tion

1.5, the so-
alled moment independent sensitivity measures (presented in Se
tion 1.3.1.4) are tested

within the reliability 
ontext. Next, Se
tion 1.6 proposes a synthesis of these states of the art.

Finally, Se
tion 1.7 dis
usses the meaning and obje
tives of sensitivity analysis when dealing with

failure probabilities.

1.2 State of the art: reliability and failure probability estimation

te
hniques

This state of the art for reliability is widely inspired by the PhD thesis of Gille-Genest [41℄, Can-

naméla [22℄ (in Fren
h) and Dubourg [33℄ (in English). In addition, monographs by Madsen et al.

[66℄ and Lemaire [60℄ have been used. In this se
tion, a state of the art for the estimation te
hniques

of failure probabilities is detailed. Choi
e is set to present 3 families of methods.

� Monte-Carlo (MC) simulation methods: these te
hniques are standard in statisti
s. The MC

methods are used to estimate an expe
tation. These are based upon an appli
ation of the

Strong Law of Large Numbers for estimation and on the Limit Central Theorem for error


ontrol. Several varian
e-redu
tion te
hniques are available in the literature. The most appro-

priate of them will be itemised in 1.2.1.

� Reliability methods: histori
ally these methods 
ome from me
hani
al engineering. They

provide answers based upon a linear (FORM) or quadrati
 (SORM) approximation of the

failure surfa
e. This approximation is then used to estimate the failure probability. As far as

we know, error 
ontrol is not easily made. These methods are presented in 1.2.2.

� Subset simulation methods: sometimes also referred as parti
le methods, sequential MC or

splitting te
hniques, these methods have been more re
ently developed. They are based upon

a de
omposition of the obje
tive probability as a produ
t of 
onditional probabilities, that
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are easier to estimate. These estimations are made running a large number of Monte-Carlo

Markov Chains (MCMC). Some te
hniques will be presented in 1.2.3.

However, the partition must be quali�ed. In pra
ti
e, methods 
an be asso
iated; for instan
e one


an �rst use FORM numeri
al approximation, then perform some importan
e sampling around the

most probable failing point. In the same way, most of Munoz-Zuniga's works [72℄ are devoted to a

strati�ed sampling te
hnique (MC varian
e-redu
tion method) 
ombined with dire
tional simulation.

1.2.1 Monte-Carlo methods

These methods allow the estimation of an expe
tation of form:

I = E[ϕ(X)] (1.1)

or on the integral form:

I =

ˆ

E
ϕ(x)fX(x)dx (1.2)

where ϕ(.) is a fun
tion from E ⊂ Rd → R and X is a d−dimensional random ve
tor (with known

density fX). In a reliability framework, the fun
tion ϕ(.) is written as an indi
ator, 1G(X)≤k.

1.2.1.1 Crude Monde-Carlo method

Presentation of the estimator The main idea of this method is to generate a large number of

i.i.d. ve
tors with density fX, then to estimate I with the empiri
al mean of the N values. The

Strong Law of Large Numbers allows to get an unbiased estimator of I.

Î =
1

N

N∑

i=1

ϕ(xi) (1.3)

with given N and where xi
are i.i.d with fX. In the reliability 
ase, an unbiased estimator of Pf is:

P̂ =
1

N

N∑

i=1

1{G(xi)≤k} (1.4)

The varian
e of the estimator of E[ϕ(X)] is:

Var [Î ] =
1

N
Var[ϕ(X)] (1.5)

and it 
an be estimated by:

V̂ar [Î] =
1

N − 1

[
1

N

N∑

i=1

ϕ2(xi)− Î2

]
(1.6)

When ϕ(.) is an indi
ator fun
tion, as usual in stru
tural reliability studies, a simpli�ed expression


an be obtained:

Var [P̂ ] =
1

N
Pf (1− Pf ). (1.7)

Its 
lassi
al estimator is:

V̂ar [P̂ ] =
1

N
P̂ (1− P̂ ) (1.8)

Thanks to the Limit Central Theorem, one 
an build 
on�den
e intervals around the estimator.
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Figure 1.1: Spa
e �lling 
omparison: Sobol's sequen
e (left) and uniform random sampling (right).

Advantages and drawba
ks of the MC method This method makes no hypothesis on the

regularity of ϕ(.). The produ
ed estimator is unbiased. Con�den
e intervals 
an be obtain around

the estimator, whi
h are useful to quantify the pre
ision of the latter. Furthermore, quality of the

estimation only depends on the sample size. This means that the MC method is independent of the

dimension of the problem, unlike other integration methods.

However, this te
hnique needs a fair number of fun
tion 
alls to rea
h su�
ient pre
ision. A
-


ording to the rule of thumb, to obtain a variation 
oe�
ient of 10% on a 10−k
failure probability,

N = 10k+2
simulations are needed. This 
an be unrealisti
 in some appli
ations when dealing

with very low failure probabilities (< 10−6
). Furthermore, 
omputer models 
an be 
omplex and

time-
onsuming.

Varian
e-redu
tion The varian
e of the estimator de
reases in Var[ϕ(X)]/N . Therefore a large

sample is needed to get a good estimation. Varian
e-redu
tion te
hniques 
onsist in redu
ing the

un
ertainty involved by the numeri
al integration te
hnique, thus diminishing �u
tuations of esti-

mations around the sear
hed value.

In the referen
e books (see Rubinstein [85℄), numerous varian
e-redu
tion te
hniques 
an be

found. In a reliability 
ontext, su
h methods are based on fo
using the exploration of the sample

spa
e around the limit state (ie, the failure) surfa
e. In the following, we present three main methods.

1.2.1.2 Quasi Monte-Carlo Methods

Presentation of the method The idea beneath Quasi Monte-Carlo (QMC) method is to repla
e

the random sampling by quasi-random sequen
es. These are deterministi
 sequen
es having good

equirepartition properties. These sequen
es are 
alled low-dis
repan
y sequen
es, or quasi-random

sequen
es. Loosely speaking, dis
repan
y is a measure of departure from the uniform distribution.

There exist a number of di�erent de�nitions (L∞, L2, modi�ed L2, . . . ). Examples of pseudo-random

sequen
es as well as theoreti
al developments are given in Niederreiter [75℄. Figure 1.1 displays a

two-dimensional example of �better� spa
e �lling by a low-dis
repan
y sequen
e (Sobol's sequen
e),


ompared with an uniform random sampling.
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QMC estimation of the desired quantity is obtained substituting in the MC estimator the random

samples by the pseudo-random samples. However, it is not possible to obtain a varian
e estimation of

the QMC estimator. Koksma-Hlakwa's inequality allows to bound the error made when integrating

with QMC method, depending on the 
hosen sequen
e and on ϕ(.)'s regularity.

Reliability 
ase QMC methods are not well adapted for stru
tural reliability. The main issue

when estimating small failure probabilities by MC is to get �extreme� samples (within the distribution

tail) leading to the failure event, rather than getting evenly distributed samples. However, these

methods will be applied in Se
tion 1.4 to de
rease the number of fun
tion 
alls when estimating

Sobol' indi
es (whi
h are de�ned in Se
tion 1.3.1.3).

1.2.1.3 Importan
e sampling

Presentation of the method The basi
 idea of importan
e sampling is to modify the sampling

density. The estimator is then obtained by in
luding a density ratio. The aim is to foster sampling

in signi�
ant regions. In a reliability 
ontext, this is simply in
reasing the number of failure samples.

Let us denote f
X̃

a density sele
ted by the pra
titioner. It will be referred to as the instrumental

density. The problem rewrites as follows:

I =

ˆ

E
ϕ(x)fX(x)dx (1.9)

=

ˆ

E
ϕ(x)

fX(x)

f
X̃
(x)

f
X̃
(x)dx (1.10)

= E
X̃

[
ϕ (X)

fX(x)

f
X̃
(x)

]
(1.11)

where E
X̃

is the expe
tation when X is of density f
X̃
. The estimation is then made by:

ÎIS =
1

N

N∑

i=1

ϕ(xi)
fX(x

i)

f
X̃
(xi)

(1.12)

where xi
are i.i.d with density f

X̃
. One 
an also get the varian
e of the estimator:

Var(ÎIS) =
1

N
Var

X̃

[
ϕ(X)

fX(X)

f
X̃
(X)

]
(1.13)

where Var

X̃
is the varian
e when X follows density f

X̃
. It should be noti
ed that the support of f

X̃

must be in
luded within the support of the initial density fX. Otherwise, the estimator is biased.

This te
hnique does not 
onsistently provide a varian
e redu
tion. A given instrumental density

f
X̃

useful only if:

Var

X̃

[
ϕ(X)

fX(X)

f
X̃
(X)

]
< VarX[ϕ(X)] (1.14)

Minimal varian
e is obtained with the following optimal density:

fX∗(x) =
|ϕ(x)|fX(x)

´

|ϕ(y)|fX(y)dy
(1.15)

However, the denominator on the latter is di�
ult to estimate as it boils down to I in the 
ase of a

positive fun
tion ϕ(.). Choosing of a well-�tted instrumental density is a problem in itself. Chapter

2 of Cannaméla [22℄ provides a state of the art of sele
ting a quasi-optimal instrumental density.
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Reliability 
ontext The estimator of Pf is:

P̂IS =
1

N

N∑

i=1

1{G(xi)≤k}
fX(x

i)

f
X̃
(xi)

(1.16)

Thus the optimal density 
an be rewritten as:

fX∗(x) =
1{x∈Df }fX(x)
´

Df
fX(y)dy

=
1{x∈Df}fX(x)

Pf
= fX(x|Df ) (1.17)

This density is intra
table in pra
ti
e, Pf being the quantity of interest. Choi
e of a good instru-

mental density is therefore a problem in reliability as well. One 
an quote 
hapter 5 of Munoz

Zuniga [72℄ in whi
h an adaptive and non parametri
 te
hnique for instrumental density sele
tion

(adapted to this reliability 
ontext) is presented. Additionally, Pastel [79℄ developed an interesting

non-parametri
 adaptive te
hnique, still within the reliability framework.

1.2.1.4 Dire
tional sampling

In pra
ti
e this te
hnique is spe
i�
 to stru
tural reliability studies.

Prin
iple First, the random input ve
tor is transformed into a random ve
tor for whi
h all 
om-

ponents are standard Gaussian random variables. This is also referred as transforming the physi
al

spa
e into the standard Gaussian spa
e (sometimes referred to as U-spa
e). Su
h an isoprobabilisti


transformation T whi
h turns the random ve
tor X of density fX into a random ve
tor whose all


omponents are independent standard Gaussians. Given X = (X1, ...,Xd) the random input ve
tor,

one obtains U = (U1, .., Ud) = T (X) where Ui, i = 1, ..., d are independent standard Gaussians. Let

us denote:

H(u) = G(T−1(u)) = G(x). (1.18)

Several isoprobabilisti
 transformations exist. Nataf, generalized Nataf and Rosenblatt transforma-

tions (see Lebrun and Dutfoy [58, 59℄) are the most adapted. The latter is developed in Appendix

C. On
e the transformation is done, the quantity of interest 
an be rewritten as:

Pf = P(H(U) ≤ k). (1.19)

The main idea of this method is to generate dire
tions from the 
enter of the standard Gaussian

spa
e in a uniform and independent way. Then, the failure fun
tion is 
omputed along the dire
tions.

Given the dire
tion, this allows a 
onditional estimation of the failure probability. Ve
tor U 
an be

rewritten as a produ
t:

U = RA

with R ≥ 0, R² following a χ2
distribution with d degrees of freedom and A an uniform random

variable on the unit sphere Ωd, independent of R. Denoting fA the uniform density on Ωd, one 
an

rewrite the failure probability 
onditionally to the dire
tions:

Pf =

ˆ

Ωd

P(H(Ra) ≤ k)fA(a)da (1.20)
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Figure 1.2: 2-dimensional illustration of dire
tional sampling

The dire
tional sampling probability failure estimator thus writes:

P̂dir =
1

N

N∑

i=1

P(H(Rai) ≤ k) (1.21)

where ai are N random independent uniform dire
tions on Ωd. The varian
e of the estimator is:

Var[P̂dir] =
1

N

[
E[P(H(RA) ≤ k))2]− P 2

f

]
(1.22)

Computation of P(H(Rai) ≤ k) In pra
ti
e, one does not have an expli
it expression for H(.).
It is therefore ne
essary to use the G(T−1(.)) form to get the roots of equation H(Rai) = k. If r is

the only root of the equation, then:

P(H(Rai) ≤ k) = 1− χ2
d(r

2)G(T (0)) ≥ 0. (1.23)

If several roots exist (ri, i = 1, . . . , n), one has:

P(H(Rai) ≤ k) =
∑

i

(−1)i+1(1− χ2
d(r

2
i )) if G(T (0)) ≥ 0. (1.24)

A root �nding method must be used (the simplest being the di
hotomi
 method). One 
an �x a

bound beyond whi
h the failure probability is 
onsidered to be negligible. Figure 1.2 illustrates

dire
tional simulation's prin
iple in two dimensions. Isoprobability 
ontours are plotted in grey, the

limit-state surfa
e is plotted in red. The dashed lines staring from the 
enter are the dire
tions ai.
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1.2.2 Stru
tural reliability methods

1.2.2.1 Reliability indi
es

Reliability indi
es give indi
ations about the relative weights of input parameters in the whole

reliability of the 
onsidered stru
ture(they are also sometimes 
alled safety index). They allow a


omparison of several setups possible. The larger the index, the safer the stru
ture. In the following,

two indi
es are presented.

Hasofer-Lind index Proposed by Hasofer and Lind in 1974 [43℄, it is an exa
t geometri
 index,

invariant with respe
t to the geometry of the limit state surfa
e. It is de�ned in the Gaussian

standard spa
e. Let us de�ne the most probable failure point as the 
losest failure point to the

origin of the standard spa
e (the origin of the standard spa
e is 
onsidered outside of the failure

domain). Su
h a point is also referred as a design point. Assuming the design point is unique, one


an de�ne the Hasofer-Lind index as the distan
e between the origin and the design point:

βHL = min
H(u)=0

(uTu)1/2 (1.25)

Algorithms to �nd su
h design points are numerous, one 
an quote the Hasofer-Lind-Ra
kwitz-

Fiessler algorithm [82℄ and its improved version iHLRF (Zhang and Der Kiureghian, [102℄). One 
an

also quote a work 
arried out at EDF R&D about testing the quality of a design point (Dutfoy and

Lebrun,[34℄). Further details on design point �nding algorithms are given in se
tion 1.2.2.2. One

should note that an estimation of the Hasofer-Lind index does not require an estimation of Pf but

only an estimated design point.

Generalized reliability index The generalized reliability index was proposed by Ditlevsen in

1979 [32℄ to take a

ount of the 
urvature of the failure surfa
e around the design point. De�ning

a reliability measure γ by integrating a weight fun
tion (in pra
ti
e the d-dimensional standard

Gaussian distribution) over the safe set S:

γ =

ˆ

S
ϕddS. (1.26)

The generalized reliability index is de�ned as a monotoni
ally in
reasing fun
tion of γ:

βG = Φ−1(γ) (1.27)

where Φ−1
is the inverse 
umulative distribution fun
tion of the standard Gaussian. One 
an estimate

the index by:

β̂G = Φ−1(1− P̂ ) (1.28)

where P̂ is an estimation of the failure probability (obtained for instan
e through MC integration or

by FORM/SORM, see se
tion 1.2.2.2). This index equals the Hasofer-Lind one if the failure surfa
e

is an hyperplane in the standard Gaussian spa
e. Finally, the estimation of this index requires an

estimation of the failure probability Pf .

1.2.2.2 FORM-SORM methods

The First Order Reliability Method (FORM) and Se
ond Order Reliability Method (SORM) are

estimation te
hniques for a failure probability based upon integration of an approximation of the

failure surfa
e. In pra
ti
e, they are 
onsidered as a standard solution in stru
tural reliability sin
e

they are not 
ostly, easy to understand and to implement.

These methods pro
eed in four steps:
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� transformation of the input spa
e;

� design point sear
h;

� approximation of the limit-state surfa
e by an hyperplane (FORM) or a quadrati
 surfa
e

(SORM);

� failure probability estimation from the limit-state approximation.

Figure 1.3 graphi
ally summarises the ideas of FORM/SORM.

Figure 1.3: Illustration of FORM/SORM

Transformation of the input spa
e It is an isoprobabilisti
 transformation as des
ribed in

se
tion 1.2.1.4. These te
hniques are reminded in appendix B.

Design point sear
h On
e within the standard Gaussian spa
e, �nding the design point requires

to solve the following optimization problem:

u∗ = min
H(u)=0

(utu) (1.29)

This is a 
ru
ial step sin
e it is needed to make as few fun
tion 
alls as possible, while it is required

to �nd all the design points. The obje
tive fun
tion is quadrati
 and 
onvex, thus the minimization

di�
ulties will 
ome from the 
onstraints (H(u) = 0). Let us make a distin
tion between lo
al and

global optimization methods.
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Lo
al methods Lo
al minima sear
h is e�
ient if one has an expli
it expression of the

gradient of H. This is seldom the 
ase in industrial appli
ations and one has to use approximations

based upon �nite di�eren
es. These approximations may be 
ostly in terms of fun
tion 
alls, and

they 
an lead to a loss of 
onvergen
e of the algorithms. Most algorithms sear
h for the optimum u∗

in an iterative way. The idea is, starting from a given point u(k), to �nd the best des
ent dire
tion

d(k) and the best length of the step α(k)
:

u(k+1) = u(k) + α(k)d(k). (1.30)

The iteration 
an be followed by a proje
tion.

Numerous methods are des
ribed in Lemaire [60℄, whi
h are divided in 4 main 
ategories : zero

order methods, �rst order methods, se
ond order methods and hybrid methods. Zero order methods

(di
hotomy for instan
e) does not require a 
omputation of the gradient. However their 
onvergen
e

is slow. In the reliability 
ase, this implies a large number of fun
tion 
alls. Thus these zero order

methods are not adapted to reliability problems 
onsidered in this thesis

Here is presented the �rst order Hasofer-Lind-Ra
kwitz-Fiessler (HL-RF) algorithm. It has been

developed spe
i�
ally for reliability studies. Its 
onvergen
e is not assured but the method is e�e
tive

in many 
ases. It is worth noti
ing that the algorithm has been adapted to led to 
onvergen
e

improvements (Abdo and Ra
kwitz [1℄). The iteration is as follows:

u(k+1) = (u(k)tβ(k))β(k) − H(u(k))

||∇H(u(k))||β
(k)

with β(k) =
∇H(u(k))

||∇H(u(k))|| (1.31)

Global methods If the limit-state surfa
e presents several design points, the previously de-

s
ribed algorithms may not identify these design points. Der Kiureghian and Dakessian [31℄ proposed

to for
e the 
onvergen
e of the HL-RF algorithm to a new design point by disturbing the vi
inity of

the previously found design point.

Approximation of the limit-state surfa
e FORM method repla
es the limit-state surfa
e by a

hyperplane tangent at the design point. A loss of pre
ision depending on the form of the limit-state

surfa
e at the design point o

urs. If the limit-state surfa
e is 
lose from the hyperplane, this method

provides good pre
ision 
ompared to the needed number of fun
tion 
alls. The linear approximation

writes as follows:

∇H(u)t|u=u∗(u− u∗) = 0 (1.32)

The SORMmethod repla
es the limit-state surfa
e by a se
ond-order (quadrati
) hypersurfa
e. Su
h

a method requires the estimation of the 
urvature of the limit-state surfa
e at the design point u∗.
Several te
hniques are provided in Lemaire [60℄. The key message is that the use of SORM over

FORM is justi�ed when it is known that the surfa
e is almost quadrati
.

Failure probability estimation In the FORM approximation, one uses the Hasofer-Lind relia-

bility index presented in se
tion 1.2.2.1 and estimates Pf with:

P̂FORM = 1− Φ(βHL) (1.33)

SORM approximation is a more 
omplex problem, for whi
h an asymptoti
 approximation was

provided by Breitung [18℄.
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On the geometri
 approximations FORM/SORM te
hniques are popular methods in the do-

main of stru
tural reliability, be
ause a few fun
tion 
alls are needed to get an estimation of Pf .

Also, FORM is easy to understand and to implement. However, a signi�
ant error 
an be made

when using FORM. Consequently, these methods should only be used when it is known that the

limit-state surfa
e has a given geometri
al shape (almost hyperplane or almost quadrati
). Su
h an

information is not always available.

1.2.3 Subset simulation

1.2.3.1 Introdu
tion

Subset simulation methods are based upon a division of the failure probability in a produ
t of


onditional probabilities. These are larger therefore easier to estimate. Let us 
onsider a sequen
e

of M + 1 thresholds T su
h as:

T = {+∞, t1, ..., tM = 0}
and let us also de�ne the sequen
e of nested subsets (also sometimes referred to as intermediate

failure events):

Ak = {x|G(x) < tk}.
One has:

P [x ∈ Ak] =

k∏

i=1

P [x ∈ Ai|x ∈ Ai−1]

and one 
an rewrite Pf as:

Pf = P [x ∈ AM ] =
M+1∏

i=1

P [x ∈ Ai|x ∈ Ai−1] (1.34)

thus the estimation of Pf is redu
ed to the estimation of the 
onditional failure probabilities. The

name �subset simulation� has been introdu
ed by Au and Be
k [4℄. For the sake of simpli
ity, let us

denote:

P(Ak) = P [x ∈ Ak]

and

P(Ak|Ak−1) = P [x ∈ Ai|x ∈ Ai−1] .

The algorithm �rst step is to estimate P(A1) by standard Monte Carlo simulation. One has:

P̂ (A1) =
1

N

N∑

k=1

1{G(xi)<t1}

where xi
are i.i.d. to f . MCMC te
hniques are thereafter used to estimate the 
onditional failure

probabilities P(Ak|Ak−1), k = 2, . . . ,M . Let us denote:

f(x|Ai) =
f(x)1{G(x)<ti}

P (Ai)
(1.35)

the 
onditional density of x given that the i−th threshold has been rea
hed. The goal of the

algorithms displayed in the following is to sample a

ording to this obje
tive distribution. As the

denominator is an unknown quantity, indire
t sampling of the obje
tive distribution is needed, whi
h

is pra
ti
ally made using Monte Carlo Markov Chains (MCMC).
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1.2.3.2 Algorithm

A so-
alled modi�ed Metropolis algorithm is presented in the Au and Be
k's [4℄ original arti
le. The

modi�
ation is operated to allow the pra
titioner to deal with high-dimensional densities. Let us

�rst re
all the Metropolis algorithm.

Metropolis algorithm Let us denote a proposal density p∗(ǫ|x), a joint d−dimensional density,


entred in x with a symmetry property p∗(ǫ|x) = p∗(x|ǫ). We are interested in the produ
tion of

the sample x(i+1)
, lying in the subset Ak. It is generated starting from the initial sample x(i) ∈ Ak

as follows:

� Sampling of the 
andidate sample x̃: ǫ is simulated a

ording to p∗(ǫ|x(i)). Ratio r =
f(ǫ)/f(x(i)) is 
omputed. The 
andidate sample is x̃ = ǫ with probability min(1, r) and

stays x̃ = x(i)
with probability 1−min(1, r).

� A

eptan
e/reje
tion of the 
andidate x̃: one 
he
ks that x̃ lies within the interest zone Ak.

If G(x̃) < sk then x(i+1) = x̃. Else, x(i+1) = x(i)
.

A

ording to the authors, this algorithm is not robust to the large dimension, given a high reje
tion

rate. This reje
tion rate implies a high 
orrelation within the produ
ed samples, thus redu
ing the

e�
ien
y of the simulation pro
ess. The authors then propose a modi�ed Metropolis algorithm to


ope with the simulation of random ve
tors of high dimension.

Modi�ed Metropolis algorithm For all dimensions j = 1, . . . , d let us denote p∗j(ǫ|xj), a

1−dimensional proposal density, 
entred in xj with a symmetry property p∗j(ǫ|xj) = p∗j(xj |ǫ). The

sample x(i+1)
, lying in the subset Ak, is generated starting from the initial sample x(i) ∈ Ak as

follows:

� Sampling of the 
andidate sample x̃: for ea
h 
omponent j, let us sample ǫj a

ording to

p∗j(ǫ|x
(i)
j ). Ratio rj = fj(ǫ)/fj(x

(i)
j ) is 
omputed. Candidate's j−th 
omponent is thus x̃j = ǫj

with probability min(1, rj) and is x̃j = x
(i)
j with probability 1−min(1, rj).

� A

eptan
e/reje
tion of the 
andidate x̃: one 
he
ks that x̃ lies within the interest zone Ak.

If G(x̃) < sk then x(i+1) = x̃. Else, x(i+1) = x(i)
.

The authors show that the Markov 
hain generated through this algorithm has stationary distri-

bution f(x|Ak). The 
hoi
e of proposal density is important, the authors state that the method is

more sensible to the spread of the proposal densities than to their stru
tural form (e.g., Gaussian,

gamma, et
.). Based on this observation, the authors re
ommend to use uniform densities.

On the threshold 
hoi
e The authors a
knowledge that the 
hoi
e of the threshold is essential

in the simulation pro
ess. Thus, their advi
e is to 
hoose an adaptive 
hoi
e of the threshold so that

the 
onditional probabilities P(Ak|Ak−1) are �xed.

1.2.3.3 Theoreti
al results and strategies

Cérou et al. [23℄ present, from a theoreti
al point of view, two strategies to estimate small failure

probabilities. The di�eren
e between these two methods lies in the adaptive sele
tion of the threshold

for the se
ond.
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Fixed levels algorithm The authors 
onsider a transition Markov kernel K on Rd
whi
h is

f -symmetri
 (thus f -invariant):

f(dx)K(x, dy) = f(dy)K(y, dx).

A Metropolis-Hasting kernel is proposed (as in Au and Be
k [4℄). The authors then 
onsider a

Markov 
hain (Xk)k≥0 su
h that the initial density is f . The generation algorithm is as follows: a

parti
le 
loud of size N is sampled, one has X
(j)
0 ∼ f , j = 1, . . . , N . For ea
h level k = 1, . . . ,M ,

let us denote Ik+1 the indi
es of the parti
les that rea
h the level of interest:

Ik+1 = {j|X(j)
k ∈ Ak+1}


onditional probability P(Ak+1|Ak) is estimated by p̂k+1 =
|Ik+1|
N . For the j of Ik+1, X̃

(j)
k+1 = X

(j)
k

is proposed. For the j that are not in Ik+1, X̃
(j)
k+1 is randomly 
hosen (uniformly) as a 
opy of one

of the parti
le in Ik+1. Thus ea
h parti
le of

(
X̃k+1

)
lies in Ak+1. Then for ea
h parti
le indexed

by j = 1, . . . , N , transition is twofold. First step is to mutate (or shake) the parti
le by applying

(potentially several times) kernel K, produ
ing the 
andidate parti
le Z:

Z ∼ K(X̃
(j)
k+1, .)

The se
ond step is a post-mutation sele
tion X
(j)
k+1 = Z if Z ∈ Ak+1, X

(j)
k+1 = X̃

(j)
k+1 else. The parti
le


loud is then distributed a

ording to f(x|Ak+1). Failure probability Pf is then estimated by the

produ
t of the estimators of the 
onditional probabilities:

P̂ =
M∏

k=1

p̂k (1.36)

The authors show the asymptoti
 normality of P̂ .

√
N
P̂ − Pf

Pf

L−−−−→
N→∞

N (0, σ2) (1.37)

where σ2 has a 
omplex expression, given in se
tion 2.3 of Cérou et al. [23℄.

Adaptive levels algorithm The estimator produ
ed by the �xed levels algorithm rea
hes minimal

varian
e when the levels are evenly spa
ed (in probability), see Lagnoux [56℄. The authors then

propose another algorithm �xing the levels on the �y (adaptively). Let us 
onsider a number

α ∈ [0, 1], su

ess rate between two levels. At ea
h step, the threshold set is the α-quantile (or the

αN parti
les whi
h G(.) values are the smallest) of the 
urrent sample. The algorithm stops when

the α-quantile of the sample is lower than 0. One noti
es that the number of steps is a random

variable. However, for a 
loud size N large enough, the number of steps is:

ns = ⌊ log Pf

logα
⌋ (1.38)

The authors also show the asymptoti
 normality of P̂ .

√
N
(
P̂ − Pf

) L−−−−→
N→∞

N (0, σ2) (1.39)

where σ2 = P 2
(
ns

1−α
α + 1−r0

r0

)
with r0 = Pα−ns

. The estimator P̂ is biased. This bias is positive

and de
reases with a

1
N rate. However, the adaptive algorithm is more e�
ient than the �xed levels

algorithm, in terms of mean square error (MSE).
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On the tuning of parameters In the following, the adaptive algorithm presented in Cérou et

al. [23℄ will be used. Several parameters are yet to be tuned: N , α and the Markov kernel (or

proposal density) 
hoi
e. Balesdent et al. [7℄ also re
ommend to tune the number of appli
ation of

the kernel.

� For the α, authors of Cérou et al. [23℄ re
ommend to take α of order 0.75. On the other hand,

authors of Au and Be
k [4℄ propose to take α of order 0.1. Unless otherwise mentioned, we

have 
hosen to take α = 0.75.

� The 
hoi
e ofN depends on the studied problem and on the 
omplexity of the studied numeri
al

model. Unless otherwise mentioned, we have 
hosen to take N = 104.

� The 
hoi
e of the Markov kernel (or proposal density) is the most 
ru
ial point. Both arti
les

[4℄ and [23℄ let the pra
titioner 
hoose the parameter a

ording to the problem. The 
hosen

density will be given for ea
h example.

1.3 Sensitivity analysis (SA)

In this se
tion, the main methods of SA will be developed. The motivations have been presented

in page 22. Additionally, a deeper dis
ussion of these motivations, that proposes new guidelines for


ondu
ting SA for failure probabilities is provided in se
tion 1.7.

1.3.1 Global sensitivity analysis

Global SA methods are used to identify the inputs 
ontributing to the output variability, 
onsidering

the whole input support. The methods presented in this subse
tion, whi
h is inspired by Iooss [49℄,

are divided into four main 
lasses. The �rst will be the s
reening methods, designed to deal with

a large number of inputs. The se
ond 
lass is 
omposed of the methods based on the analysis of

linear models, where a linear model is �tted and its by-produ
ts are used to perform SA. The third


lass 
ontains methods based on a varian
e de
omposition of the output. Finally, some moment-

independent methods will be presented in the fourth 
lass.

1.3.1.1 S
reening methods

S
reening methods are based on a dis
retisation of the inputs in levels, allowing a qui
k exploration

of the 
ode behaviour. These methods are adapted to a fair number of inputs; pra
ti
e has often

shown that only a small number of inputs are in�uential. The 
hoi
e has been made to present

Morris method [71℄. The aim of this type of method is to identify the non-in�uential inputs in a

small number of model 
alls. The model is therefore simpli�ed before using other SA methods, more

subtle but more 
ostly.

The method of Morris allows to 
lassify the inputs in three groups: inputs having negligible

e�e
ts; inputs having linear e�e
ts without intera
tions and inputs having non-linear e�e
ts and/or

with intera
tions. The method 
onsists of dis
retising the input spa
e for ea
h variable, then per-

forming a given number of OAT designs (one-at-a-time design of experiments, in whi
h only one

input varies). Su
h designs of experiments are randomly 
hosen in the input spa
e, and the variation

dire
tion is also random. The repetition of these steps allows the estimation of elementary e�e
ts

for ea
h input. From these e�e
ts are derived sensitivity indi
es.

Let us denote r the number of OAT designs (Saltelli et al. [89℄ propose to set parameter r
between 4 and 10). Let us dis
retise the input spa
e in a d−dimensional grid with n levels per
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input. Let us denote E
(i)
j the elementary e�e
t of the j−th variable obtained at the i−th repetition,

de�ned as:

E
(i)
j =

G(X(i) +△ej)−G(X(i))

△ (1.40)

where △ is a predetermined multiple of

1
(n−1) and ej a ve
tor of the 
anoni
al base. Indi
es are

obtained as follows:

� µ∗j =
1

r

r∑

i=1

|E(i)
j | (mean of the absolute value of the elementary e�e
ts),

� σj =

√√√√1

r

r∑

i=1

(
E

(i)
j − 1

r

r∑

i=1

E
(i)
j

)2

(standard deviation of the elementary e�e
ts).

The interpretation of the indi
es is the following:

� µ∗j is a measure of in�uen
e of the j−th input on the output. The larger µ∗j is, the more the

j−th input 
ontributes to the dispersion of the output.

� σj is a measure of non-linear and/or intera
tion e�e
ts of the j−th input. If σj is small,

elementary e�e
ts have low variations on the support of the input. Thus the e�e
t of a

perturbation is the same all along the support, suggesting a linear relationship between the

studied input and the output. On the other hand, the larger σj is, the less likely the linearity

hypothesis is. Thus a variable with a large σj will be 
onsidered having non-linear e�e
ts, or

being implied in an intera
tion with at least one other variable.

Then, a graph linking µ∗j and σj allows to distinguish the 3 groups.

1.3.1.2 Methods based on the analysis of linear models

If a sample of inputs and outputs large enough is available, it is possible to �t a linear model

explaining the behaviour of Y given the values of the random ve
tor X. Global sensitivity measures

de�ned through the study of the �tted model are available and presented in the following. Statisti
al

te
hniques allow to 
on�rm the linear hypothesis. If the hypothesis is reje
ted, but that the monotony

of the model is 
on�rmed, one 
an use the same measures using a rank transformation. Main indi
es

are:

� Pearson 
orrelation 
oe�
ient:

ρ(Xj , Y ) =

∑N
i=1(X

(i)
j − E(Xj))(Yi − E(Y ))

√√√√
N∑

i=1

(
X

(i)
j − E(Xj)

)2
√√√√

N∑

i=1

(Yi − E(Y ))2

. (1.41)

It 
an be seen as a linearity measure between variable Xj and output Y . It equals 1 or −1 if the
tested input variable has a linear relationship with the output. If Xj and Y are independent,

the index equals 0.
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� Standard Regression Coe�
ient (SRC):

SRCj = βj

√
Var(Xj)

Var(Y )
(1.42)

where βj is the linear regression 
oe�
ient asso
iated to Xj . SRC
2
j represents a share of vari-

an
e if the linearity hypothesis is 
on�rmed.

� Partial Correlation Coe�
ient (PCC):

PCCj = ρ(Xj − X̂−j , Y − Ŷ−j) (1.43)

where X̂−j is the predi
tion of the linear model, expressing Xj with respe
t to the other inputs

and Ŷ−j is the predi
tion of the linear model where Xj is absent. PCC measures the sensitivity

of Y to Xj when the e�e
ts of the other inputs have been 
an
elled.

1.3.1.3 Fun
tional de
omposition of varian
e : Sobol' indi
es

When the model is non-linear and non-monotoni
, the de
omposition of the output varian
e is still

de�ned and 
an be used for SA. Let us have f(.) a square-integrable fun
tion, de�ned on the unit

hyper
ube [0, 1]d. It is possible to represent this fun
tion as a sum of elementary fun
tions (Hoe�ding

[46℄):

G(X) = G0 +
d∑

i=1

Gi(Xi) +
d∑

i<j

Gij(Xi,Xj) + · · ·+G12...d(X) (1.44)

This expansion is unique under 
ondition (Sobol' [92℄):

ˆ 1

0
Gi1...is(xi1 , ..., xis)dxik = 0 , 1 ≤ k ≤ s, {i1, ..., is} ⊆ {1, ..., d} .

This implies that G0 is a 
onstant.

In the SA framework, let us have X = (X1,...,Xd), a random ve
tor where the variables are

mutually independent and Y = G(X), output of a deterministi
 
ode G(). Thus a fun
tional

de
omposition of the varian
e is available, often referred as fun
tional ANOVA:

Var[Y ] =

d∑

i=1

Di(Y ) +

d∑

i<j

Dij(Y ) + · · ·+D12...d(Y ) (1.45)

where Di(Y ) = Var[E(Y |Xi)], Dij(Y ) = Var[E(Y |Xi,Xj)] − Di(Y ) − Dj(Y ) and so on for higher

order intera
tions. The so-
alled �Sobol' indi
es� or �sensitivity indi
es� (Sobol' [92℄) are obtained

as follows:

Si =
Di(Y )

Var[Y ]
, Sij =

Dij(Y )

Var[Y ]
, · · ·

These indi
es express the share of varian
e of Y that is due to a given input or input 
ombination.

The number of indi
es growths in an exponential way with the number d of dimension: there are

2d − 1 indi
es. For 
omputational time and interpretation reasons, the pra
titioner should not
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estimate indi
es of order higher than two. Homma and Saltelli [47℄ introdu
ed the so-
alled �total

indi
es� or �total e�e
ts� that writes as follows:

STi
= Si +

∑

i<j

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + ... =
∑

l∈#i

Sl (1.46)

where #i are all the subsets of (1...d) in
luding i. In pra
ti
e, when d is large, only the main e�e
ts

and the total e�e
ts are 
omputed, thus giving a good information on the model sensitivities. Main

methods for the estimation of su
h indi
es are presented in se
tion 1.4. These indi
es will be tested

in the reliability framework.

1.3.1.4 Moment independent importan
e measure

In this part, 4 indi
es that have a moment independen
e property are presented. Most of them are

based on the idea that the importan
e measure is a distan
e or a divergen
e between the distribution

of the output (denoted fY0) and the distribution of the output given a 
ondition on one or several

inputs. Su
h measures are moment independent, meaning they do not require any 
omputation of

the moments of the output. Furthermore, su
h indi
es might be suited when the varian
e poorly

represents the variability of the distribution (for instan
e for multimodal distributions)

Kullba
k-Leibler divergen
e index (Park and Ahn) In order to assess the importan
e of

a variable, Park and Ahn [78℄ proposed to use the Kullba
k-Leibler (KL) divergen
e between the

distribution of the output, and another distribution fYi
. Re
all that between two pdf p and q the

KL divergen
e is de�ned as:

KL(p, q) =

ˆ +∞

−∞
p(y) log

p(y)

q(y)
dy if log

p(y)

q(y)
∈ L1(p(y)dy). (1.47)

The proposed sensitivity index reads as follows:

I(i; 0) =

ˆ

R

fYi
(y) log

[
fYi

(y)

fY0(y)

]
dy (1.48)

and 
an be interpreted as �the mean information for dis
rimination in favor of fYi
against fY0�. It

is 
lear that the larger the index, the more important the variable. The authors then propose some

input distributional 
hanges.

Entropy index (Krzyka
z-Hausmann) Krzyka
z-Hausmann [55℄ proposes a sensitivity index

based on entropy arguments that is de�ned as follows. First re
all the entropy of an output:

H(Y ) = −
ˆ

R

fY0(y) log fY0(y)dy (1.49)

that 
an be interpreted as �the measure of the total un
ertainty of Y �. Then, one 
an de�ne the

expe
tation of the 
onditional entropy of Y given Xi:

H(Y |Xi) = EXi
[H(Y |Xi)] (1.50)

Given these two quantities, the author de�nes the following sensitivity index:

ηi =
H(Y )−H(Y |Xi)

H(Y )
= 1− H(Y |Xi)

H(Y )
(1.51)
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whi
h is �a representation of the information learnt on Y based on the knowledge of Xi� (Auder and

Iooss [6℄).

Relative entropy index (Liu et al.) Liu et al. [65℄ introdu
e an index representing how mu
h

the output varies in distribution when an input is �xed to its mean. Re
all that the distribution of

the output Y is denoted fY0 . Then, one 
an �x one input Xi to its mean, namely x̄i. The pdf of

Y after su
h a 
hange is denoted fYi
. The sensitivity index 
an then be de�ned as follows, using a

modi�ed version of KL divergen
e:

KLi(fYi
|fY0) =

ˆ

R

fY0(y(x1, . . . , xi, . . . , xn))

∣∣∣∣log
fYi

(y(x1, . . . , x̄i, . . . , xn))

fY0(y(x1, . . . , xi, . . . , xn))

∣∣∣∣ dy (1.52)

The larger the index is, the more in�uential the input is. The authors present their index as a total

e�e
t of Xi. Another measure of importan
e is obtained by setting all the input but Xi to their

mean, but will not be presented here. It is worth noti
ing that the authors derived their index in

the reliability 
ase, where the quantity of interest is a failure probability. Denoting Pf the original

failure probability and P̄f the failure probability when Xi is �xed at x̄i, the index be
omes:

KLi(P̄f |Pf ) = P̄f log
P̄f

Pf
+
(
1− P̄f

)
log

1− P̄f

1− Pf
(1.53)

A moment free importan
e measure (Borgonovo) The obje
tive of the work of Borgonovo

[13℄ was to propose an importan
e measure without referen
e to any parti
ular moment of the output.

Re
all that the distribution of the output Y is denoted fY0 and denote fY/Xi
the 
onditional density

of the output given that one of the inputs (Xi) is �xed to a given value, say x∗i , one 
an de�ne the

density shift between these two densities:

s(Xi) =

ˆ

|fY0(y)− fY/Xi
(y)|dy. (1.54)

This quantity 
an be seen as the area between the two pdfs. In order to take the whole range of

variation of Xi, one de�nes the expe
ted shift as follows:

EXi
[s(Xi)] =

ˆ

fXi
(xi)

[
ˆ

|fY0(y)− fY/Xi
(y)|dy

]
dxi. (1.55)

Thus the moment independent measure is de�ned as:

δi =
1

2
EXi

[s(Xi)] (1.56)

and it represents the normalised expe
ted shift in the distribution of Y due to Xi. It is worth

noti
ing that the author extends the de�nition of the sensitivity index to any group of inputs. Su
h

an index is denoted δi1,...,ir . The sense of δi proposed by the author is to determine �the model

input that, if determined, would lead to the greatest expe
ted modi�
ation in the distribution of Y�.

Additionally, one 
an present the sensitivity measure of Y to Xj 
onditionally to Xi as follows:

δj|i =
1

2

ˆ

fXi
(xi)fXj

(xj)

[
ˆ

|fY/Xi
(y)− fY/Xi,Xj

(y)|dy
]
dxidxj

whi
h represents the sensitivity of Y to Xj when Xi is determined.

The properties of δi are presented:
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� 0 ≤ δi ≤ 1.

� If Y does not depend on Xi, then δi = 0.

� δ1,..,d = 1.

� If Y depends on Xi but independent of Xj , then δij = δi.

� Any bidimensional index is bounded: δi ≤ δij ≤ δi + δj|i.

� The indi
es are invariant to any monotoni
 transformation of the output (s
ale invariant).

This index, having useful properties, will be tested in 1.5. The importan
e measure de�ned in

Borgonovo [13℄ has been extended in Borgonovo et al. [14℄, where a new 
omputation pro
edure

is proposed. Additionally, Caniou [21℄ proposes an index estimation pro
edure, based on kernel

smoothing estimation of the 
onditional pdfs then on a quadrature estimation of the shift. Another

pro
edure based on kernel smoothing of the 
dfs is tested as well. This index will be tested in the

reliability 
ontext in se
tion 1.5.

1.3.2 Reliability based sensivity analysis

The reliability 
ommunity produ
ed spe
i�
 methods to estimate a failure probability, as seen for

instan
e in se
tion 1.2.2. The question of the sensitivity of the failure probability to the input pa-

rameters arose in this 
ontext. Spe
i�
 SA methods have been produ
ed to meet these expe
tations.

In this subse
tion methods based on partial derivatives are presented, as well as methods based on

the sear
h of a design point in the standard spa
e. The referen
e here is 
hapter 6 of Lemaire [60℄.

1.3.2.1 Sensitivity measure based on partial derivatives

The main idea of this measure is to estimate the sensitivity of the probability of failure to a parameter.

From the formulation of the Hasofer-Lind index (see se
tion 1.2.2.1), one has:

Pf ≃ 1− φ(βHL)

Denoting by pi the parameter (mean, standard deviation, ...) of an input distribution, then the

index is:

∂Pf

∂pi
=

∂Pf

∂βHL

∂βHL

∂pi
= −φ(βHL)

∂βHL

∂pi
|u∗

(1.57)

Su
h an index 
annot be used to 
ompare parameters. Indeed, the value of the derivative depends

on the way to express the parameter pi (it depends for instan
e of its unit), leading to some s
ale

e�e
t. To allow a 
omparison between parameters, one introdu
es the elasti
ity Lemaire [60℄, whi
h

is a dimensionless quantity:

epi =
pi
Pf

∂Pf

∂pi
(1.58)

However, this quantity is non-informative when dealing with parameters of value 0. Moreover both

of the presented methods are very dependent on the quality of the founded design point. Sin
e they


onsider the impa
t of a variation in the vi
inity of the design point, these 
an be quali�ed as lo
al

SA methods.
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omposition of varian
e for reliability

1.3.2.2 Global sensitivity measures

The importan
e fa
tors are by-produ
ts of the FORM/SORM methods. These sensitivity measures

aim at quantifying the importan
e of a variable on the failure probability. Sin
e they quantify the

impa
t of a variable on the failure probability, they 
an be quali�ed as global SA methods, but sin
e

they strongly depend on the approximation of the design point, they 
an also be quali�ed as lo
al

SA methods.

From the design point u∗ one writes:

u∗ = βHLα
∗

(1.59)

where βHL is the distan
e between the origin of the standard spa
e and u∗; and α∗
is the normalised

ve
tor of dire
tion. Then for ea
h variable Ui, one 
an obtain

� the importan
e fa
tor: α∗2
i , whi
h sums to one and are therefore sometimes plotted as a pie


hart.

� the dire
tion 
osine: α∗
i . One gets α∗

i = ∂βHL

∂ui
|u∗

, this formula justi�es the use of α∗
i as a

sensitivity index.

However, these measures depend on the founded design point in the standard spa
e, therefore they

are not related to the variables in the physi
al spa
e. Consequently their interpretation in the

physi
al spa
e might be 
ompli
ated. Furthermore, they do not take the shape of the limit-state

surfa
e into a

ount.

1.4 Fun
tional de
omposition of varian
e for reliability

In the 
ontext of global SA, a widespread te
hnique is based upon the fun
tional de
omposition of

varian
e, as presented in se
tion 1.3.1.3. This se
tion presents some works on the appli
ation of

su
h a method for reliability problems. At �rst, really simple toy models will be used in 1.4.1 to

provide an intuition about the meaning of Sobol' indi
es applied to reliability. Then in 1.4.2, some

estimation te
hniques for the Sobol' indi
es are presented and their properties are dis
ussed. The

appli
ation on the presented test 
ases (Appendix B) is done in 1.4.3. Two te
hniques of varian
e-

redu
tion are tested in 1.4.4 and in 1.4.5, respe
tively Quasi Monte-Carlo te
hniques (QMC) and

Importan
e Sampling (IS). An original work on the �rst-order indi
es within the failure domain is

proposed in 1.4.6. Finally, a 
on
lusion about the use of Sobol' indi
es in the reliability 
ontext is

proposed in 1.4.7.

1.4.1 First appli
ations

Let us re
all that:

Pf = E[1G(X)≤0]

This failure probability depends on the distribution of X. We will then 
onsider the fun
tion from

Rd
to R, so that X maps to 1G(X)≤0 as the studied fun
tion f(.) de�ned in se
tion 1.3.1.3. Therefore

the fun
tional de
omposition of varian
e 
an be applied, provided that the 
omponents of X are

independent. In the following, a toy example where the indi
es 
an easily be 
omputed is studied.

The aim is to verify if the indi
es are adapted to the obje
tive.
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Failure re
tangle For this �rst toy example, the failure fun
tion has expression:

1G(X)≤k = 1{0,1<X1<0,2}{0<X2<0,8}(X)

where X = (X1,X2) with X1,X2 ∼ U [0, 1], the two inputs being independent. The failure

probability is Pf = E[1G(X)≤k] = 8 × 10−2
and the varian
e is Var[1G(X)≤k ] = Pf (1− Pf ) =

3.6× 10−3
. The 
onditional expe
tation of the output given the input is plotted on �gure 1.4.

Figure 1.4: Conditional expe
tations for 2 variables

This �gure provides information on the lo
al features of the 
onsidered quantity. The (exa
t)

Sobol' indi
es appear in table 1.1.

Variable or group X1 X2 X1 and X2 Total e�. of X1 Total e�. of X2

Sobol indi
e S1 = 0.783 S2 = 0.022 S12 = 0.196 ST1 = 0.979 ST2 = 0.218

Table 1.1: Sobol indi
es for the �rst failure re
tangle

The values of the index reads as follows: X1 explains on its own 78% of the output varian
e,

while X2 explains only 2%. The total e�e
ts 
on�rm that X1 is of �rst importan
e (98% of the

output varian
e explained), and show that X2 has a medium impa
t (22% of the output varian
e

explained).

These values appear to be 
onsistent with �gure 1.4 and with the expression of the failure fun
-

tion. Indeed, the �rst order indi
es are the varian
e of the 
onditional expe
tations. The bla
k 
urve

asso
iated to variable X1 varies on its support with more amplitude than the blue 
urve asso
iated

to variable X2. It seems 
onsistent to have an index S1 superior to S2. Similarly, when looking at

the expression of the failure fun
tion, one sees that variable X1 impa
ts the failure probability on

a small fra
tion of its support. On the opposite, variable X2 impa
ts the failure probability on a

broader fra
tion of its support. The information gained by the knowledge of the �rst variable value

is then larger than the one gained by the knowledge of the se
ond variable value. This toy example
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draws attention to the relatively high value of the index asso
iated to the intera
tion between the

two variables (around 20%). This intera
tion is important: to get a failure event, both variables

need to have a 
riti
al value jointly.

For the se
ond example, the failure fun
tion has expression:

1G(X)≤k = 1{0,15<X1<0,2}{0,4<X2<0,8}(X)

where X = (X1,X2) with X1,X2∼ U [0, 1]. The failure probability is Pf = 0.02. Sobol' indi
es

appear in table 1.2.

Variable or group X1 X2 X1 and X2 Total e�. of X1 Total e�. of X2

Sobol indi
e S1 = 0.388 S2 = 0.031 S12 = 0.582 ST1 = 0.970 ST2 = 0.613

Table 1.2: Sobol indi
es for the se
ond failure re
tangle

It 
an be seen that the impa
t of the intera
tion is mu
h larger (58% of the share of varian
e),

despite the similarity of the failure fun
tion. The total e�e
ts show that both variables are important.

On the failure hyper
ubes More generally, one 
an show that for a d-dimensional failure hy-

per
ube where the inputs are independent uniforms that:

� Sobol' indi
es asso
iated to a variable de
ays with the width of its asso
iated failure indi
ator.

� The indi
es 
orresponding to intera
tions grow as the failure probability diminishes.

� A variable has intera
tion e�e
t with all the others, unless its asso
iated failure indi
ator is as

wide as the support of the variable. In this last 
ase, the �rst order index asso
iated with this

variable is null.

This basi
 example shows how Sobol' indi
es 
an be used to rank the impa
t on the failure probability,

using the total e�e
ts rather than the �rst order e�e
ts. Based on this 
on
lusion, we will pursue

the study of Sobol' indi
es applied to a failure indi
ator.

1.4.2 Computational methods

The following se
tions are dedi
ated to several estimation te
hniques of the Sobol' indi
es. To do

so, 
onsistent estimators of the following quantities are required:

� Var(Y ),

� Di(Y ) = Var[E(Y |Xi)],

� Dij(Y ) = Var[E(Y |Xi,Xj)]−Di(Y )−Dj(Y ),

� and so on.

The organization is the following: �rst we will present the te
hniques based upon MC sampling,

namely Sobol'; Saltelli, Mauntz, Jansen and Janon-Monod. Se
ondly, the te
hniques based upon

Fourier transformation -namely FAST, E-FAST, RBD- will be presented.
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1.4.2.1 MC based estimation te
hniques

Sobol' - Presentation of the method This method is presented in the founder arti
le by Sobol'

[92℄. Let us denote G the d-dimensional model. Sobol' method prin
iple is the following: 
onsider

two independent matri
es of N realisations of the ve
tor of d inputs; representing two sets of inputs.

In those matri
es, a realisation of the d inputs is �gured linewise. Those matri
es are the following:

ξ1 =




X
(1)
1,1 X

(1)
1,2 · · · X

(1)
1,d

X
(1)
2,1 X

(1)
2,2 · · · X

(1)
2,d

.

.

.

.

.

.

.

.

.

.

.

.

X
(1)
N,1 X

(1)
N,2 · · · X

(1)
N,2




and ξ2 =




X
(2)
1,1 X

(2)
1,2 · · · X

(2)
1,d

X
(2)
2,1 X

(2)
2,2 · · · X

(2)
2,d

.

.

.

.

.

.

.

.

.

.

.

.

X
(2)
N,1 X

(2)
N,2 · · · X

(2)
N,2




(1.60)

In Sobol' method, the mean of the output Y is estimated by:

D̂0 =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d) (1.61)

Conversely, the varian
e of the output is 
omputed as follows:

D̂ =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)

2 − D̂0
2

(1.62)

To 
ompute the Di quantities, the two data sets are 
onsidered, yet one 
olumn (i.e. i-th input) in

the se
ond data-set is repla
ed by the 
orresponding values of the �rst data-set. This writes:

D̂i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(2)
k,1 , . . . ,X

(2)
k,i−1,X

(1)
k,i ,X

(2)
k,i+1 . . . ,X

(2)
k,d)− D̂0

2
(1.63)

In the same order of ideas, the quantities Dij are estimated by "�xing" two 
olumns of the se
ond

matrix to the 
orresponding values of the �rst matrix. This writes:

D̂ij =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(2)
k,1 , . . . ,X

(1)
k,i ,X

(2)
k,i+1 . . . X

(1)
k,j ,X

(2)
k,j+1 . . . ,X

(2)
k,d)− D̂i− D̂j− D̂0

2

(1.64)

Thus an estimation of the �rst, se
ond,. . . order Sobol' indi
es 
an be made:

Ŝi =
D̂i

D̂
, Ŝij =

D̂ij

D̂
(1.65)

and so on. Thus the total indi
es STi

an be estimated by summing all the indi
es 
ontaining

i. However, this te
hnique has a prohibitive 
ost: to get all the �rst order sensitivity indi
es, one

must perform N × (d+1) fun
tion 
alls. To get all the indi
es (thus estimate the total indi
es) one

must perform N × (2d) fun
tion 
alls. Additionally, this method is known for needing a fair N to

get pre
ise estimations, of order 10000 to get a 10% error on the indi
es, mu
h more for low value

indi
es.
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Saltelli - Presentation of the method Saltelli [87℄ proposed an e�
ient method to 
ompute the

sensitivity indi
es. This method is popular within the engineering �elds sin
e it allows estimation

for ea
h input the �rst and total order indi
es, for a smaller 
ost than the Sobol' method.

The estimation of the quantities Di, Dij ,. . . are realised in the same way as in the Sobol' method.

The total indi
es are estimated as follows: 
onsider the quantity D∼i de�ned as the total share of

varian
e that does not 
ome from variable Xi. Then the total indi
es rewrite:

STi
= 1− D∼i

Var(Y )
(1.66)

Thus total sensitivity indi
es are 
omputed by estimating:

D̂∼i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(1)
k,1 , . . . ,X

(1)
k,i−1,X

(2)
k,i ,X

(1)
k,i+1 . . . ,X

(1)
k,d)− D̂0

2
(1.67)

To minimize the number of fun
tion 
alls, the estimation of Di is made as in Sobol' method, but

swit
hing the samples:

D̂i =
1

N

N∑

k=1

G(X
(2)
k,1 , . . . ,X

(2)
k,d)×G(X

(1)
k,1 , . . . ,X

(1)
k,i−1,X

(2)
k,i ,X

(1)
k,i+1 . . . ,X

(1)
k,d)− D̂0

2
(1.68)

The number of fun
tion 
alls to estimate the �rst-order and totals sensitivity indi
es is N×(d+2)

Mauntz - Presentation of the method In order to improve the estimation of indi
es Si with
small values, Mauntz (Sobol' et al. [94℄) proposed an estimator of Di that writes:

D̂i =
1

N

N∑

k=1

G(X
(2)
k,1 , . . . ,X

(2)
k,d)×

[
G(X

(1)
k,1 , . . . ,X

(1)
k,i−1,X

(2)
k,i ,X

(1)
k,i+1 . . . ,X

(1)
k,d)−G(X

(1)
k,1 , . . . ,X

(1)
k,d)
]

(1.69)

and the numerator of STi
writes:

Var(Y )− D̂∼i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×

[
G(X

(1)
k,1 , . . . ,X

(1)
k,d)−G(X

(1)
k,1 , . . . ,X

(2)
k,i , . . . ,X

(1)
k,d)
]

(1.70)

For the indi
es 
lose to 0, one or two de
ades are gained on the indi
es' un
ertainty. The number

of fun
tion 
alls for the method of Mauntz (�rst-order and totals sensitivity indi
es) is N × (d+ 2).

Jansen - Presentation of the method Jansen [54℄ proposed alternative estimators for Si and
STi

.

D̂i = Var(Y )− 1

2N

N∑

k=1

[
G(X

(2)
k,1 , . . . ,X

(2)
k,d)−G(X

(1)
k,1 , . . . ,X

(2)
k,i , . . . ,X

(1)
k,d)
]2

(1.71)

and the numerator of STi
writes:

Var(Y )− D̂∼i =
1

2N

N∑

k=1

[
G(X

(1)
k,1 , . . . ,X

(1)
k,d)−G(X

(1)
k,1 , . . . ,X

(2)
k,i , . . . ,X

(1)
k,d)
]2

(1.72)

The number of fun
tion 
alls for the Jansen's method (�rst-order and totals sensitivity indi
es)

is N × (d+ 2).
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Janon-Monod - Presentation of the method In order to improve the estimation of the �rst-

order indi
es in Sobol' method, Monod et al. [70℄ have proposed new estimators for the sensitivity

indi
es. Janon et al. [53℄ proved the asymptoti
 e�
ien
y of these estimators.

D̂i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)

−


 1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d) +G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)

2



2

(1.73)

The estimator of the varian
e of Y (D̂) reads:

D̂ =
1

N

N∑

k=1




[
G(X

(1)
k,1 , . . . ,X

(1)
k,d)
]2

+
[
G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)
]2

2




−


 1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d) +G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)

2



2

(1.74)

Reliability 
ase The estimation methods based upon the prin
iples of MC estimation will present

the drawba
ks of su
h methods. Pra
ti
ally, the small failure probability implies that the simulation

sets will in
lude few failure points. The estimation of the indi
es will be impre
ise at best, impossible

in the worst 
ase (no failure point in the data set). Tests provided in se
tion 1.4.3 (where a large

data set is needed) will 
on�rm these re�e
tions.

1.4.2.2 Fourier analysis based te
hniques

Presentation of the methods The Fourier Amplitude Sensivity Test (FAST) method was �rst

presented by Cukier et al. [27℄; and is based upon a Fourier transformation. It allows an estimation

of the indi
es at a smaller 
ost than the Sobol' method. Saltelli et al. [90℄ extended this method for

the estimation of total indi
es, thus giving the Extended-FAST (E-FAST) method.

Classi
al FAST method is based on a sele
tion of N points (i.e. sampling) on a spe
i�
 
urve


onstru
ted in su
h a way that it explores ea
h dimension (asso
iated to an input variable) with

a preset frequen
y (di�erent for ea
h input). Let us assume that the input domain is the unit

hyper
ube. The 
urve is then de�ned by:

xi(s) = Gi(sin ωis),∀i = 1, . . . , d

where s is a s
alar su
h that −∞ < s < ∞. Gi is a fun
tion from [−1 : 1] to [0, 1] and de�nes the

sear
h-
urve - it is not related to the numeri
al model G. ωi the frequen
y asso
iated to the i-th
input.

Based on the approximation of Weyl's theorem ([101℄); one has, for any d-dimensional fun
tion

f and for the xi(s) de�ned as previously:

ˆ

[0,1]d
G(x)dx ≈ 1

2π

ˆ

G(x(s))ds (1.75)
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where x(s) = (x1(s), . . . , xd(s)). Equation (1.75) is only true when the frequen
ies are linearly

independent. This 
annot be the 
ase in pra
ti
e. Therefore the algorithm requires that the pra
-

titioner sets a maximal intera
tion order M and sele
ts the frequen
ies free of interferen
es up to

M .

The fun
tion is then 
omputed on ea
h of theN points, then a Fourier de
omposition is performed

on the sample to estimate its spe
trum. De
omposing the spe
trum with respe
t to the frequen
ies

allows to estimate the estimators of the parts of varian
e. Indeed, denoting Aj and Bj the following

Fourier 
oe�
ients:

Aj =
1

2π

ˆ π

−π
G(x(s)) cos(js)ds

Bj =
1

2π

ˆ π

−π
G(x(s)) sin(js)ds

Main results from Cu
kier et al. [27℄ is that

Var[Y ] ≈ 2
+∞∑

k=1

(A2
k +B2

k) (1.76)

Di = Var[E(Y/Xi)] ≈ 2

+∞∑

k=1

(A2
kωi

+B2
kωi

) (1.77)

The 
omplexity of su
h an algorithm 
omes from the way to generate the sampling 
urve, that needs

to explore ea
h dimension with preset frequen
ies avoiding intera
tions.

Random Balan
e Design (RBD) method, proposed by Tarantola et al. [96℄ is a modi�
ation of

the FAST te
hnique. The algorithm starts exploring the input spa
e via a sear
h 
urve, but unlike

in FAST, ea
h dimension is explored with the same frequen
y. Then a random permutation of the


oordinates of the sample points is performed. The fun
tion is 
alled on ea
h point of the new

sample, then the Fourier de
omposition is 
arried out for the sampling frequen
y and its harmoni
s,

up to order M of supposed maximal intera
tion order. This allows an estimation of the indi
es

asso
iated to ea
h input. Tissot et al. [97℄ proposed a way to 
orre
t the biais produ
ed in su
h

estimates.

Reliability 
ase It 
an be expe
ted that the FAST/E-FAST/RBD methods will not perform well

in the reliability 
ase. Indeed, the indi
es 
annot be 
omputed easily on a dis
ontinuous fun
tion,

espe
ially on the indi
ator of a small set. Numeri
al tests have shown that a 
orre
t estimation of

the indi
es for a dis
ontinuous fun
tion is possible, provided a high maximal intera
tion order M is

sele
ted. Unfortunately, in
reasing this order leads to frequen
y sele
tion problems. Therefore the

FAST and derived methods will not be tested in the following.

1.4.3 Reliability test 
ases

This appli
ative subse
tion have the following obje
tives:

� The �rst obje
tive is to 
he
k the 
onsisten
y of the estimators, to verify that the estimator

of the indi
es 
onverges to the true value as the sample size growths. This will be performed

on test 
ases for whi
h one 
an easily 
ompute or approximate 
losely the indi
es.

� Another obje
tive is to perform the sensitivity analysis on the numeri
al examples de�ned in

Appendix B.
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1.4.3.1 Numeri
al results: 
onvergen
e to the true value

In this part, we will fo
us on the hyperplane test 
ase, des
ribed in Appendix B.1. Let us �rst

remind the formulation of the �rst order Sobol' indi
es:

Si =
Var(E[Y |Xi])

Var(Y )
=

Di

Var(Y )
.

In the reliability 
ase, the expression of Var(Y ) is straightforward:

Var(Y ) = E(Y 2)− E(Y )2

= E(12G(X)≤0)− E(1G(X)≤0)
2

= Pf (1− Pf ).

In the hyperplane 
ase, the failure probability is known: it equals P = φ


−k/

√√√√
d∑

i=1

a2i



. This

allows an exa
t 
omputation of the varian
e. Let us denote TXi
(x) = E[Y |Xi = x], the fun
tion

depending solely on Xi that explains best the output Y . In the hyperplane 
ase with Gaussian

inputs, one has:

TXi
(x) = E[Y |Xi = x] = P




d∑

j=1;j 6=i

ajXj ≤ k − aix


 = φ




k − aix√√√√
d∑

j=1;j 6=i

a2j



. (1.78)

Then by de�nition:

Di = E[T 2
Xi
]− E[TXi

]2

with:

E[TXi
] =

ˆ

R

TXi
(x)fXi

(x)dx = Pf

and fXi
(x) is the pdf of a standard Gaussian. In the same way,

E[T 2
Xi
] =

ˆ

R

T 2
Xi
(x)fXi

(x)dx.

The last mono-dimensional integral does not have a simple expression, but one 
an estimate it using

the quadrature method. This, asso
iated with the exa
t knowledge of Var(Y ) allows to get pre
ise

estimations of �rst order Sobol' indi
es. This estimation will be used to 
ontrol the quality of the

estimations.

Let us verify for the hyperplane 6410 
ase (des
ribed in Appendix B.1), where a = (1,−6, 4, 0))
that the estimations of the indi
es 
onverge to the �real� values of the indi
es. First, we estimate

the �real� indi
es with the pro
edure des
ribed above, and the results are displayed in table 1.3.
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Variable X1 X2 X3 X4

Indi
e Si 0.002 0.259 0.055 0

Table 1.3: First order Sobol' indi
es for the hyperplane 6410 
ase
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Figure 1.5: Boxplots of the estimated �rst order Sobol' indi
es with the Sobol' method

We repeat the following operation 500 times: generating two samples of size N , with N varying

from 104 to 106, and estimating the indi
es on all these samples. The results of the estimation of

the �rst order Sobol' indi
es are shown in �gure 1.5 for the Sobol' method and in �gure 1.6 for the

Saltelli method.

The graphi
s show that the estimator 
onverges to the true value when the sample size in
reases.

Additionally, it shows that the estimations of a null index (S4) with the Sobol' method 
an provide

results with a wider spread than the ones provided with the Saltelli method. For this reason, we will

use the Saltelli method in the following. Con
erning the good sample size to 
orre
tly estimate the

Sobol' indi
es, the results show that obviously the larger the sample is, the better the estimation is.

For our test 
ases, we will use samples of size 106, sin
e our toy-models are not 
ostly. However it

should be noti
ed that this number of fun
tion 
alls might be unrealisti
 for real models.

1.4.3.2 Hyperplane 6410 
ase

We present on table 1.4 the estimated Sobol' indi
es with 2 samples of size 106, using the Saltelli

method. The total number of fun
tion evaluations is 6× 106.

The total indi
es assess that X2 is extremely in�uential, and that X3 is highly in�uential. X1

has a moderate in�uen
e and X4 has a null in�uen
e. This last point is interesting: it shows that

this SA method 
an dete
t the non-in�uential variables.
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Figure 1.6: Boxplots of the estimated �rst order Sobol' indi
es with the Saltelli method

Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

Estimation 0.002 0.254 0.054 0 0.200 0.940 0.720 0

Table 1.4: Estimated Sobol' indi
es for the hyperplane 6410 
ase

1.4.3.3 Hyperplane 11111 
ase

This numeri
al example has been des
ribed in Appendix B.1. We present on table 1.5 the estimated

Sobol' indi
es with 2 samples of size 106, using the Saltelli method. The total number of fun
tion

evaluations is 7× 106.

Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.015 0.013 0.014 0.009 0.015 0.677 0.673 0.695 0.674 0.685

Table 1.5: Estimated Sobol' indi
es for the hyperplane 11111 
ase

The weak �rst order indi
es (less than 2% of the varian
e explained) and the high total indi
es

assess that all the variables are in�uential in intera
tion with the others. All the total indi
es are

approximatively the same showing that this SA method 
an give the same importan
e to ea
h equally


ontributing input.

1.4.3.4 Hyperplane 15 variables 
ase

This numeri
al example has been des
ribed in Appendix B.1. We present on table 1.6 the estimated

Sobol' indi
es with 2 samples of size 106, using the Saltelli method. The total number of fun
tion

evaluations is 17× 106.
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Index S1 to S5 S6 to S10 S11 to S15

Estimation 0.014 to 0.018 0.001 to 0.002 0

Total Index ST1 to ST5 ST6 to ST10 ST11 to ST15

Estimation 0.655 to 0.673 0.141 to 0.150 0

Table 1.6: Estimated Sobol' indi
es for the hyperplane 15 variables 
ase

The �rst order indi
es are all weak, yet separated in three groups. The total indi
es give a

good separation between the in�uential, weakly in�uential and non in�uential variables. The Sobol'

indi
es SA method is able to deal with problems of medium dimension; however it has an heavy


omputational 
ost in this 
ase.

1.4.3.5 Hyperplane with same importan
e and di�erent spreads

This numeri
al example has been des
ribed in Appendix B.1. We present on table 1.7 the estimated

Sobol' with 2 samples of size 106, using the Saltelli method. The total number of fun
tion evaluations

is 7× 106.

Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.027 0.028 0.025 0.025 0.028 0.611 0.622 0.618 0.618 0.624

Table 1.7: Estimated Sobol' indi
es for the hyperplane �di�erent spreads� 
ase

The weak �rst order indi
es (less than 3% of the varian
e explained) and the high total indi
es

assess that all variables are in�uential in intera
tion with the others, and that no variable is in�uential

on its own. All the total indi
es are approximatively equal showing that this SA gives to ea
h equally


ontributing variable the same importan
e, despite their di�erent spread.

1.4.3.6 Thresholded Ishigami fun
tion

We use the example de�ned in Appendix B.2, the thresholded Ishigami fun
tion. The estimated

Sobol' with 2 samples of size 106, using the Saltelli method, are given in table 1.8. The total number

of fun
tion evaluations is 5× 106.

Index S1 S2 S3 ST1 ST2 ST3

Estimation 0.018 0.007 0.072 0.831 0.670 0.919

Table 1.8: Sobol' indi
es estimation for the thresholded Ishigami fun
tion

The �rst order indi
es are 
lose to 0. The variable with the most in�uen
e on its own is X3,

explaining 7% of the output varian
e. Total indi
es state that all the variable are of high in�uen
e.

A variable ranking 
an be made using the total indi
es, ranking X3 with the highest in�uen
e, then

X1 and then X2. Figure B.1 allows to understand the meaning of the total indi
es. Ea
h variable

�
auses� the failure event on a restri
ted portion of its support. On the other hand, the knowledge

of a single variable does not allow to explain the varian
e of the indi
ator, thus the weak �rst-order

indi
es. The fa
t that the failure points are grouped in narrow strips 
an only be explained by the

3 variables together, thus the high 3-order index.
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1.4.3.7 Flood 
ase

This test 
ase has been des
ribed in Appendix B.3. The estimated Sobol' with 2 samples of size

106, using the Saltelli method, are given in table 1.9. The total number of fun
tion evaluations is

6× 106.

Index SQ SKs SZv SZm STQ STKs STZv STZm

Estimation 0.019 0.251 0 0 0.746 0.976 0.248 0.115

Table 1.9: Estimated Sobol' indi
es for the �ood 
ase

Most �rst order indi
es are small, ex
ept the one asso
iated to Ks that explains 25% of the

varian
e on its own. The total indi
es state that Ks and Q are extremely in�uential, Zv is in�uential

and Zm is little in�uential. One 
an see that STZv and STZm di�er from 0, meaning these variables

have an impa
t on the failure probability when intera
ting with other variables.

1.4.3.8 Con
lusion

In most tested 
ases, Sobol' indi
es allow distinguishing the in�uential and the non-in�uential vari-

ables. However, their evaluation is 
ostly. The obje
tive of the two next subse
tions is to study

methods that allow a redu
tion of fun
tion 
alls.

1.4.4 Redu
ing the number of fun
tion 
alls: use of QMC methods

This subse
tion fo
uses on the use of Quasi Monte-Carlo methods (presented in se
tion 1.2.1.2) to

estimate Sobol' indi
es. This te
hnique is presented in Sobol' [93℄.

1.4.4.1 Estimation of Sobol' indi
es through QMC

The main idea when using pseudo-random sequen
es is to use the estimators presented in se
tion

1.4.2.1, repla
ing the random samples by samples 
oming from a low-dis
repan
y sequen
e. In the

following, Sobol' sequen
e is used (see Niederreiter [75℄).

When estimating the indi
es with the Sobol' method, 2 samples of size N and of dimension d
i.i.d. to X are generated. These samples are then separated in 
omplementary sets. A generation of

two samples from the pseudo-random sequen
e is meaningless, sin
e it is a deterministi
 sequen
e.

The tri
k is to generate a sample of size N and of dimension 2d, then to split this sample. Su
h a

separation allows to get two samples of dimension d. Sobol' sequen
e produ
es orthogonal 
olumns,

these pseudo-random samples 
an be 
onsidered as independent. As an example on the pseudo-

random sample generation, table 1.10 displays the 8 �rst points generated by Sobol' sequen
e in

dimension 4.

1.4.4.2 Illustration on the hyperplane test 
ase

In this part, the fo
us will be set on the hyperplane 6410 test 
ase, des
ribed in Appendix B.1. The

aim of this part is to assess the 
apability of QMC sampling to get a good estimation of Sobol'

indi
es at a smaller 
omputational 
ost.

First, two QMC samples of size 104 and of dimension 4 are generated (using the tri
k given

above). The same is done for size 105. Let us noti
e that the sample of size 104 is in
luded in the

one of size 105, due to the determinism of the Sobol' sequen
e. Then the Sobol' indi
es are estimated

56



Fun
tional de
omposition of varian
e for reliability

V1 V2 V3 V4

0,5 0,5 0,5 0,5

0,75 0,25 0,75 0,25

0,25 0,75 0,25 0,75

0,375 0,375 0,625 0,125

0,875 0,875 0,125 0,6250

0,625 0,125 0,375 0,375

0,125 0,625 0,875 0,875

0,1875 0,3125 0,3125 0,6875

Table 1.10: 4 dimensional points generated through Sobol' sequen
e

on the samples, using resp. 6 × 105 and 6 × 104 fun
tion 
alls. The results are displayed in table

1.11 and 
ompared to a large sample size MC.

Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

MC, size 106 0.002 0.254 0.054 0 0.200 0.940 0.720 0

QMC, size 104 0.007 0.270 0.051 0 0.175 0.934 0.730 0

QMC, size 105 0.002 0.266 0.059 0 0.195 0.944 0.720 0

Table 1.11: Estimation of Sobol indi
es using QMC for the 6410 hyperplane test 
ase

From these results, we 
on
lude that the use of QMC for sampling allows to gain a fa
tor 10
in the number of fun
tion 
alls. Indeed, one 
an see that the estimation with 104 QMC points is

less a

urate than the estimation with 105 QMC points, assuming the �true� values are the ones

obtained with a MC sample of size 106. Despite this loss of pre
ision, the variable ranking is not


hanged when using a �small� QMC sample.

1.4.4.3 Con
lusion on using QMC sampling to estimate Sobol' indi
es

This method as presented here does not provide an estimation of the error made, due to the de-

terminism of the sampling. However, s
rambling te
hniques have been developed (Jakubowi
z et

al. [52℄) to add randomness in the sampling, thus allowing the 
omputation of 
on�den
e intervals.

This might be an avenue for future resear
hes. As a 
on
lusion on the use of QMC sampling to

estimate Sobol' indi
es, this method might be used to identify the non in�uential variables at a

smaller 
omputational 
ost.

1.4.5 Redu
ing the number of fun
tion 
alls : use of importan
e sampling

methods

The main idea in this part is to use importan
e sampling methods to estimate the Sobol' indi
es. This

is the same as to run the simulations with a modi�ed sampling density, then weight the estimations

to take this density into a

ount. Importan
e sampling is not used when estimating Sobol' indi
es

for a 
ontinuous variable, there is no sense in fostering sampling in a parti
ular zone. But it makes

some sense in the reliability 
ase: we want to obtain more failure samples. The numeri
al simulations

presented in this se
tion shows that this te
hnique is e�e
tive if the sampling density is well 
hosen.

To the best of our knowledge, this is an original 
ontribution.
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1.4.5.1 Rewriting the estimators with an importan
e density

The estimators of the Sobol' method (presented in se
tion 1.4.2.1) are used. The aim is to estimate

the index asso
iated to variables Xi1 , ...,Xis . The set of inputs X1, ..,Xd is separated, like in the

Sobol' method, into two data sets, of respe
tive sizes s and d − s. Let us denote these data sets v
and t, where v in
ludes the inputs of interest Xi1 , ...,Xis . Inputs are independent, therefore we 
an

rewrite the input density as a produ
t of two margins:

fX(x) = fv(v)ft(t).

Two sets of N points are sampled with density f
X̃
, 
hosen by the pra
titioner. Ea
h is separated

into two data sets, (ṽ1, t̃1) (ṽ2, t̃2). The estimators in the reliability 
ase writes:

Ĝ0TI =
1

N

N∑

j=1

1G(ṽ1j ,t̃1j)<0

fX(ṽ1j , t̃1j)

f
X̃
(ṽ1j , t̃1j)

(1.79)

D̂TI = Ĝ0TI − Ĝ0
2

TI (1.80)

D̂1 +G2
0TI =

1

N

N∑

j=1

1g(ṽ1j ,t̃1j)<01g(ṽ1j ,t̃2j)<0

fX(ṽ1j , t̃2j)

f
X̃
(ṽ1j , t̃2j)

ft(t̃1j)

ft̃(t̃1j)
(1.81)

D̂2 +G2
0TI =

1

N

N∑

j=1

1g(ṽ1j ,t̃1j)<01g(ṽ2j ,t̃1j)<0

fX(ṽ2j , t̃1j)

f
X̃
(ṽ2j , t̃1j)

fv(ṽ1j)

fṽ(ṽ1j)
(1.82)

1.4.5.2 Numeri
al appli
ations

As a numeri
al test 
ase, the hyperplane 6410 de�ned in Appendix B.1 is used. Let us �rst noti
e

that the design point of su
h a failure surfa
e has 
oordinates u∗ = (0.302,−1.811, 1.207, 0). The

sampling density will thus 
onsist in an independent Gaussian ve
tor 
entred in the design point.

Let us then estimate, with samples size 104 the �rst order and total indi
es, with MC and with

importan
e sampling. We repeat this estimation 100 times, the results are boxploted in �gure 1.7.

The dashed lines represent the �theoreti
al� values obtained with a MC sample of size 106.

One 
an see that the dispersion of the indi
es estimated with importan
e sampling is mu
h

smaller than the one asso
iated with the indi
es estimated by MC.

The same pro
edure is applied with only 103 points and the results are displayed in �gure 1.8.

The MC estimators are too dispersed to 
on
lude anything, whereas the indi
es estimated with

importan
e sampling are 
entred around the theoreti
al value.

1.4.5.3 Con
lusion on using importan
e sampling to estimate Sobol' indi
es

Results are very good provided that the pra
titioner sets an adapted importan
e density. This might

be mu
h more 
ompli
ated than in the example. For instan
e an adapted importan
e density might

be hard to �nd for the thresholded Ishigami fun
tion.

1.4.6 Lo
al polynomial estimation for �rst-order Sobol' indi
es in a reliability


ontext

In the 
ontext of reliability analysis, we study the te
hnique proposed by Da Veiga et al. [28℄ to

deal with Sobol' indi
es estimation when inputs are 
orrelated. The varian
e of the failure fun
tion
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Figure 1.7: Comparison of �rst order and total indi
es, MC (left) and importan
e sampling (right),

with 104 points for the hyperplane 6410 test 
ase

within the failure domain is of interest here. The presented method is used to �nd out the �rst-order


ontribution of ea
h variable to this varian
e. The question asked in this subse
tion is �How ea
h

variable 
ontributes to the varian
e of the failure fun
tion G within the failure domain? �.

1.4.6.1 Sobol' indi
es estimation by lo
al polynomial smoothing

Let us re
all that for a mathemati
al model denoted G : Rd → R with random inputs X ∼ f and

random output Y , �rst order Sobol' indi
es are given by:

Sk =
Var

(
E
(
Y/Xk

))

Var (Y )
, ∀k = 1, . . . , d. (1.83)

In the 
ase of independent inputs, one 
an quote Sobol' and FAST estimation te
hniques, as presented

in se
tion 1.4.2. These methods 
annot be applied when the inputs are no longer independent.

Nevertheless there is a need for sensitivity analysis methods when inputs are non-independently

distributed. Several re
ent works deal with this kind of problems.
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Figure 1.8: Comparison of �rst order and total indi
es, MC (left) and importan
e sampling (right),

with 103 points for the hyperplane 6410 test 
ase

The original te
hnique proposed by Da Veiga et al. [28℄ to estimate Sk is based on lo
al poly-

nomial approximation of the 
onditional moments. More pre
isely the authors use a �rst sample

(Xi, Yi)i=1,...,N to �t d lo
al polynomial response surfa
e to explain the following relationship for

ea
h given input k:

Yi = mk(X
k
i ) + σk(X

k
i )ǫ

k
i (1.84)

where mk(x) = E
(
Y/Xk = x

)
and σ2k(x) = Var

(
Y/Xk = x

)
(x ∈ R). ǫki ∀i = 1, . . . , N are indepen-

dent errors satisfying E
(
ǫki /X

k
)
= 0 and Var

(
ǫki /X

k
)
= 1. The lo
al polynomial (LP) smoothing

provides estimators for mk(.) and σ
2
k(.). Two formulations for Sobol' �rst order indi
es are given in

the arti
le, we 
hoose to fo
us on the one involving mk(.). Given another sample of i.i.d. inputs(
X̃i

)
i=1,...,N ′

with same distribution as X, one 
an use a plug-in estimation as follow. Denoting

m̂(.) the LP estimator of the 
onditional expe
tation, �tted on the �rst sample; denoting as well
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¯̂m = 1
N ′

∑N ′

i=1 m̂(X̃k
i ), one has:

T̂k =
1

N ′ − 1

N ′∑

i=1

(
m̂(X̃k

i )− ¯̂m
)2
. (1.85)

T̂k is an empiri
al estimator of the varian
e of the expe
tation of Y given Xk
. Dividing T̂k by the

estimated varian
e of Y , one has an estimator of Sk.

1.4.6.2 Reliability 
ontext

When dealing with the reliability 
ontext, the event G(X) < 0 (system failure) and the 
omplemen-

tary event G(X) ≥ 0 (system safe mode) are of interest. To quantify the impa
t of ea
h input Xk

on the failure probability P =
´

1G(x)<0f(x)dx, we propose to study the �rst order Sobol' indi
es

in the failure domain (FOSIFD).

It is obvious that given the failure event, the inputs in the failure domain are no longer inde-

pendent. Thus the methodology proposed in Da Veiga et al. [28℄ is of interest here. It will be

studied in the following part. One should be 
autious with one point: sampling from the 
onditional

joint distribution has a strong 
omputational 
ost, sin
e the se
ond sample must be distributed as

the �rst one; that is to say a

ording to fG(x)<0(x) =
1G(x)<0f(x)

P . This sampling operation 
an be

performed by running new 
alls of the model G. Da Veiga et al. [28℄ propose two options in this


ase : splitting the original sample or performing a leave one out pro
edure. As our models are toy

fun
tions, our sample sizes 
an be large.

1.4.6.3 Hyperplane 6410 
ase

This numeri
al example has been des
ribed in Appendix B.1. We perform 100 runs of the

following experiment: through simulation and fun
tion 
alls, we obtain two samples of size

N = N ′ = 106. Only one out of a hundred of these points are of interest, sin
e we study the FOSI

in the failure domain. From the �rst sample failure points, we build a LP response surfa
e and its

mean is predi
ted through the se
ond sample failure points. The varian
e of the expe
tation of the

LP response surfa
e is estimated and divided by the varian
e of the �rst sample failure points; as

des
ribe in se
tion 1.4.6.1. The results are boxploted in �gure 1.9.

A

ording to the �rst order sensitivity indi
es, the se
ond variable 
ontributes for 20% of the

failure domain varian
e whereas the third variable 
ontributes for 5% of the failure domain varian
e.

The two other variables provide a negligible e�e
t on their own. Sin
e the inputs are no longer

independent in the failure domain, one 
annot assess that the sum of all the Sobol' indi
es is one.

However in this 
ase, we strongly suspe
t that most of the varian
e in the failure domain is 
aused

by a higher-level intera
tion between variables.

1.4.6.4 Hyperplane 11111 
ase

This numeri
al example has been des
ribed in Appendix B.1. The aim of this example is to assess or

in�rm the 
apability of the FOSIFD to give to ea
h equally 
ontributing input the same importan
e.

The results of the experiment with the same global parameters (100 runs, two samples of size 106)
are boxploted in �gure 1.10.

The indi
es assess the same importan
e value for all the variables. However, one 
an see that

ea
h variable is said to 
ontribute approximatively for 2% of the failure domain varian
e on its own.

Therefore, as in the previous 
ase, we suspe
t that there is a higher-order intera
tion that 
auses

most of the varian
e in the failure domain.
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Figure 1.9: Boxplot of the estimated FOSIFD for the 6410 hyperplane 
ase

Figure 1.10: Boxplot of the estimated FOSIFD for the 11111 hyperplane 
ase
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1.4.6.5 Hyperplane 15 variables 
ase

This numeri
al example has been des
ribed in Appendix B.1. The results of the experiment with

the same global parameters (100 runs, two samples of size 106) are boxploted in �gure 1.11.

Figure 1.11: Boxplot of the estimated FOSIFD for the 15 variables hyperplane 
ase

As one 
an see two groups of importan
e variables, one 
an 
on
lude that the FOSIFD fails

to separate variables with a low 
ontribution and variables with a null 
ontribution. However,

the in�uential variables are dete
ted and 
ontribute for approximatively 2% of the failure domain

varian
e.

1.4.6.6 Hyperplane with same importan
e and di�erent spreads

This numeri
al example has been des
ribed in Appendix B.1. The aim of this test is to assess or in�rm

the 
apability of the FOSIFD to give to ea
h equally 
ontributing variable the same importan
e,

despite their di�erent spread. The results of the experiment with the same global parameters (100
runs, two samples of size 106) are boxploted in �gure 1.12.

One 
an see that the values of the FOSIFD are approximatively equal for ea
h variable. Thus,

ea
h variable explain on its own 2% of the failure domain varian
e. These results are the same as in

se
tion 1.4.6.4. Thus one 
an think that the spread of the variable has no impa
t, at least on this

test 
ase.

1.4.6.7 Tresholded Ishigami fun
tion

This numeri
al example has been des
ribed in Appendix B.2. The results of the experiment with

the same global parameters (100 runs, two samples of size 106) are boxploted in �gure 1.13.

One 
an see from the boxplot that the FOSIFD is around 10% for variable 1, 8% for variable 2

and 25% for variable 3. The 
on
lusion of su
h a result is that �xing variable 3 would provide the

greatest varian
e redu
tion in the failure domain.
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Figure 1.12: Boxplot of the estimated FOSIFD for the same importan
e di�erent spread hyperplane


ase

Figure 1.13: Boxplot of the estimated FOSIFD for thresholded Ishigami 
ase
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Figure 1.14: Boxplot of the estimated FOSIFD for the �ood 
ase

1.4.6.8 Flood 
ase

This numeri
al example has been des
ribed in Appendix B.3. The results of the experiment with

the same global parameters (100 runs, two samples of size 106) are boxploted in �gure 1.14.

The FOSIFD assess that the variable Ks is of �rst importan
e to explain the variations of the

failure fun
tion within the failure domain, with almost 50% of the varian
e explained. All the other

variables have a weak in�uen
e, and the ranking is as follows: Q then Zv and �nally Zm.

1.4.6.9 Con
lusion on FOSIFD

The FOSIFD method 
an be 
onsidered as a by-produ
t of MC te
hnique, sin
e the 
omputational


ost of the FOSIFD is negligible 
ompared with the time needed to obtain the samples/responses.

This method has shown a 
apa
ity to assess whi
h variable needs to be �xed to get a redu
tion of

varian
e within the failure domain, see for instan
e se
tion 1.4.6.7.

However, this method fo
uses on how does the failure domain behaves, and not on what 
auses

the failure. One 
ould possibly imagine an example in whi
h the variables that 
ause the most

variation within the failure domain are not the ones leading to failure.

This example might be the following:

G(X) = 1X1<.5 + 0.2 × sin(10X2) (1.86)

where X1,X2 ∼ U [0, 1] and the failure event is when G(x) < 0. The surfa
e pi
turing su
h a

fun
tion is displayed in Figure 1.15 .

It 
an be seen that the failure event is only 
aused by variable X1 whereas the variation within

the failure domain is only 
aused by variable X2. The Sobol' indi
es of the indi
ator fun
tion are
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x1
x2

G(X)

Figure 1.15: Example surfa
e

S1 = 1 and S2 = 0 whereas the FOSIFD worth respe
tively 0 and 0.91 for variables X1 and X2.

Consequently, if the obje
tive is the varian
e redu
tion within the failure domain, one should fo
us

on variable X2 but if the obje
tive is to understand what 
auses the failure event, one should fo
us

on variable X1.

As in our study we are more interested in the failure event, we will not pursue the testing of the

FOSIFD method.

1.4.7 Con
lusion on Sobol' indi
es for reliability

Sobol' indi
es applied dire
tly on the indi
ator fun
tion have shown a 
apa
ity to separate the

in�uential and non-in�uential variables. Based on this observation, it seems an adapted method for

sensitivity analysis in the reliability 
ontext. However, in most tested 
ases, Sobol' indi
es behave

as follows: weak �rst order indi
es, strong total indi
es. This assesses that no variable is in�uential

on its own, and that most variables 
ontribute to the failure probability when intera
ting with the

others. Unfortunately in most stru
tural reliability 
ases, this is an already known information: it

is when all the variable takes extreme values at the same time that the equipment fails. However,

Sobol' total indi
es 
onvey a strong information if the obje
tive is the dis
rimination of the in�uential

and non-in�uential variables.

One 
an observe that this useful information is obtained at a strong 
omputational 
ost. As

a rule of thumb we suggest to use samples of size 106 for failure probabilities of order 10−3
: with

smaller sample sizes the estimations might be too noisy. Varian
e redu
tion te
hnique have been

studied, QMC and importan
e sampling. QMC allows a redu
tion of fun
tion 
alls of order 10.
Importan
e sampling might be used if the goal of the SA is to rank the variable (i.e. obtain a

qualitative information) and 
an lead to a redu
tion of fun
tion 
alls of order 100. However, su
h a

redu
tion is possible only if a good importan
e density is available.

If the model is not 
ostly we would re
ommend the use of su
h indi
es, using the Saltelli [87℄

method that allows an estimation of the �rst order and total indi
es. Other methods 
an be quoted

and are 
ompared in Saltelli et al. [88℄. However if the model is 
ostly, other methods than the

Sobol' indi
es need to be found.
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1.5 Moment independent measures for reliability

Let us study, in the reliability 
ase, the indi
es de�ned in Borgonovo [13℄ that have been presented

in se
tion 1.3.1.4.

1.5.1 Appli
ation in the reliability 
ase

For the reliability 
ase, one has:

fY ∼ B(Pf ) with Pf =

ˆ

1G(x)≤0fX(x)dx (1.87)

where B(p) denotes the Bernoulli distribution of parameter p. When �xing the ith output to a given

value xi, one denotes:

fY |Xi=xi
∼ B(Pxi

) with Pxi
=

ˆ

1G(x1,...,xi,...,xn)≤0fX−i
(x−i)dx−i (1.88)

Then, the shift de�ned in Equation (1.54) rewrites as follows:

s(xi) =
1∑

y=0

|fY (y)− fY |Xi=xi
(y)| = |(1 − Pf )− (1− Pxi

)|+ |Pf − Pxi
|

= 2|Pf − Pxi
|. (1.89)

Thus the sensitivity index de�ned in Equation (1.56) rewrites:

δi =
1

2
EXi

[s(Xi)] =

ˆ

fXi
(xi)|Pf − Pxi

|dxi. (1.90)

If the quantities Pf and Pxi
are known, this is a one-dimensional integral.

1.5.2 Crude MC estimation of δi

Let us expli
it here the methodology to use in order to estimate the indi
es δi by 
rude MC. First

of all, an estimation of Pf is made with N1 points:

P̂ =
1

N1

N1∑

j=1

1G(x(j))<0 (1.91)

where x(j)
, j = 1, . . . , N1 are i.i.d. realisations of fX. Then, for a given xi that lies in the support

of fXi
, let us estimate Pxi

with a 
rude MC:

P̂xi
=

1

N2

N2∑

j=1

1
G(x

(j)
−i ,xi)<0

fX−i
(x−i) (1.92)

where fX−i
(x−i) is the joint pdf of X bereft of its ith 
omponent and (x

(j)
−i , xi) is a realisation of fX

where the ith 
omponent is �xed at the value xi. The 
ost for estimating Pxi
is N2 fun
tion 
alls.

Denoting ŝ(xi) = 2|P̂ − P̂xi
|, one 
an estimate the �rst order index δi by:

δ̂i =
1

2N3

N3∑

k=1

fXi
(x

(k)
i )ŝ(x

(k)
i ) (1.93)
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Therefore, for d inputs the total estimation 
ost of all the �rst order indi
es is d (N3.N2)+N1. This


ost is prohibitive in our 
ases where at least 105 fun
tion 
alls are needed to get a 
orre
t estimation

of the quantities.

1.5.3 Use of quadrature te
hniques

This te
hnique is inspired by Caniou [21℄, who proposes to redu
e the number of fun
tion 
alls by

using a quadrature method, namely the Gauss-Legendre integration rule. Rewriting the equations

for our problem, one has:

δ̃i =
1

2M

M∑

k=1

w(k)fXi
(x

(k)
i )ŝ(x

(k)
i ) (1.94)

for M quadrature points, and where the w(k) are the weights asso
iated to ea
h point. The 
om-

putational 
ost of the �rst order indi
es be
omes d (M.N2) + N1, where M ≪ N3. A

ording to

Caniou [21℄, 30 quadrature points are su�
ient to rea
h a good pre
ision.

1.5.4 Use of subset sampling te
hniques

One 
an remark that the 
omputational 
ost of the indi
es 
omes from the estimation of the 
ondi-

tional and un
onditional failure probabilities, namely P̂xi
and P̂ . To redu
e the number of fun
tion


alls, we 
an use subset sampling methods to estimate these probabilities, as presented in se
tion

1.2.3. Assuming that we use the adaptive-levels algorithm, the number of fun
tion 
alls be
omes a

random variable, whi
h is expe
ted to take a value around N.ns = N.⌊ log Pf

logα ⌋, as des
ribed in Equa-

tion (1.38). One 
an expe
t that N.ns ≪ N2 and N.ns ≪ N1. A

ordingly, the number of fun
tion


alls to estimate all the �rst order indi
es should be around d (M + 1) .N.ns whi
h is expe
ted to

be mu
h smaller than d (N3.N2) +N1.

1.5.5 Hyperplane 6410 test 
ase

Let us fo
us on the hyperplane 6410 test 
ase (Appendix B.1). One 
an rewrite an analyti
al

expression of s(.), as presented in Equation (1.89). One has, for input Xi set at value xj :

si(xj) = 2|Pf − Pi,xj
| (1.95)

where Pi,xj
= P (G(X < 0)|Xi = xj). This rewrites:

si(xj) = 2|φ


−k/

√√√√
d∑

p=1

a2p


−φ


(−k + xj) /

√√√√
d∑

p=1;p 6=i

a2p


| (1.96)

Consequently, one 
an estimate in a very pre
ise way these quantities and thus δi. This goes the
same for indi
es δij and the higher order terms. These �true� values are displayed in table 1.12.

One 
an see that all the �rst order indi
es are rather small. A

ording to Borgonovo [13℄, this

result suggests that the e�e
ts of the variable on the failure event are non separable. This means

that following the indi
es δ, intera
tions play a large role in the failure event. Indeed, one 
an see

that most, if not all, shift in distribution is determined by an intera
tion between the three �rst

variables. Unfortunately, that information is already known. Additionally, the �rst order indi
es


an provide a variable ranking of the in�uen
e.

68



Synthesis

Variable X1 X2 X3 X4

δi 0.0039 0.0228 0.0154 0

Group X1X2 X1X3 X1X4 X2X3 X2X4 X3X4

δij 0.0230 0.0159 0.0039 0.0271 0.0228 0.0154

Group X1X2X3 X1X2X4 X2X3X4

δijk 1 0.0230 0.0271

Table 1.12: True values of δi for the hyperplane 6410 
ase

1.5.6 Con
lusion

A

ording to Table 1.12 and to 
omplementary numeri
al tests, one 
an 
on
lude the following on

these moment-independent sensitivity measures. At �rst glan
e, the theoreti
al values shows that

they are adapted for the dis
rimination of in�uential and non in�uential variables. On the other

hand, the �rst order indi
es are all small and the estimation su�ers from a positive bias. This

drawba
k means that those indi
es are poorly adapted for sensitivity analysis in the reliability 
ase,

despite their sound properties.

1.6 Synthesis

This 
hapter has presented an overview of existing strategies for estimating failure probabilities and

of sensitivity analysis methods.

First, the mathemati
al 
ontext for estimating failure probabilities has been set. We presented

three 
lasses of methods; yet it has been seen that theses 
lasses are not partitioned. Approa
hes

based on numeri
al approximation of the failure (limit state) surfa
e have not been 
onsidered in this


hapter. Dubourg [33℄ fo
uses on repla
ing in an adaptive way the failure surfa
e by a meta-model.

Li [64℄ fo
uses on the estimation of failure probabilities using sequential design of experiments and

surrogate models.

Then, the main existing sensitivity analysis (SA) methods have been presented. Two of these

methods (Sobol' indi
es and Borgonovo indi
es) have been tested on reliability toy examples. We


on
lude the following: the moment independent te
hniques are not adapted for the reliability 
ase,

due to a positive bias in the estimations. On the 
ontrary, Sobol' indi
es applied to a failure indi
ator

have highlighted a 
apa
ity to distinguish the non-in�uential from the in�uential variables. However,

tests have shown that the following 
on�guration -low �rst-order indi
es, high total order indi
es- is

often present. Therefore the information provided by su
h indi
es is limited and may only 
on�rm

that all the variables intera
t to 
ause the failure event.

Table 1.13 is a short synthesis on the presented SA methods. In parti
ular are itemized the

available evaluation methods altogether with the pros and 
ons of the methods.
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Indi
e Sensitivity type Evaluation method Pros/Cons

Importan
e fa
tors Global/lo
al �Every design point �nding + Potentially a very small

and dire
tion 
osine First order indi
es algorithm number of fun
tion 
alls

(1.3.2.2) − Measure depending on

α∗
i ; α

*

2

i the foudned design point

− 
ompli
ated interpretation

in the physi
al spa
e

Sobol' indi
es Global � Sobol' (with QMC and/ + Every order indi
es

applied on the Every order indi
es, or Importan
e Sampling) allowing to quantify

indi
ator (1.4) use of total indi
es. � Saltelli, Mauntz, Jansen, the in�uen
e of intera
tions

Si;STi
Janon-Monod − Total indi
es make

� FAST/E-FAST/RBD more sense and their

� Use of meta-models 
omputation is 
ostly

(not treated here) − Limited

information provided

Borgonovo indi
es Global �Crude Monte-Carlo + Good properties

(1.5) Every order indi
es �Quadrature te
hniques − Limited

δi; δij ... �Subset sampling te
hniques information provided

− Positive bias

in the estimation

Table 1.13: Synthesis on the tested SA methods

In the next se
tion, we extend our thoughts on SA for failure probabilities.

1.7 Sensivity analysis for failure probabilities (FPs)

A 
ommon point of view on SA is that it is the art of determining the model inputs the most in�uential

on the output. But what does exa
tly "in�uential" mean, espe
ially in the reliability �eld where an

input 
an be "in�uential" on the model output but 
an have a small "in�uen
e" on Pf? The present

paragraph fo
uses on the meaning of SA for FPs. This is motivated by a pra
titioner-friendly point

of view.

Let us ask the question: what are the reliability engineer's motivations when he/she performs

a SA on his/her bla
k-box model that produ
es a binary response? In the global introdu
tion,

we provided an overview of the "general obje
tives" of SA: variable ranking, model simpli�
ation,

model understanding. But from our dis
ussions with EDF pra
titioners, we have identi�ed three

"Reliability Engineer Motivations" (REM):

� REM1: the pra
titioner wants to determine whi
h are the inputs that impa
t the most the

failure event - the inputs distributions being set and supposed to be perfe
tly known. This

amounts to an absolute ranking obje
tive.

� REM2: Pf will be impa
ted by the 
hoi
e of the input distributions; the reliability engineer

wants to assess the in�uen
e of this 
hoi
e on Pf . Therefore the obje
tive here is to quantify

the sensitivity of the model output to the family or shape of the inputs, making the assumption

that the parameters of the underlying distribution are perfe
tly known ( thus set to �xed given

values).
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� REM3: in pra
ti
e, input distributions are estimated from data, thus leading to un
ertainty

on the values of the distribution parameters. The pra
titioner wants to assess the in�uen
e

of the distribution parameters on Pf . Therefore the obje
tive here is to test the sensitivity of

the model to the parameters of the inputs

Conversely, we present here what we meant by "general use" of SA.

� Variable ranking (obje
tive 1) is to assess whi
h input "most needs better determination"

(Saltelli et al. [89℄). This means that after the SA, a variable ranking is wanted in order to

know how the un
ertainty relative to ea
h input (often assimilated to the inputs' varian
e)

is reverberated on the output un
ertainty (varian
e). The e�e
ts of su
h an analysis is then

resear
h prioritization, to 
olle
t new data allowing to redu
e the un
ertainty on the sele
ted

inputs thus on the output. A typi
al tool for su
h a need is Sobol' indi
es. But what exa
tly

is the un
ertainty of the output in the reliability 
ase? The output is a Bernoulli random

variable with parameter Pf , but does its varian
e (Pf (1−Pf )) re�e
ts well the un
ertainty on

the quantity of interest Pf?

� Model simpli�
ation (obje
tive 2) would rather be determining whi
h inputs 
an be set to

a referen
e value or to any value of its support without a�e
ting the model pre
ision. This

amounts to determine non-in�uential inputs. The use of su
h a result 
an be model dimension

redu
tion. In the 
ase of reliability, it is known (Pastel [79℄) that not all Pf estimation methods

resist well to a large dimensional problem. The aim of SA in this 
ase is then allowing the use

of sharper Pf estimation methods.

� Model understanding (obje
tive 3) in
ludes all information gained after the SA, for instan
e

whi
h parti
ular values of some inputs leads to some behaviour of the output. In the reliability


ase, this amounts to determining whi
h inputs/groups of inputs/spe
i�
 zones of the support

of spe
i�
 inputs lead to the failure event. After su
h an analysis, the pra
titioner might take

a
tions to avoid this spe
i�
 input behaviour (by repla
ing an equipment, warming inje
tion

water, raising a dam among others 
orre
tive a
tions).

� Let us add a new item: 
alibration sensitivity (obje
tive 4). In pra
ti
e the inputs of the

model are not fully determined and are 
alibrated with the following pro
edure: the family of

the input is given by the physi
 laws (for instan
e the Weibull distribution whi
h histori
ally


omes from the �eld of fra
ture me
hani
s) whereas the parameters of the distribution are

data-driven. But given the la
k of data/knowledge, the modelled input 
an be far from the

"real" (physi
al) input. In this 
ase and in the reliability 
ontext, the pra
titioner might want

to know how this distributions/parameters errors impa
t Pf .

Let us expli
it in Table 1.14 the 
orresponden
e between the general obje
tives and the engineers'

motivations.

Obje
tive 1 Obje
tive 2 Obje
tive 3 Obje
tive 4

REM1 × × ×
REM2 ×
REM3 ×

Table 1.14: Corresponden
e between the general SA obje
tives and the engineers' motivations
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As noti
ed in Se
tion 1.4, the dire
t appli
ation of Sobol' indi
es on the failure indi
ator provides

the following pattern: very small �rst order indi
es, very large and similarly equal total indi
es. The

interpretation of this pattern is that all/most of the variables play an a
tive role in the failure event

(obje
tive 3) and we 
an use the total indi
es to provide a variable ranking (obje
tive 1). However

the answer to both these questions is in pra
ti
e already known (the pra
titioner knows that the

equipment fails when all variables take extreme values at the same time). A

ordingly, this method


an in some 
ases dete
ts non-in�uential inputs (obje
tive 2). But from the pra
titioner point of

view, Sobol' indi
es only ful�lls REM1.

In the following of this thesis, we propose 3 spe
i�
 methods allowing to answer the di�erent

obje
tives.

The two �rst methods are itemized in Chapter 2 and provide a variable ranking (obje
tive 1,

REM1). Spe
i�
ally, the �rst method makes use of sensitivity indi
es produ
ed by a 
lassi�
ation

method (random forests). The se
ond method measures the departure, at ea
h step of a subset

method, between ea
h input original density and the density given the subset rea
hed.

The method presented in Chapter 3 will be referred to as Density Modi�
ation Based Reliability

Sensitivity Indi
es (DMBSRI). These indi
es altogether with their estimation methods have been

initially presented in Lemaître and Arnaud [62℄ then in Lemaître et al. [63℄. They are based upon

an input pdf modi�
ation, and quantify the impa
t of su
h a modi�
ation on the FP. We argue that

with an adapted perturbation, this method 
an ful�ll the four presented general uses (obje
tive 1 to

4), altogether with the three engineers' motivations (REM1 to 3). This will be developed further in

se
tion 3.3.3.
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Chapter 2

Variable ranking in the reliability 
ontext

2.1 Introdu
tion

As stated in Se
tion 1.7, there is a need in SA for te
hniques produ
ing a variable ranking (REM1,

obje
tive 1). This 
hapter presents two methods allowing to rank the random inputs by their

in�uen
e on the output. Furthermore, these methods are thoughts as by-produ
ts of the estimation

of the failure probability Pf . Indeed the �rst te
hnique (Se
tion 2.2) proposes to make use of


lassi�
ation trees and random forests built on a MC sample. The se
ond te
hnique (Se
tion 2.3)

measures the departure, at ea
h step of a subset method, between ea
h input original density and

the density given the subset rea
hed. Thus both of these methods are by-produ
ts of two sampling

te
hniques. Se
tion 2.4 summarises the 
hapter and proposes a 
on
lusion.

2.2 Using 
lassi�
ation trees and random forests in SA

Classi�
ation trees and random forests are two well-known 
lassi�
ation te
hniques. Additionally,

sensitivity measures 
an be derived. This se
tion aims at introdu
ing these te
hniques. A state of

the art on 
lassi�
ation trees is proposed in 2.2.1. A subse
tion introdu
ing the main stabilisation

methods (su
h as random forests) is then studied in 2.2.2. Variable ranking te
hniques are derived in

2.2.3. The variable ranking is then tested on the usual 
ases in 2.2.4. A dis
ussion is then proposed

in 2.2.5, where the main theme is the improvement of models.

2.2.1 State of the art for 
lassi�
ation trees

This se
tion is widely inspired by Besse [11℄; parts 3 and 4 of Briand [19℄; but also parts 1 and

2 of Genuer [39℄ (in Fren
h). All those 
ontributions are inspired by the founding monograph by

Breiman et al. [17℄. An introdu
tion on statisti
al learning and the growing of 
lassi�
ation tree


an also be found in Hastie et al. [44℄.

Sample Let us assume that we have an input sample of j = 1, . . . , N observations from d explana-
tory variables (or inputs) 
onsidered as quantitative, denoted by Xj

i , i = 1, . . . , d. A quantitative

variable Y j
with two modalities is asso
iated with these realisations of the inputs. Let us assume

that the values taken by Y are in {0, 1}. In the 
onsidered framework, this sample might be the

result of a Monte-Carlo experiment for a 
omputer model where the quantity of interest is a prob-

ability of ex
eeding a given threshold (the events are failure/non-failure of the system). A sample

aggregating the inputs and output of a subset simulation might also be used - this 
ase is dis
ussed
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in Se
tion 2.2.5. The sample is divided in two parts: a training set and a test set. The training set

is used to �t the model (in the next se
tion, the 
lassi�
ation tree). The test set is used to assess

the generalization error of the model (Hastie et al. [44℄).

Growing a binary tree A 
lassi�
ation tree is built by re
ursive partitioning of the input spa
e.

Fo
us will be set on the CART (Classi�
ation And Regression Tree) method, Breiman et al. [17℄.

Moreover, the regression 
ase will not be treated here.

The growth (or �tting) of a 
lassi�
ation tree is done in sele
ting a sequen
e of nodes (binary

partition of the input spa
e) then in determining a subsequen
e (pruning) that will be optimal

a

ording to a given 
riterion A node is de�ned by an input variable (splitting variable) and a

division, allowing the separation of the sample in two subsamples. A division is de�ned by a value

(split point). At the �rst node (also referred to as root of the tree) 
orresponds the whole sample;

then iterations are made on the produ
ed subsamples.

The algorithm requires :

� the de�nition of a 
riterion allowing to sele
t the best node (variable+division);

� a rule to end the algorithm and de
ide that a node is terminal (also referred to as leaf);

� a rule to assign a terminal node to a 
lass.

Division 
riterion Ea
h variable (1, . . . , d) produ
es N − 1 allowed splits (that is to say 
reating

a non-empty node). There are d × (m − 1) allowed splits in whi
h the optimal division must be


hosen. The division 
riterion is related to a node impurity measure: the aim is to obtain nodes as

homogeneous as possible with respe
t to the output Y . The impurity measure 
onsiders the mixture

of Y 's modality in a node. It is null if and only if all the individuals of the same node share the

same value of Y . It is maximal when the modalities of Y are equally present in the node.

The devian
e (or heterogeneity) of a node k is denoted Dk. The redu
tion of devian
e (or

impurity redu
tion) from splitting this node into des
ending nodes t and s would then be:

∆D = Dk −Dt −Ds

.

The tree is built by taking the maximum redu
tion in devian
e over the allowed splits:

max
allowed splits δ

Dk − (Dt +Ds)

Stopping rule The algorithm stops for a given node when it is homogeneous (it 
ontains a single


lass and therefore 
annot be divided no more). The algorithm 
an also be 
alibrated to avoid

useless splits: the division pro
ess is stopped when the number of values in the node is less than a

�xed size (for instan
e 5 individuals).

A�e
tation rule If the terminal node (leaf) is homogeneous, it is a�e
ted to the represented


lass. If not, a majority rule is applied. If wrong-
lassi�
ation 
osts are given, the less 
ostly 
lass

is 
hosen.
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Heterogeneity 
riteria Let us propose two heterogeneity measures: the entropy 
riterion and

Gini index (in pra
ti
e this 
hoi
e is less in�uential than the pruning 
riterion, Besse [11℄).

De�ne plk the probability that an element of node k belongs to 
lass l (l = {0, 1} in our 
ase).

This quantity is estimated by

nl(k)
nk

where nl(k) represents the number of individuals in node k
presenting 
lass l and nk the number of individuals in node k.

The impurity of node k in the entropy sense is de�ned by:

Dk = −2

1∑

l=0

nkplklog(plk.)

The impurity of node k in the Gini index sense is:

Dk =

1∑

l=0

plk(1− plk).

Pruning A maximal tree might over�t the data (the training set) while a small tree might not

explain the stru
ture of the data. The pruning step is a model sele
tion step. Breiman et al. [17℄

propose to sele
t an optimal tree in a sequen
e of sub-trees.

Let us de�ne the dis
rimination quality of a tree A: D(A) as the sum of mis
lassi�ed individuals.

Let us de�ne as well a 
ost-
omplexity measure C(A) = D(A) + γ ×K where K is the number of

leaves in the tree. The pruning algorithm starts with γ = 0 then in
reases the value of γ, allowing the
building of a sequen
e of nested trees. It is straightforward that D(A) will rise as K de
reases. The

sele
tion of the �nal tree is done through 
ross-validation; or with a validation sample (or pruning

sample) if the data size N is su�
ient.

Example We propose in this paragraph a simple example of binary 
lassi�
ation tree, 
oming

from Mishra et al. [68℄. The data set is presented in Table 2.1. There are two inputs and one binary

output, taking the values "Safe" and "Failure".

X1 4 3 1 5 9 11 2 6 9 8 6 7

X2 5 1 3 4 2 6 7 8 9 10 11 12

Y Safe Safe Safe Failure Failure Failure Safe Safe Safe Safe Safe Safe

Table 2.1: Data set

The following tree 
an be 
onstru
ted (Figure 2.1), where it 
an be noti
ed that all the leaves

are pure (
ontaining only one 
ategory). On the R environment, library rpart was used to build

this tree.

2.2.2 Stabilisation methods

A 
lassi�
ation method is said to be unstable if a small perturbation in the training set generates

a large perturbation in the �nal predi
tor. Tree-based methods (su
h as CART method) have been

identi�ed as unstable. A review of 
lassi�
ation tree stabilisation methods is proposed.
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x2 < 6.5

x1 >= 4.5

Failure Safe

Safe

yes no

Figure 2.1: Binary tree

2.2.2.1 Prin
ipals overall strategies (Genuer [39℄, Se
tion 1.1.3)

The prin
iple of this family of methods is to build a 
olle
tion of predi
tors then aggregate their

predi
tions. These overall strategies might be applied with CART as predi
tors. In the 
lassi�
ation


ase, the aggregation is done with a majority vote. The aim of this 
lass of methods is to avoid

over�t.

Bagging Proposed by Breiman [15℄ with CART as predi
tors, bagging is the 
ontra
tion of

bootstrap aggregating. The main idea is to build, from the training sample, a number of bootstrap

samples, then to aggregate the predi
tions. The generi
 bagging algorithm is presented in Algorithm

1. In our parti
ular 
ase, the 
hosen predi
tor is the 
lassi�
ation tree of CART.

Let X0
be a set of inputs for whi
h a fore
ast is wanted and Z = (Xj , Y j)j=1,...,N a training sample.

For b = 1, . . . , B do:

� Sample a bootstrap sample Zb

� Estimate the predi
tor hZb
on this sample

End for

Compute the mean predi
tion hB(X
0) = argmaxj #

{
b|hZb

(X0) = j
}
.

loa 1: Bagging

Boosting Proposed by Freund et Shapire [36℄, this type of algorithm is widely used with CART

as predi
tors.

The prin
iple is the sequential 
onstru
tion of models in whi
h important weights are a�e
ted to

mis
lassi�ed individuals. The founding algorithm Adaboost (Adaptive boosting) is des
ribed in the


ase of a dis
rimination problem with two 
lasses {−1, 1}. An initial bootstrap sample is sampled,

where ea
h individual has the same probability to appear. A 
lassi�er (predi
tor) is estimated,
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altogether with its 
lassi�
ation error. A se
ond bootstrap sample is generated, where mis
lassi�ed

individuals are more likely to appear. Another predi
tor is �tted and the algorithm 
ontinues.

Ea
h sample is generated a

ording to the performan
e of the previous 
lassi�er. At the end, all

the 
lassi�ers are aggregated in fun
tion of their respe
tive weights. A summary is presented in

Algorithm 2.

Let X0
be a set of inputs for whi
h a fore
ast is wanted and Z = (Xj , Y j)j=1,...,N a training sample.

Initialize the weights wi = 1/N ; i = 1, . . . , N
For m = 1, . . . ,M do:

� Estimate 
lassi�er hZm on the bootstrap sample weighted by w

� Compute the error rate:

err =

∑N
j=1wi1{hZm(Xj )6=Y j}∑N

j=1wi

� Compute the logit lm = log
(
1−err
err

)

� Compute the new weights wi := wi exp
[
−lm1{hZm(Xj )6=Y j}

]
i = 1, . . . , N

End for

Compute the mean estimation hB(X
0) = sign

[∑M
m=1 lm1{hZm(X0)6=Y j}

]
.

loa 2: Boosting

2.2.2.2 Random forests

The presented algorithm is RF-RI (Random Forest - Random Input) des
ribed by Breiman [16℄. The

main idea is to improve CART bagging with a step of random sele
tion of inputs in the model. More

spe
i�
ally, a large number of trees are grown, ea
h tree on a di�erent bootstrap sample. At ea
h

node, m inputs among d are randomly sele
ted, then the split is done. Se
tion 1.3 of Genuer [39℄

presents a 
omplete review for several versions of random forests. Algorithm 3 sums up the ideas.
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Let X0
be a set of inputs for whi
h a fore
ast is wanted and Z = (Xj , Y j)j=1,...,N a training sample.

For b = 1, . . . , B do:

� Obtain a bootstrap sample Zb

� Estimate a CART on this sample with variable randomisation:

� at ea
h node, randomly (uniform without repla
ement) pi
k m of the d inputs;

� for ea
h of the m variables, �nd the best split among the possible splits for the k-th
variable;

� among the m proposed splits, sele
t the best one;

� split the data using the sele
ted best split;

� repeat the previous steps until a maximal tree is growth.

� The �nal predi
tor is denoted hZb
.

End for

Compute the mean predi
tion hB(X
0) = argmaxj #

{
b|hZb

(X0) = j
}
.

loa 3: Random Forests

The default value for m in the 
lassi�
ation 
ontext is m =
√
d. Noti
e that ea
h tree is maximal

and is not pruned. Some theoreti
al results on pure random forests (PRF) are available in Biau [12℄.

2.2.2.3 Stru
ture stabilisation methods (Briand [19℄, se
tion 4.4)

The presented stabilisation methods su
h as Bagging and Random Forests 
onsist in the 
onstru
tion

of a large number of 
lassi�ers on a randomized sample. These te
hniques improve the 
apa
ity of

the predi
tors but the singular tree stru
ture is lost. This singularity might be a requirement when

the aim of the 
lassi�
ation is the proposal of a de
ision tree. The te
hniques proposed hereafter

aims at keeping the stru
ture of the tree by stabilizing the nodes.

The method proposed by Ruey-Hsia [86℄ 
onsists in in
luding, for ea
h node, logi
al stru
tures.

For instan
e, a division 
riterion might be "2 ≤ Xi and Xk ≥ 5". The notion used to rea
h su
h a

result is the existen
e of a division "almost as good" as the optimal. Briand [19℄ remarks that the

existen
e of a large number of logi
al expressions might 
ompli
ate the interpretation of the tree.

Choi
e is then set to use a method allowing a stabilisation of the nodes (division and variable

asso
iated) of the tree. The inspiration 
omes from Dannegger [29℄. The main idea is to re-sample in

a bootstrap fashion for ea
h node. For ea
h sample, the optimal division is sear
hed. The variables

most frequently sele
ted are then used as a division variable for the treated node.

Briand proposed Dannegger's algorithm to build a maximal tree, then to prune the tree with

a redu
ed error pruning method, Quinlan [81℄. The 
ouple tree growing/pruning is denoted REN

method. An arti
le by Briand et al. [20℄ proposes a similarity measure between trees - that might

be of di�erent stru
tures. This similarity measure is used in Briand [19℄ to 
ompare trees built with

CART method or with REN method. It allows to assess the stability of the REN method to build


lassi�
ation trees.
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2.2.3 Variable importan
e - Sensitivity analysis

2.2.3.1 Criteria de�nition

Tree-based 
lassi�
ation methods are mostly used in the genomi
 domain, where the number of

variables is mu
h higher than the number of observations (N ≪ d). Thereby, di�erent importan
e

measures have been 
onsidered by several authors. These measures are presented here, reminding

that their aim is the sele
tion of a few inputs among a large number of explanatory variables.

CART 
ase A naive idea of variable ranking is that the variables most involved in the partition

(and espe
ially those whi
h nodes are 
lose from the root) are the most in�uential. A more re�ned

idea has been proposed by Breiman et al. [17℄. It is de�ned as the sum on the nodes of the

heterogeneity redu
tion (for substitution divisions). An introdu
tion on this index is presented in

Ghattas [40℄. It is also used altogether with the REN stabilisation method of Briand.

RFRI 
ase When building a large number of trees, and randomizing ea
h 
onstru
tion step, the

unique stru
ture des
ribed in the CART 
ase is lost. Thereby, new sensitivity measures are proposed

by Breiman [16℄.

� A �rst naive estimator of a variable's in�uen
e is the frequen
y of its apparition in the forest.

� A se
ond estimator is said to be "lo
al", it is based on the sum of the heterogeneity redu
tion

(in the Gini index sense) on nodes where the variable is used. This 
riterion will be denoted

GI in the following. The importan
e 
riterion VGI is the sum of the heterogeneity de
rease

due to variable Xi, divided by the number of trees in the forest Ntrees.

� Third measure is said to be "global" and is named MDA index (Mean De
rease A

ura
y).

It is based on a random permutation of the values of the 
onsidered variable. In a simpli�ed

way, if the variable is in�uential then the predi
tion error on the perturbed sample will be

high. This predi
tion error will be smaller/null if the perturbation is done on a non-in�uential

variable. More pre
isely, let us denote erroob the "Out-of-Bag" error, the predi
tion error on

the part of the sample (OOB) that has not been used to estimate the tree (the whole sample

bereft of the bootstrap sample). The values or the ith variable are permuted in the OOB
sample; then the predi
tion error is 
omputed on this sample. This error is denoted erroob,i.
The MDA index might be negative, and is de�ned as follow:

MDA(Xi) =
1

Ntrees

Ntrees∑

t=1

(
errtoob,i − errtoob

)

2.2.3.2 Review of works on SA with CART/RFRI

In this part, a histori
al (from the oldest to the newest) review of the use of CART/RFRI for SA is

presented. We tried to fo
us on the 
ase N ≫ d or N ≃ d.

� Mishra et al. [69℄. The topi
 of this arti
le is SA. Four methods are presented, in
luding

one based upon CART 
lassi�
ation. CART is used by 
lassifying "extreme" events (10 and

90 per
entiles of the output). This paper quotes the following one for the methodology and

presents the same results.
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� Mishra et al. [68℄. This paper's topi
 is SA on a binary output (10 and 90 per
entiles of a s
alar


ontinuous output). The studied model (nu
lear waste repository �eld) presents 300 inputs.

The authors use 60 datas. The sensitivity measure used is the most simple ("The earliest splits


ontribute most to the redu
tion in devian
e and are 
onsidered to be most important in the


lassi�
ation pro
ess"). On the appli
ation 
ase, it turns out that 5 variables are used to build

the CART that 
lassi�es the output as "high" and "low". To the best of our knowledge, it is

the �rst paper to perform SA on binary output.

� Frey et al. [37℄. In this resear
h report, the authors list SA methods then apply them on

several 
ases where the output is a s
alar 
ontinuous value (CART is used in a regression


ontext). The used index is the redu
tion of devian
e (sum of square of the mean departure)

due to ea
h node.

� Frey et al. [38℄. This resear
h report is a review on SA. With respe
t to CART, the re
om-

mended use is regression. For SA the authors' point of view is to 
onsider the variables sele
ted

in the tree as in�uential; then to rank them by their proximity to the root. The previous report

is quoted, advising to use the devian
e redu
tion index.

� Pappenberger et al. [77℄. To the best of our knowledge, this arti
le is the �rst dealing with

Random Forests (RF) to produ
e SA in the sense of the present work (it is noti
eable that this

paper quotes Sobol' and Saltelli). However, the use of RFRI is for regression, therefore the

sensitivity measures are not the same as presented in Se
tion 2.2.3. Two indi
es are presented,

one based upon an information gain and another based upon permutation of input values

(somehow 
lose to the MDA index). An extension of this last measure is proposed for several

variables, yet this measure is to be used with 
are due to an additive assumption. The point of

view of the authors is that their method 
an be 
ombined with Regional Sensitivity analysis,

(Saltelli et al. [89℄, Hornberger et al. [48℄). The �rst appli
ative example might be interpreted

as a failure fun
tion ex
eeding a threshold, thus presenting an interest for the present resear
h.

The SA part on RFRI 
onsists in �tting a large number of regression trees and boxplotting the

results. The authors show the interest of their method (SARS-RT) in 
omparison with rank

regression SA. The ranking of the variables is the same for in�uential variables when using the

two proposed indi
es. However, the ranking di�ers for the weakly in�uential variables.

� Strobl et al. [95℄. This arti
le deals with 
omparison of three sensitivity measures (Sele
tion

Frequen
y/GI/MDA, see Se
tion 2.2.3) for RFRI. The framework is the one of N ≪ d; and
where the output is binary {0, 1}. The trees used are then 
lassi�ers. The main 
ontribution of

this arti
le is to show the instability of variables ranking indi
es. These indi
es tend to show

that multi-modal inputs are in�uential when they a
tually are not. The strong bias of GI

measure is shown. The authors propose a tree building pro
edure 
alled subsampling, building

a tree on a sub sample without repla
ement of size 0.632N where N is the sample size. They

show the good behaviour of their pro
edure in most test 
ases.

� Ar
her et al. [3℄. This paper deals with variable ranking ("variable importan
e") in the

genomi
 framework (N ≪ d, 
lassi�er trees, a large number of 
orrelated input variables).

The authors show on simulations the similarity of the two tested sensitivity indi
es (GI/MDA)

and their usefulness to identify in�uential variable (even in the 
orrelated 
ase).

� Pappenberger et al. [76℄. This arti
le is a review then an appli
ation of 5 SA methods on a

�ood model. There are no use of CART or RFRI, but the paper by Frey et al. [37℄ is quoted

for the introdu
tion of CART in SA.
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� Briand [19℄. The main idea of this PhD is the use of CART for SA. The main 
ontribution is

a pro
edure of tree stabilisation, presented in 2.2.2.3. An arti
le by Briand et al. [20℄ dealing

with a similarity measure between trees has also been produ
ed. This measure 
an be used in

a random forest to express a "median tree". A SA 
an then be performed on this tree.

� Genuer [39℄. This PhD proposes a 
omplete state of the art on the 
onstru
tion of random

forests. It also studies the properties of the MDA sensitivity indi
es for automati
 variable

sele
tion in the N ≪ d 
ase. The aim is to sele
t a few inputs to build a parsimonious model.

� Sauve et al. [91℄. The aim of this theoreti
al arti
le is more to sele
t variables rather than to

rank them by in�uen
e. Theoreti
al results on model sele
tion are presented, in the regression

and 
lassi�
ation 
ases.

Con
lusion This bibliography shows that sensitivity analysis 
an be performed on a binary output

using CART/RFRI as 
lassi�ers. Further investigation will be done in 2.2.4. From the bibliography,

Gini importan
e measures and MDA sensitivity indi
es seems promising. Additionally, the paper

from Strobl et al. [95℄ brought up an important point: there is a possible bias with the Gini

importan
e measure when dealing with inputs that vary in their spread. This behaviour will be

tested in the experiments to 
ome.

2.2.4 Appli
ations

On the R environment, library rpart is used to build CART models. Library randomForest, based

on Breiman's Fortran 
ode, is used to deal with RFRI along this report.

2.2.4.1 Hyperplane 6410 Case

This numeri
al example is des
ribed in Appendix B.1. The following experiment is performed 100
times. A 105 points sample is generated; on whi
h a forest of 500 trees is built. At ea
h step of the

tree 
onstru
tion, m =
√
d = 2 variables are randomly 
hosen. Results obtained with MDA and GI

are boxplotted in Figure 2.2 respe
tively left and right.

Both indi
es give the same variable ranking, identifying a strong in�uen
e for variable X2 and

X3. Variable X1 is identi�ed as weakly in�uential whereas variable X4 is 
onsidered of very weak

in�uen
e for GI indi
es and of null in�uen
e for MDA indi
es. This ranking is relevant given the


oe�
ients of the variables.

2.2.4.2 Hyperplane 11111 Case

This numeri
al example is des
ribed in Appendix B.1. In term of SA, all the variables share the

same in�uen
e. The following experiment is performed 100 times. A 105 points sample is generated;

on whi
h a forest of 500 trees is built. At ea
h step of the tree 
onstru
tion, m = 2 variables are

randomly 
hosen. Results obtained with MDA and GI are boxplotted in Figure 2.3 respe
tively left

and right.

Both importan
e measures assess the same in�uen
e for all the variables. This was expe
ted.

2.2.4.3 Hyperplane 15 variables test 
ase

This numeri
al example is des
ribed in Appendix B.1. The following experiment is performed 100
times. A 105 points sample is generated; on whi
h a forest of 500 trees is built. At ea
h step of the
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Figure 2.2: Boxplots of MDA indi
es (left) and GI indi
es (right) for the hyperplane 6410 test 
ase
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Figure 2.3: Boxplots of MDA indi
es (left) and GI indi
es (right) for the hyperplane 11111 test 
ase

tree 
onstru
tion, m = 3 variables are randomly 
hosen among the 15. Results obtained with MDA

and GI are boxplotted respe
tively in Figures 2.4 and 2.5.

Both importan
e measures separate the in�uential variables (�rst 5), the weakly in�uential (6-

10) and the non-in�uential (11-15). On
e again, it is noti
ed that the GI measure does not allow

to assess that a variable is "non-in�uential" but rather that a variable is less in�uential than the

others, due to a non-null s
ore. The expli
ation of su
h a phenomenon might be the following. At

a node 
onstru
tion step, if the randomly 
hosen variables are only the non-in�uential ones, then

the split will be done on one of these, thus redu
ing somehow the heterogeneity. This might explain

the non-null GI measures for non-in�uential variables. However, MDA has a mean null s
ore for

non-in�uential variables, thus assessing their null impa
t on the failure probability.
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Figure 2.4: Boxplots of MDA indi
es for the hyperplane 15 variables test 
ase

2.2.4.4 Hyperplane with same importan
e and di�erent spreads test 
ase

This numeri
al example is des
ribed in Appendix B.1. The aim of su
h an example is to test the

ability of both measures (MDA and GI) to give to ea
h equally 
ontributing variable the same

importan
e despite their di�erent spread. This test 
ase is inspired by Strobl et al. [95℄ who have

shown a strong bias for GI measure in 
ase of multi modal or spread variables. The following

experiment is performed 100 times. A 105 points sample is generated; on whi
h a forest of 500
trees is built. At ea
h step of the tree 
onstru
tion, m = 2 variables are randomly 
hosen. Results

obtained with MDA and GI are boxplotted in Figure 2.6 respe
tively left and right.

It is noti
eable that both measures show the same in�uen
e to all the variables, despite their

di�erent spreads. The boxplots do not present the bias of Strobl et al. [95℄. Genuer [39℄ uses the

MDA as a variable importan
e index over GI, due to the bias stressed by Strobl et al. [95℄. However

this "la
k" of bias in our �gures might 
ome from the fa
t that these �gures show an averaging of

experien
e, thus an eventual bias might be negle
ted.

2.2.4.5 Tresholded Ishigami fun
tion

This numeri
al example is des
ribed in Appendix B.2. The parameters of the experiment are the

following: 500 trees built on 105 points with m = 2 variables sele
ted at ea
h node 
onstru
tion

step. Ea
h experiment is reprodu
ed 100 times. Results obtained with MDA and GI are boxplotted

in Figure 2.7 respe
tively left and right.

A

ording to the measures, there is no non-in�uential variable. The importan
e ranking di�ers

with the measures. We re
all that the problem raised with the GI measure is that one 
annot assess

that the less in�uential variable is non-in�uential. Our hypothesis on the di�erent ranking is that

binary trees do not �t e�
iently separated failure surfa
es. Figure B.1 is a plot of the shape of the
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Figure 2.6: Boxplots of MDA indi
es (left) and GI indi
es (right) for the hyperplane di�erent spreads

test 
ase

failure surfa
e for the Ishigami fun
tion: it seems di�
ult to �t a binary partition of the spa
e for

variables X2 and X3.

2.2.4.6 Flood Case

This example is des
ribed in Appendix B.3. The parameters of the experiment are the following:

500 trees built on 105 points with m = 2 variables sele
ted at ea
h node 
onstru
tion step. Ea
h
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es (left) and GI indi
es (right) for the thresholded Ishigami test


ase

experiment is reprodu
ed 100 times. Results obtained with MDA and GI are boxplotted in Figure

2.8 respe
tively left and right.
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Figure 2.8: Boxplots of MDA indi
es (left) and GI indi
es (right) for the �ood test 
ase

Variable ranking is the same on this test 
ase. Ks is sele
ted as the most in�uential variable, then


omes Q. Zv has a negligible in�uen
e while Zm has a null in�uen
e (a

ording to MDA indi
es).
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2.2.5 Dis
ussion

2.2.5.1 On the results of SA

Numeri
al experiments have shown the 
apa
ity for the proposed indi
es to rank the variables. This

ranking is reprodu
ible (boxplots with few 
overing on 100 repetitions). Ex
ept a 
omplex 
ase

(thresholded Ishigami fun
tion), this ranking was the same for both studied measures.

However, GI measure 
an a�e
t a non-null importan
e to a non-in�uential variable (as seen

in Se
tion 2.2.4.3). Even if on average, the same weight will be a�e
ted to all the non-in�uential

variables, this numeri
al noise prevents to assess that a variable has a null in�uen
e. This drives

us to prefer the MDA measure over the GI measure, sin
e it allows the dete
tion of non-in�uential

variables.

2.2.5.2 On the model's quality

Problem noti
ing The study of �tted models (RFRI) shows that their quality is not satisfying.

This might be a problem when drawing 
on
lusions on SA with these models. More pre
isely, on a

MC sample, the variable to be predi
ted presents two modalities in uneven quantities. For instan
e

on the �ood 
ase, for a sample of 105 points there are 81 failure points whereas there are 99919 safe

points. From this imbalan
e there is a tenden
y in getting "weak" predi
tors that make mu
h more

predi
tion error on the minority 
lass. The 
onfusion matrix (on the out-of-bag samples) of a forest

of 500 trees is presented in Table 2.2.

Observed

Class predi
tion error

0 1

Predi
ted

0 99912 7 7.01 × 10−5

1 27 54 3.33 × 10−1

Table 2.2: Confusion matrix of the forest with default parameters

It is noti
eable that the predi
tion error is around 5000 times higher for 
lass 1 (failure) than

for 
lass 0 (safe mode). Given that the sensitivity measure 
hosen is an error averaging, it seems

essential to improve the model's quality. The MDA ranking for this model is presented in Table 2.3.

Ks Q Zv Zm

MDA 6.28× 10−4 9.79 × 10−4 5.22 × 10−5 −1.96 × 10−6

Table 2.3: MDA indi
es of the forest with default parameters

Class penalty A �rst idea to improve the models is to put a penalisation on the 
lass so that the

failure event is best predi
ted. This approa
h presents two drawba
ks:

� making that 
hoi
e turns the problem into the 
hoi
e of the penalty;

� the model obtained might be a pessimisti
 one, predi
ting individuals of 
lass 0 (safe mode)

as being of 
lass 1 (failure point).

A test a�e
ting at ea
h 
lass weight proportionals to their frequen
y shows a weak improvement.

The 
onfusion matrix is presented in Table 2.4.
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Observed

Class predi
tion error

0 1

Predi
ted

0 99913 6 6.00 × 10−5

1 25 56 3.09 × 10−1

Table 2.4: Confusion matrix of the forest with di�erent weights

The MDA ranking for this model is presented in Table 2.5.

Ks Q Zv Zm

MDA 6.17 × 10−4 9.74× 10−4 5.37 × 10−5 3.64 × 10−6

Table 2.5: MDA indi
es of the forest with di�erent weights

The small modi�
ations on the ranking and on the 
onfusion matrix makes this solution in
on-


lusive.

In
reasing the number of trees Another solution is to in
rease the number of trees in the

forest. A test is done on the same sample with 2000 trees (this value 
omes from Genuer [39℄). The


omputing time is in
reased by a fa
tor 10 on our ma
hine. The 
onfusion matrix and the MDA

ranking are presented respe
tively in Tables 2.6 and 2.7.

Observed

Class predi
tion error

0 1

Predi
ted

0 99914 5 5.00 × 10−5

1 26 55 3.21 × 10−1

Table 2.6: Confusion matrix of the forest with 2000 trees

Ks Q Zv Zm

MDA 6.09 × 10−4 9.71× 10−4 4.61 × 10−5 4.49 × 10−6

Table 2.7: MDA indi
es of the forest with 2000 trees

The 
onfusion matrix does not present any improvement, despite the substantial in
rease of the


omputing time.

In
reasing the sample size Another solution might be to in
rease the sample size. A test has

been performed on a sample of size 5× 105 for a forest of 500 trees. The 
omputation failed due to

the size of the sample. The solution is then in
on
lusive.

2.2.5.3 Importan
e sampling

To bypass the problem of the sample size, the use of importan
e sampling (see Se
tion 1.2.1.3) is

proposed. Therefore, the minority 
lass will be arti�
ially over-represented. For the �ood 
ase, the

importan
e densities are the following:
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� Ks follows a trun
ated Gumbel distribution with parameters 3000, 558 and a minimum 0;

� Q follow a trun
ated Gaussian distribution with parameters 10, 7.5 and a minimum 1;

� Densities of Zv and Zm are not modi�ed.

Sampling 105 points a

ording to these densities gives 49505 failure points (almost half of the

sample). A forest of 500 trees is �tted on this sample. The 
onfusion matrix is presented in Table

2.8.

Observed

Class predi
tion error

0 1

Predi
ted

0 50001 494 9.98 × 10−3

1 498 49007 1.00 × 10−2

Table 2.8: Confusion matrix of the forest built on an IS sample

Predi
tion error in
reases for 
lass 0 (safe mode) with respe
t to Table 2.2. However predi
tion

error de
reases for 
lass 1 (failure), this was wanted. Furthermore, the predi
tion errors for the two


lasses are of the same order of magnitude. The out-of-bag error on the whole model is around 1%.

MDA ranking on this model is presented in Table 2.9.

Ks Q Zv Zm

MDA 0.119 0.429 0.066 0.011

Table 2.9: MDA indi
es of the forest built on an IS sample

The ranking of the variables is the same, but the obtained values have a di�erent order of

magnitude. However, one 
annot assess anymore that variable Zm has a null in�uen
e.

To 
on�rm these results, a forest of 1000 trees have been �tted. Results are similar and are not

presented here.

However a question arises: do MDA indi
es 
omputed on a sample that is not i.i.d. to the

original densities have sense?

2.2.5.4 Using subset simulation

Another idea to solve the problem of unevenly represented 
lasses without using importan
e sampling

(that needs hypotheses on the importan
e densities) might be to use the results of a subset simulation.

The sample would then have more failing points.

However, the MDA indi
es based on a 
oordinate permutation would not have sense anymore.

Indeed, the individuals would not be i.i.d. with respe
t to the original densities, but blo
k-wise i.i.d.

to f/Dk
where Dk are the subsets. One 
ould then de�ne an adapted measure of sensitivity:

MDAS(Xi) =
1

Ntrees

Ntrees∑

t=1

(
errtoob,i,S − errtoob

)

where the S stands for subset. The only di�eren
e here is in the way to 
ompute erroob,i,S.
We propose the following: as the OOB sample is 
omposed of individuals from di�erent subsets

(D1,D2,. . . ,DK), perform the permutation of the ith variable by subset (so that individuals 
oming
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from subset Dk are swit
hed with individuals from the same subset). This error would be denoted

erroob,i,S.

These indi
es will be developed and tested on further works.

2.2.5.5 SA from the model sele
tion point of view

Importan
e measures tested in this se
tion have variable sele
tion as primary obje
tive. Their se
ond

obje
tive is to �t parsimonious models (that do not use no more variables than ne
essary). The

framework of su
h a pro
edure is generally the 
ase N ≪ d. Our studies is rather the 
ase of

dis
rimination of two 
lasses unevenly present in a sample with N ≫ d.

Nevertheless, this se
tion has brought an interesting idea. This idea is to get a model 
olle
tion

built on the bagging prin
iple, then to 
ompute a sensitivity measure for ea
h variable and to

aggregate these measures to insure stability. It is de�nitely of interest and has to be explored in

further works.

2.3 Using input 
umulative distribution fun
tion departure as a

measure of importan
e

In this se
tion, a novel sensitivity measure is proposed. It is thought as a by-produ
t of the subset

sampling estimation te
hnique (Se
tion 1.2.3). The basi
 idea is to propose a sensitivity index

for ea
h variable at ea
h step of the subset. The index is obtained as a departure in 
umulative

distribution fun
tion (
.d.f.) from the original. Subse
tion 2.3.1 introdu
es the idea and proposes

some reminders. Subse
tion 2.3.2 makes a summary of all the distan
es analysed. The usual test


ases are pro
essed in Subse
tion 2.3.3. Finally, Subse
tion 2.3.4 sums up the ideas and 
on
ludes.

2.3.1 Introdu
tion and reminders

As previously stated in the introdu
tion, a sensitivity index for ea
h variable at ea
h step of the

subset is proposed. The aim of su
h a proposition is to quantify step after step the in�uen
e of

ea
h variable on the failure probability. Let us give the informal de�nition: the sensitivity index is

de�ned for the variable i and the subset step k as a departure between the empiri
al 
.d.f. and the

theoreti
al marginal 
.d.f of the variable.

Considering M subset steps with k = 1 . . .M ; denoting:

F k
n,i = Fi(x|Ak), (2.1)

the empiri
al 
.d.f. of the ith variable given that the subset Ak has been rea
hed. Thus the proposed

index writes:

δSSi (Ak) = d(F k
n,i, Fi), (2.2)

where Fi is the theoreti
al 
.d.f. of the ith variable, and d is a distan
e (de�ned further in Se
tion

2.3.2).

Informally, an in�uential variable will have a strong departure in 
.d.f. whereas a non-in�uential

variable will have a weak departure in 
.d.f., thus a weak index. Su
h a strategy is inspired by

Monte-Carlo Filtering or Regionalised Sensitivity Analysis (RSA). However, it should be noted that

several blo
king points are identi�ed:
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� Information is negle
ted when working on the marginals. Moreover, when working with a

parti
les 
loud, the 
omponents are generally no longer independent. Thus the 
.d.f. of the


loud is di�erent from the produ
t of the 
.d.f. of the marginals. We de
ide to gloss over su
h

problems for now.

� The 
hoi
e of the distan
e measure will determine the importan
e ranking of the variables. It

is therefore 
ru
ial to 
hoose a distan
e adapted to the problem. The meaning of "in�uential"

must then be set in advan
e (di�eren
e in the 
entral tenden
y, di�eren
e in extremes...).

Choi
e has been set to work with empiri
al 
.d.f. rather than with empiri
al densities for two

reasons:

� Denoting Fn,i an empiri
al 
.d.f., Glivenko-Cantelli's theorem states that sup
x

|Fn,i(x)− Fi(x)|

onverges almost surely to 0.

� More pragmati
ally, working with empiri
al densities (with a kernel smoothing) add an un-

ne
essary pro
essing.

2.3.2 Distan
es

We propose 3 distan
es 
oming from non-parametri
 statisti
s. These distan
es are used to de�ne

statisti
s of usual goodness-of-�t tests (Govindarajulu, [42℄). Let us denote Fn,i the empiri
al 
.d.f.

and Fi the 
.d.f. to whi
h it is 
ompared (in our 
ase, the theoreti
al original marginal 
.d.f. of ea
h

variable).

2.3.2.1 Kolmogorov distan
e (L∞ distan
e)

Dn = sup
x

|Fn,i(x)− Fi(x)|

The implementation of Dn is dire
t. Dn is the supremum of the departure between Fn,i and Fi,

it is thus the "worst 
ase" distan
e.

2.3.2.2 Cramer-Von Mises distan
e (L2 distan
e)

Cn =

ˆ +∞

−∞
(Fn,i(x)− Fi(x))

2 dFi(x)

The implementation of Cn 
an be done in two ways:

� Cn 
an be estimated using a numeri
al quadrature rule (su
h as Simpson's one);

� or denoting Uj = Fi(Xj), j = 1, . . . , n and arranging this sample in order U∗
j then:

Cn =
1

n




n∑

j=1

(
U∗
j − 2j − 1

2n

)2

+
1

12n


 .
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2.3.2.3 Anderson-Darling distan
e

An =

ˆ +∞

−∞

(Fn,i(x)− Fi(x))
2

Fi(x) (1− Fi(x))
dFi(x)

As Cn, An 
an be implemented in two ways:

� by quadrature ;

� or 
onsidering the U∗
j then:

An =
1

n


−n+

1

n

n∑

j=1

(2j − 1− 2n) ln
(
1− U∗

j

)
− (2j − 1) ln

(
U∗
j

)

 .

Anderson-Darling distan
e is derived from the Cramer-Von Mises one but grants more weight to

the extreme values.

2.3.3 Appli
ations

2.3.3.1 Hyperplane 6410 test 
ase

This numeri
al example is des
ribed in Appendix B.1.

Subset estimation First of all, the failure probability Pf is estimated using the adaptive subset

simulation method (see Se
tion 1.2.3). Re
all that the true failure probability is Pf = 0.014. Note
that in this 
ase, the subset simulation method might not be the best adapted to estimate a "not

so weak" failure probability. The parameters of the algorithm are the following:

� the proposal density is a Gaussian 
entred on the parti
le, with varian
e 1,

� N = 104, α = .75.

The result with 15×N fun
tion 
alls is the exa
t result:

P̂ = 0.014

Plot of the 
.d.f. For this �rst example, the 
.d.f given that the third, the seventh and the

�fteenth subset have been rea
hed are plotted in Figure 2.9. One 
an see that whatever the distan
e

used, the 
.d.f. 
orresponding to the �fteenth subset is farther from the original one that the 
.d.f.


orresponding to the third subset (on this example).
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Figure 2.9: Several 
.d.f.

Distan
e estimation The distan
e are estimated with the formulas given in 2.3.2. They are

plotted in fun
tion of the threshold in Figures 2.10, 2.11 and 2.12. Variable X1 is plotted in bla
k,

X2 in blue, X3 in green and X4 in red.
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Figure 2.10: Hyperplane 6410 test 
ase, Kolmogorov distan
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Figure 2.11: Hyperplane 6410 test 
ase, Cramer-Von Mises distan
e
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Figure 2.12: Hyperplane 6410 test 
ase, Anderson-Darling distan
e

All the distan
es allow the following variable ranking: X2,X3,X1 then X4. Noti
e that this is

the same ranking tan the one provided by the importan
e fa
tors (see Table 3.3). All the distan
es

tend to separate the variables in two groups. The Anderson-Darling distan
e seems to minimise the

in�uen
e of the �rst variable (bla
k).

2.3.3.2 Hyperplane 11111 test 
ase

This numeri
al example is des
ribed in Appendix B.1. Re
all that the aim of this test 
ase is to

assess the 
apability of the SA method to give the same importan
e to ea
h input.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Se
tion 1.2.3). Re
all that the true failure probability is Pf = 0.0036. The algorithm's

parameters are the following:

� the proposal density is a Gaussian 
entred on the parti
le, with varian
e 1,

� N = 104, α = .75.

The result with 20×N fun
tion 
alls is the exa
t result:

P̂ = 0.0036

Distan
e estimation The distan
es are estimated with the formulas given in 2.3.2. They are

plotted in fun
tion of the threshold in Figures 2.13, 2.14 and 2.15. A di�erent 
olor is used for ea
h

variable.
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Figure 2.13: Hyperplane 11111 test 
ase, Kolmogorov distan
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Figure 2.15: Hyperplane 11111 test 
ase, Anderson-Darling distan
e

Every distan
e gives to the 5 variables the same importan
e. The distan
es growth with the

threshold. So far, this SA method has proven that it 
an give the same in�uen
e to equally in�uential

variables.

2.3.3.3 Hyperplane 15 variables test 
ase

This numeri
al example is des
ribed in Appendix B.1. Re
all that the aim of this test 
ase is to


lass the inputs in 3 groups: in�uential, weakly-in�uential and non-in�uential.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Se
tion 1.2.3). Re
all that the true failure probability is Pf = 0.00425. The algorithm's

parameters are the following:

� the proposal density is a Gaussian 
entred on the parti
le, with varian
e 1,

� N = 104, α = .75.

The result with 19×N fun
tion 
alls is 
lose from the exa
t result:

P̂ = 0.00454

Distan
e estimation The distan
es are estimated with the formulas given in 2.3.2. They are

plotted in fun
tion of the threshold in Figures 2.16, 2.17 and 2.18. A di�erent 
olor is used for ea
h

variable. A di�erent symbol (respe
tively a dot, a triangle and a square) is used for ea
h group

(respe
tively in�uential, weakly-in�uential and non-in�uential).
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Figure 2.16: Hyperplane 15 variables test 
ase, Kolmogorov distan
e

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

Threshold

C
ra

m
e

r−
V

o
n

 M
is

e
s
 d

is
ta

n
c
e

7.5 6.4 5.5 4.9 4.3 3.9 3.0 2.3 1.7 1.2 0.6 0.2

Figure 2.17: Hyperplane 15 variables test 
ase, Cramer-Von Mises distan
e

97



2. Variable ranking in the reliability 
ontext

0
.0

0
.2

0
.4

0
.6

0
.8

Threshold

A
n
d
e
rs

o
n
−

D
a
rl

in
g
 d

is
ta

n
c
e

7.5 6.4 5.5 4.9 4.3 3.9 3.0 2.3 1.7 1.2 0.6 0.2

Figure 2.18: Hyperplane 15 variables test 
ase, Anderson-Darling distan
e

All the distan
es growth with the threshold. Kolmogorov distan
e allows a separation of the

inputs in 3 groups. On the other hand, both Cramer-Von Mises distan
e and Anderson-Darling

separate the inputs in two groups: in�uential and non-in�uential.

2.3.3.4 Hyperplane di�erent spread test 
ase

This numeri
al example is des
ribed in Appendix B.1. Re
all that the aim of this test is to assess

the 
apability of the SA method to give to ea
h equally 
ontributing variable the same importan
e,

despite their di�erent spread.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Se
tion 1.2.3). Re
all that the true failure probability is Pf = 0.0036. The algorithm's

parameters are the following:

� the proposal density is a Gaussian 
entred on the parti
le, with the same varian
e as the


onsidered input,

� N = 104, α = .75.

The result with 20×N fun
tion 
alls is 
lose from the exa
t result:

P̂ = 0.0036

Distan
e estimation The distan
es are estimated with the formulas given in 2.3.2. They are

plotted in fun
tion of the threshold in Figures 2.19, 2.20 and 2.21. A di�erent 
olor is used for every

variable.
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Figure 2.19: Hyperplane di�erent spread test 
ase, Kolmogorov distan
e
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Figure 2.21: Hyperplane di�erent spread test 
ase, Anderson-Darling distan
e

Every distan
e growth with the threshold. All the distan
es pa
k the inputs variable together.

So far, we 
an 
on
lude that this SA method su

eeds in giving to ea
h equally 
ontributing variable

the same importan
e, despite their di�erent spread.

2.3.3.5 Thresholded Ishigami test 
ase

This more 
omplex numeri
al example is des
ribed in Appendix B.2.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Se
tion 1.2.3). Re
all that the failure probability is roughly Pf = 5.89 × 10−3
. The

algorithm's parameters are the following:

� the proposal density is a trun
ated Gaussian 
entred on the parti
le, with varian
e 1, minimum

and maximum respe
tively −π and π,

� N = 104, α = .75.

The result with 18×N fun
tion 
alls is 
lose from the exa
t result:

P̂ = 5.81 × 10−3

Distan
e estimation The distan
es are estimated with the formulas given in 2.3.2. They are

plotted in fun
tion of the threshold in Figures 2.22, 2.23 and 2.24. A di�erent 
olor is used for every

variable: X1 is plotted in bla
k, X2 in blue and X3 in red.

100



Using input 
umulative distribution fun
tion departure as a measure of importan
e

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Threshold

K
o
lm

o
g
o
ro

v
 d

is
ta

n
c
e

13.0 11.2  9.7  8.5  7.2  6.2  5.1  3.6  2.2  1.0  0.0

Figure 2.22: Thresholded Ishigami test 
ase, Kolmogorov distan
e
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Figure 2.23: Thresholded Ishigami test 
ase, Cramer-Von Mises distan
e
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Figure 2.24: Thresholded Ishigami test 
ase, Anderson-Darling distan
e

One 
an �rst 
omment that there is a non linearity in the growth of the distan
e for X1, for

the three 
onsidered distan
es. Spe
i�
ally, there is a raise in the growth between the threshold

8.5 and 6.7. For the three distan
es, there is a 
rossing of the values of the indi
es of X2 and X3.

Considering the Anderson-Darling distan
e, there is also a 
rossing between X2 and X1.

On this test 
ase, the 3 distan
es do not give equivalent results. Pre
isely, Kolmogorov and

Cramer-Von Mises distan
es give the same �nal ranking (X1, X3, X2); although the gap between

variables X1 and X3 is larger with Kolmogorov distan
e. However, Anderson-Darling gives the

ranking (X3, X1, X2). We propose the following explanation: Anderson-Darling distan
e (being

a re-weighting of Cramer-Von Mises distan
e) is said to grant more weight to the extremes. But

in the �nal step of the subset, the third marginal of the sample of failure points 
onsists in points

distributed on the extrema (
lose of −π and π). Noti
e that all the distan
es give variable X2 as

the less in�uential variables.

2.3.3.6 Flood test 
ase

This numeri
al example emulating a real 
ode is des
ribed in Appendix B.3.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Se
tion 1.2.3). Re
all that the failure probability is roughly Pf = 7.88 × 10−4
. The

algorithm's parameters are the following:

� the proposal density is always 
entred on the a
tual parti
le, and the densities are:

� a trun
ated Gaussian with minimum 0 and standard deviation 10 for variable Q;

� a trun
ated Gaussian with minimum 1 and standard deviation 5 for variable Ks;

� a trun
ated Gaussian with minimum 49, maximum 51 and standard deviation 1 for vari-

able Zv;
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� a trun
ated Gaussian with minimum 54, maximum 56 and standard deviation 1 for vari-

able Zm;

� N = 104, α = .75.

The result with 26×N fun
tion 
alls is 
lose from the exa
t result:

P̂ = 7.07 × 10−3

Distan
e estimation The distan
es are estimated with the formulas given in 2.3.2. They are

plotted in fun
tion of the threshold in Figures 2.25, 2.26 and 2.27. A di�erent 
olor is used for every

variable: Q is plotted in bla
k, Ks in blue, Zv in green and Zm in red.
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Figure 2.25: Flood test 
ase, Kolmogorov distan
e
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Figure 2.26: Flood test 
ase, Cramer-Von Mises distan
e
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Figure 2.27: Flood test 
ase, Anderson-Darling distan
e

On this test 
ase, the 3 distan
es give equivalent results. The behaviour of variable Q is the same

with the 3 distan
es: the distan
e between the original 
.d.f. and the empiri
al one rises from the
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Synthesis

beginning until the threshold rea
hes 2. Then the distan
e diminishes slowly. The behaviour is the

same for variable Zv although with mu
h less amplitude. The distan
e for variable Ks growths with

the subset. For variable Zm, the distan
e stagnates around the minimal value. The �nal ranking is

Ks, Q, Zv, Zm for the 3 distan
es, whi
h is the one provided by the importan
e fa
tors (see Table

3.16).

2.3.4 Con
lusion

� The proposed SA te
hnique allows an use of the subset simulation methods. In parti
ular, we

used adaptive levels algorithms.

� The 
omputational time is negligible with respe
t to the 
omputational time needed to obtain

the failure sample.

� The three proposed distan
es bring 
omplementary informations on the failure sample.

� Kolmogorov distan
e is an L∞ one. It expresses the maximal gap between the empiri
al


.d.f. of the failure sample and the original distribution. As far as we have noti
ed on

the examples, it seems the more dis
riminant distan
e (see Figure 2.16 for instan
e).

� Cramer-Von Mises distan
e is an L2 one. The indi
es produ
ed using this distan
e answer

the question "what is the input whi
h distribution varies most in 
entral tenden
y when

restri
ted to the failure domain?". The use of su
h a distan
e is then re
ommended if the

aim of the SA is to �x the non-in�uential input variables to their 
entral value.

� Anderson-Darling distan
e grants more weight to the extreme values. The indi
es pro-

du
ed using this distan
e answer the question "what is the input whi
h distribution varies

most in the extremes when restri
ted to the failure domain?". The use of su
h a distan
e

is re
ommended when the aim of the SA is to determine the relative in�uen
e of the

boundaries or extremes of input distributions.

� So far, this SA method is re
ommended to get a similar information as the one provided by the

Sobol' indi
es on the failure indi
ator (that is to say the dete
tion of variables less in�uential

than others).

� However, this method provides an interesting additional information: it shows how the thresh-

old impa
ts ea
h variable. This is interesting in the sense that, in some real 
ases, the threshold

might not be �xed by the physi
s but by the regulation. A threshold given for a safety study

might not be the same for another study. This method has shown (on the Ishigami test 
ase)

that the ranking might be di�erent for several threshold (
rossing of the 
urves between X2

and X3 for instan
e).

2.4 Synthesis

This 
hapter has presented two SA methods provide a variable ranking (obje
tive 1, REM1, see

Se
tion 1.7). A �rst part was devoted to 
lassi�
ation methods for SA, with a spe
ial attention paid

to random forests. A se
ond part was devoted to measuring the departure between the original and

the empiri
al 
.d.f. at several steps of a subset simulation method.

Table 2.10 is a short synthesis on the SA methods presented throughout this 
hapter.
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Indi
e Sensitivity type Evaluation method Pros/Cons

Gini indi
es Global � Random forests on a + By-produ
t of the MC method

MC sample − Can a�e
t a non-null importan
e

to a non-in�uential variable

MDA indi
es Global � Random forests on a + By-produ
t of the MC method

MC sample

Indi
es using Global � Subset +By-produ
t of a subset

the 
df departure simulation te
hnique simulation te
hnique

δSS
i (Ak) −Information is negle
ted

when working on the marginals.

Table 2.10: Synthesis on the presented SA methods

However this 
hapter provides some avenues for future resear
h:

� An adapted re�e
tion must be 
ondu
ted on the pertinen
e of the random forests' sensitivity

measures when using importan
e sampling.

� Still in the 
ontext of random forests, the MDA indi
es when using subset simulation must be

implemented.

� The idea that 
onsist in getting a model 
olle
tion and aggregating their sensitivity measures

to insure stability seems promising and is to be explored.

� When dealing with the se
ond method proposed, a work in
luding the 
opula theory might be


ondu
ted. In parti
ular, the aim of this work 
ould be to quantify the total departure of the

parti
le 
loud, and to assess whi
h variable or intera
tion of variables 
ontribute most to the

failure event.
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Chapter 3

Density Modi�
ation Based Reliability

Sensitivity Indi
es

3.1 Introdu
tion and overview

In most studies, sensitivity indi
es for failure probabilities are de�ned in strong 
orresponden
e with

a given method of estimation (e.g. Lemaire [61℄, Munoz Zuniga et al. [73℄). Their interpretation

is 
onsequently limited. In this 
hapter, it is proposed to de�ne new generi
 sensitivity reliability

indi
es. Our sensitivity index is based upon input density modi�
ation, and is adapted to failure

probabilities. A methodology to estimate su
h indi
es is derived.

The proposed indi
es re�e
t the impa
t of the input density modi�
ation on the failure prob-

ability Pf . The indi
es are independent of the perturbation in the sense that the pra
titioner 
an

set the perturbation adapted to his/her problem. Di�erent modi�
ations/perturbations will answer

di�erent problems.

For simpli
ity reasons, a 
lassi
al Monte Carlo framework is 
onsidered in the following, although

the estimation pro
ess will be extended to the use of subset and importan
e sampling methods. The

sensitivity index 
an be 
omputed using the sole set of simulations that has already been used to

estimate the failure probability Pf , thus limiting the number of 
alls to the numeri
al model, as

spe
i�ed in the 
onstraints of the CWNR 
ase (page 24)

The outline of this 
hapter is the following: �rst, the indi
es and their theoreti
al properties are

presented in Se
tion 3.2, altogether with the estimation methodology. Se
ond, Se
tion 3.3 deals with

several perturbation methodologies. These perturbations 
an be 
lassi�ed into two main families:

Kullba
k-Leibler minimization methods and parameter perturbations methods. The behaviour of

the indi
es is examined in Se
tion 3.4 through numeri
al simulations in various 
omplexity settings

(see Appendix B). Comparisons with two referen
e sensitivity analysis methods (FORM's impor-

tan
e fa
tors and Sobol' indi
es, see Se
tion 1.3) highlight the relevan
e of the new indi
es in most

situations. In Se
tion 3.5, it is proposed to improve the DMBRSI estimation with importan
e sam-

pling and with subset simulation. The main advantages and remaining issues are �nally dis
ussed

in the last se
tion of the 
hapter, that introdu
es avenues for future resear
h.

This 
hapter is the extended version of the paper [63℄.
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3. Density Modifi
ation Based Reliability Sensitivity Indi
es

3.2 The indi
es: de�nition, properties and estimation

3.2.1 De�nition

Given a unidimensional input variable Xi with pdf fi, let us 
all Xiδ ∼ fiδ the 
orresponding

perturbed random input. This perturbed input takes the pla
e of the real random input Xi, in

a sense of modelling error : what if the 
orre
t input were Xiδ instead of Xi? More about this

repla
ement is proposed thereafter, see Se
tion 3.3.1.1. Re
all that we 
onsider that (X1, . . . ,Xd)
are mutually independent.

The perturbed failure probability be
omes:

Piδ =

ˆ

1{G(x)<0}
fiδ(xi)

fi(xi)
f(x)dx (3.1)

where xi is the ith 
omponent of the ve
tor x. Independently of the me
hanism 
hosen for the

perturbation (see next se
tion for proposals), a good sensitivity index Siδ should have intuitive

features that make it appealing to reliability engineers and de
ision-makers. We argue that the

following de�nition 
an ful�ll these requirements.

De�nition 3.2.1 De�ne the Density Modi�
ation Based Reliability Sensitivity Indi
es (DMBRSI)

as the quantity Siδ:

Siδ =

[
Piδ

Pf
− 1

]
1{Piδ≥Pf} +

[
1− Pf

Piδ

]
1{Piδ<Pf} =

Piδ − Pf

Pf · 1{Piδ≥Pf} + Piδ · 1{Piδ<Pf}
.

3.2.2 Properties

� Firstly, Siδ = 0 if Piδ = Pf , as expe
ted if Xi is a non-in�uential variable or if δ expresses a

negligible perturbation.

� Se
ondly, the sign of Siδ indi
ates how the perturbation impa
ts the failure probability qualita-

tively. It highlights the situations when Piδ > Pf i.e. if the remaining (epistemi
) un
ertainty

on the modelling Xi ∼ fi 
an in
rease the failure risk. In this 
ase, the un
ertainty on the


on
erned variable should be more a

urately analysed. Conversely, if Piδ < Pf , Pf 
an be

interpreted as a 
onservative assessment of the failure probability, with respe
t to variations

of Xi. In su
h a 
ase, deeper modelling studies on Xi appear less essential.

� Thirdly, given its sign, the absolute value of Siδ has simple interpretation and provides a level

of the 
onservatism or non-
onservatism indu
ed by the perturbation. A value of α > 0 for

the index means that Piδ = (1 + α)Pf . If Siδ = −α < 0 then Piδ = (1/(1 + |α|))Pf .

3.2.3 Estimation

The postulated ability of Siδ to enlighten the sensitivity of P to input perturbations must be tested

in 
on
rete 
ases (see Se
tion 3.4), when an estimator P̂N of Pf 
an be 
omputed using an already

available design of N numeri
al experiments. In the following, N is assumed to be large enough su
h

that statisti
al estimation stands within the framework of asymptoti
 theory. Besides, a standard

Monte Carlo design of experiments is assumed for simpli
ity (see Se
tion 1.2.1). This allows to write:

P̂N =
1

N

N∑

n=1

1{G(xn)<0}
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where the x1, · · · ,xN
are independent realisations of X. The strong Law of Large Numbers (LLN)

and the Central Limit Theorem (CLT) ensure that for almost all realisations P̂N −−−−→
N→∞

Pf and

√
N

Pf (1− Pf )
(P̂N − Pf )

L−−−−→
N→∞

N (0, 1). (3.2)

The Monte Carlo framework allows Piδ to be 
onsistently estimated without new 
alls to G, through
a "reverse" importan
e sampling me
hanism:

P̂iδN =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )
. (3.3)

This property holds in the more general 
ase when P is originally estimated by importan
e sampling

rather than simple Monte Carlo, whi
h is more appealing when G is time-
onsuming, Be
kman and

M
Key, Hesterberg [8, 45℄. This generalization is dis
ussed further in the text (Se
tion 3.5). The

following lemma ensures the asymptoti
 behaviour of su
h an estimator.

Lemma 3.2.1 Assume the usual 
onditions

(i) Supp(fiδ) ⊆ Supp(fi),

(ii)

ˆ

Supp(fi)

f2iδ(x)

fi(x)
dx <∞,

then P̂iδN −−−−→
N→∞

Piδ and

√
Nσ−1

iδN

(
P̂iδN − Piδ

) L−−−−→
N→∞

N (0, 1). The exa
t expression of σ−1
iδN is

given in Appendix D.1, equation (D.1). It 
an be 
onsistently estimated by

σ̂2iδN =
1

N

N∑

n=1

1{G(xn)<0}

(
fiδ(x

n
i )

fi(xni )

)2

− P̂ 2
iδN .

The proof of this Lemma is given in Appendix D.1.

We stress that Equation 3.3 is valid as long as the assumptions of Lemma 3.2.1 are respe
ted.

This means that whatever the perturbation 
hosen, the estimation of P̂iδN does not require new

fun
tion 
alls.

The asymptoti
 properties of any estimator of Siδ will depend on the 
orrelation between P̂N

and P̂iδN . The next proposition summarizes the features of the joint asymptoti
 distribution of both

estimators.

Proposition 3.2.1 Under assumptions (i) and (ii) of Lemma 3.2.1,

√
N

[(
P̂N

P̂iδN

)
−
(
Pf

Piδ

)]
L−−−−→

N→∞
N2 (0,Σiδ)

where Σiδ is given in Appendix D.1, Equation (D.2) and 
an be 
onsistently estimated by

Σ̂iδ =

(
P̂N (1− P̂N ) P̂iδN (1− P̂N )

P̂iδN (1− P̂N ) σ̂2iδN

)
.

The proof of this Proposition is given in Appendix D.1.
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Given (P̂N , P̂iδN ), the plugging estimator for Siδ is:

Ŝ
iδN =

[
P̂iδN

P̂N

− 1

]
1{P̂iδN≥P̂N} +

[
1− P̂N

P̂iδN

]
1{P̂iδN<P̂N}. (3.4)

In 
orollary of Proposition 3.2.1, applying the 
ontinuous-mapping theorem to the fun
tion s(x, y) =[ y
x − 1

]
1{y≥x}+

[
1− x

y

]
1{y<x}, ŜiδN 
onverges almost surely to Siδ. The following CLT results from

Theorem 3.1 in Van der Vaart [98℄.

Proposition 3.2.2 Assume that assumptions (i) and (ii) of Lemma 3.2.1 hold and further that

P 6= Piδ, we have

√
N
[
Ŝ

iδN − S
iδ

] L−−−−→
N→∞

N
(
0, dTs Σds

)
(3.5)

with ds =

(
∂s

∂x
(Pf , Piδ),

∂s

∂y
(Pf , Piδ)

)T

for x 6= y, and

∂s

∂x
(x, y) = −y1{y≥x}/x

2 − 1

y
1{y<x},

∂s

∂y
(x, y) =

1

x
1{y≥x} + x1{y<x}/y

2.

This holds when Pf = Piδ. Indeed, one has for x∗ 6= 0 :

lim
y ≥ x

(

x

y

)

→

(

x
∗

y
∗

)

∇s(x, y) = lim
y < x

(

x

y

)

→

(

x
∗

y
∗

)

∇s(x, y) =
(
− 1

x∗
,
1

x∗

)T

.

3.2.4 Framework

Figure 3.1 summarises the use of DMBRSI.
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Get a MC sample

x1, · · · ,xN ∼ f

De�ne a spe
i�


perturbation

(see Se
tion 3.3)

i = 1..d

Set perturbation

parameter δ within a

given variation range

Get an expression of fiδ

Estimate the

quantities:

P̂iδN (see Eq. (3.3))

ŜiδN (see Eq. (3.4))

Σ̂iδ (see Prop. 3.2.1)

Plot ŜiδN in fun
tion of δ
Plot 
on�den
e intervals

around ŜiδN from dTs Σds

While in the variation

range, 
hange δ

If i < d, i = i+ 1

End

Figure 3.1: General DMBRSI framework
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The notion of perturbation is dis
ussed in the next se
tion. Whi
h perturbation to 
hoose

a

ording to the obje
tive is also dis
ussed as well as re
ommendations on the variation range of δ.

3.3 Methodologies of input perturbation

This se
tion proposes several perturbation methodologies. However the DMBRSI and its estimation

te
hniques remain valid for any perturbation, as long as the support 
onstraints (Lemma 3.2.1) are

respe
ted. Here, two main families of method are presented. The �rst one determines the perturbed

density minimizing the Kullba
k-Leibler divergen
e under some 
onstraints given by the pra
titioner.

Several 
onstraints are proposed, ea
h one dealing with a di�erent SA obje
tive. The se
ond method

is to be used when the pra
titioner wants to test the sensitivity of Pf to the parameters of the

distributions. Both subse
tions will be introdu
ed by toy-examples.

This se
tion illustrates the DMBRSI's 
apa
ity to deal with several SA obje
tives. The pra
-

titioner is invited to propose new perturbation methodologies that would answer his questions.

Re
ommendations of perturbation regarding the obje
tives are itemized at the end of the se
tion.

3.3.1 Kullba
k-Leibler minimization

The DMBRSI requires to de�ne a perturbation for ea
h input. In general, and espe
ially in prelim-

inary reliability studies, there is no prior rule allowing to eli
it a spe
ialized perturbation for ea
h

input variable. Thus a simple perturbation methodology is exposed -denoted KLM for Kullba
k-

Leibler minimization- allowing the pra
titioner to answer the questions itemized in Se
tion 1.7 of

the present thesis.

3.3.1.1 First example

Let us assume we have an input Xi distributed a

ording to fi. This random input models for

instan
e a physi
al un
ertain quantity. The distribution fi is known, altogether with its parameters.

This modelling was done by physi
 expert, engineers, pra
titioners, statisti
al analyst from �eld

data ... Moments of Xi are also known given they exist.

We would like to fairly perturb this input to represent "the la
k of 
ertitude" on some quantity.

This quantity might be, as a simple example, the �rst moment. Let us assume the input Xi is

distributed a

ording to a Gaussian, N (0, 1). What if the expe
tation of Xi was badly modelled?

What if the data used to 
alibrate fi were wrong?
We will thus suppose the existen
e of another random variable Xiδ (distributed a

ording to fiδ),


lose from Xi in some sense, and we will pro
ess it through the model, as if input Xi was repla
ed

by the perturbed input Xiδ. δ represents here the perturbation, its amplitude for instan
e.

Thus the example is an expe
tation perturbation. What if the mean of the perturbed input were

2? New data 
an lead to su
h a situation. So we want the new input to have:

E[Xiδ] = 2, (3.6)

obviously

ˆ

fiδ(x)dx = 1 (3.7)

and Xiδ must be 
lose in some sense to Xi. Noti
e that Equation (3.6) rewrites

ˆ

xfiδ(x)dx = 2. (3.8)
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Figure 3.2: The original density of mean 0 (full line) and several 
andidates densities of mean 2

Several 
andidates for fiδ exist. In Figure 3.2 are plotted some 
hoi
es, altogether with the

original density. Some 
andidates are "
loser" to fi than others in some sense not yet de�ned.

Let us now fo
us on the needs. We would like to take fiδ as the density, among all the densities

satisfying the 
onstraints (in our example, 
onstraint (3.6)), that is the minimum argument of a

departure D between densities.

fiδ = argmin

f
mod

|
onstraints holds

D(f
mod

, fi) (3.9)

Distan
e quantifying the departure between two densities are numerous (Cha [24℄). Information-

theoreti
al arguments (Cover and Thomas [25℄) led to 
hoose the Kullba
k-Leibler divergen
e (KLD)

between fiδ and fi as a measure of the dis
repan
y to minimize under 
onstraints (de�nition of KLD

is reminded in 3.10). This 
omes at "adding" as few information as possible on fiδ other than the


onstraints.

By simple 
al
ulus, it may be shown that the density minimizing the KLD from fi and satisfying


onstraints 3.6 is a Gaussian, of mean 2 and of the same varian
e as fi. The 
omputation of the

indi
es expressed in Se
tion Se
tion 3.2 
an now be done as fiδ is provided.

Next subse
tion formalises this example.

3.3.1.2 Kullba
k-Leibler minimization

Here, a perturbed input density fiδ is de�ned as the 
losest distribution to the original fi in the

entropi
 sense and under some 
onstraints of perturbation.
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Later (see Se
tions 3.3.1.3, 3.3.1.4), spe
i�
 perturbations 
orresponding to a mean shift, a

varian
e shift and a quantile shift will be presented.

Re
all that between two pdf p and q we have:

KL(p, q) =

ˆ +∞

−∞
p(y) log

p(y)

q(y)
dy if log

p(y)

q(y)
∈ L1(p(y)dy). (3.10)

Let i = 1, · · · , d, the 
onstraints are expressed as follows in fun
tion of the modi�ed density f
mod

:

ˆ

gk(xi)fmod

(xi)dxi = δk,i (k = 1 · · ·K) . (3.11)

Here, for k = 1, · · · ,K, gk are given fun
tions and δk,i are given real. These quantities will lead

to a perturbation of the original density. The modi�ed density fiδ 
onsidered in our work is:

fiδ = argmin

f
mod

|(3.11) holds

KL(f
mod

, fi) (3.12)

and the result takes an expli
it form (Csiszar, [26℄) given in the following proposition.

Proposition 3.3.1 Let us de�ne, for λ = (λ1, · · · , λK)T ∈ RK
,

ψi(λ) = log

ˆ

fi(x) exp

[
K∑

k=1

λkgk(x)

]
dx , (3.13)

where the last integral 
an be �nite or in�nite (in this last 
ase ψi(λ) = +∞). Further, set Dom ψi =
{λ ∈ RK |ψi(λ) < +∞}. Assume that there exists at least one pdf f

mod

satisfying (3.11) and that

Dom ψi is an open set. Then, there exists a unique λ
∗
su
h that the solution of the minimisation

problem (3.12) is

fiδ(xi) = fi(xi) exp

[
K∑

k=1

λ∗kgk(xi)− ψi(λ
∗)

]
. (3.14)

The theoreti
al te
hnique to 
ompute λ is provided in Appendix D.2.

3.3.1.3 Moments shifting

Mean shifting The �rst moment is often used to parametrize a distribution. Thus the �rst

perturbation presented here is a mean shift, that is expressed with a single 
onstraint:

ˆ

xifmod

(xi)dxi = δi . (3.15)

In terms of SA, this perturbation should be used when the user wants to understand the sensi-

tivity of the inputs to a mean shift - that is to say "what if the mean of input Xi were δi instead
of E [Xi]?". Noti
e that for most distributions, this amounts to testing the sensitivity to the 
entral

tenden
y.

Proposition 3.3.2 Considering 
onstraint (3.15), under the assumptions of Proposition 3.3.1, the

expression of the optimal perturbed density is

fiδi(xi) = exp(λ∗xi − ψi(λ
∗))fi(xi) (3.16)

where λ∗ is su
h that Equation (3.15) holds.
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Noti
e that Equation (3.13) be
omes

ψi(λ) = log

ˆ

fi(xi) exp(λxi)dxi = log (MXi
(λ)) (3.17)

where MXi
(u) is the moment generating fun
tion (m.g.f.) of the i−th input. With this notation, λ∗

is su
h that:

ˆ

xi exp (λ
∗xi − log (MXi

(λ∗))) fi(xi)dxi = δi ,

whi
h leads to:

ˆ

xi exp (λ
∗xi) fi(xi)dx = δiMXi

(λ∗) .

This 
an be simpli�ed to:

M ′
Xi
(λ∗)

MXi
(λ∗)

= δi . (3.18)

This equation is easy to solve when the expression of the mgf of the input Xi and of its derivative

is known.

Varian
e shifting In some 
ases, the expe
tation of an input may not be the main sour
e of

un
ertainty. One might be interested in perturbing its se
ond moment. This 
ase may be treated


onsidering a 
ouple of 
onstraints. The perturbation presented is a varian
e shift, therefore the set

of 
onstraints is: {
´

xifmod

(xi)dxi = E [Xi] ,
´

x2i fmod

(xi)dxi = V
per,i + E [Xi]

2 .
(3.19)

The perturbed distribution has the same expe
tation E [Xi] as the original one and a perturbed

varian
e V
per,i = Var [Xi] ± δi. In terms of SA, for most distributions, this amounts to testing the

sensitivity to the tails of the distribution, keeping the 
entral tenden
y untou
hed.

Proposition 3.3.3 Under the assumptions of Proposition 3.3.1, for 
onstraint (3.19), the expres-

sion of the optimal perturbed density is:

fiδi(xi) = exp(λ∗1x+ λ∗2x
2 − ψi(λ

∗))fi(xi)

where λ∗1 and λ∗2 are so that equation (3.19) holds.

Perturbation of Natural Exponential Family In general, when perturbing the input densi-

ties with the KLM method, the shape is not 
onserved. However in the spe
i�
 
ase of Natural

Exponential Family (NEF), the following proposition 
an be derived.

Proposition 3.3.4 Assume that the original random variable Xi belongs to the NEF, i.e. its pdf


an be written as:

fi,θ(xi) = b(xi) exp [xiθ − η(θ)]

where θ is a parameter from a parametri
 spa
e Θ, b(.) is a fun
tion that depends only of xi and

η(θ) = log

ˆ

b(x) exp [xiθ]dxi

is the 
umulant distribution fun
tion. Considering the assumptions of Proposition 3.3.1, the optimal

pdfs proposed respe
tively in Proposition 3.3.2 and Proposition 3.3.3 are also distributed a

ording

to a NEF.

The proof 
omes from Theorem 3.1 in Csiszar [26℄. The details of 
omputation are given for a

mean shift and a varian
e shift in Appendix D.3.
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Some shapes As an example, the two kinds of perturbations previously presented are provided

for two families of inputs (Gaussian and Uniform) in Figure 3.3. The perturbations are respe
tively

a mean and varian
e in
reasing. It is noti
eable (as proven in Proposition 3.3.4) that the shape is


onserved for the Gaussian distribution when shifting the mean or the varian
e. On the other hand,

when in
reasing its mean, the Uniform distribution is pa
ked down on the right-hand boundary of

its support. When in
reasing its varian
e, the density is pa
ked down on both boundaries of its

support.

Figure 3.3: Mean shifting (left) and varian
e shifting (right) for Gaussian (upper) and Uniform

(lower) distributions. The original distribution is plotted in solid line, the perturbed one is plotted

in dashed line.

Some limitations, notion of equivalent perturbation In this paragraph, we fo
us on a mean

shift but the same problems arise for a varian
e shift. What if two inputs do not have the same

mean and we want to assess the impa
t of their mean shift on Pf? How to 
ondu
t an equivalent

perturbation on both inputs? Let us imagine an example in whi
h an input has mean 0 and another

has mean 100. If a perturbation is 
ondu
ted on ea
h variable separately, the interpretation is


ompli
ated as the ranges of variation will be separated. It is thus 
ompli
ated or impossible to

assess the impa
t of an equivalent perturbation. Conversely, it is impossible in this 
ase to make

a "relative mean shift" as one of the input has mean 0. The following solution is proposed for the

mean perturbation: shift the mean relatively to the standard deviation, hen
e in
luding the spread

of the various inputs in their respe
tive perturbation. So for any input, the original distribution

116



Methodologies of input perturbation

is perturbed so that its mean is the original's one plus δ times its standard deviation and the

perturbation is 
ondu
ted on δ (for instan
e ranging from −1 to 1). This solution is applied in

the �ood 
ase (Se
tion 3.4.7) where the inputs are not distributed a

ording to the same density.

However this solution might not be e�e
tive in every 
ase, for instan
e when inputs do not have

de�ned moments. This 
onsideration led us to another kind of perturbation that we though is

more equivalent: quantile shifting (see Se
tion 3.3.1.4). Moreover in the following of this thesis, the

perturbation will be 
ondu
ted on the parameters of the input densities (see Se
tion 3.3.2) but this

falls outside of the KLM framework.

3.3.1.4 Quantile shifting

Based on the pra
titioner's experien
e, it has been noti
ed that the values of the input leading to the

failure event seldom lies around the 
entral tenden
y, but more in the extreme quantiles. From this

point, another way to perturb the densities is proposed, keeping the KLM framework. Compared to

the �rst two moment perturbations previously presented, we argue that this one seems more suitable

to deal with inputs that are not identi
ally distributed (see previous paragraph for a dis
ussion on

equivalent perturbations).

First example Let us �rst re
all the de�nition of a quantile.

De�nition 3.3.1 For a given random variable X of probability density fun
tion f and of 
umulative

distribution fun
tion F , the α-quantile is the value qα so that:

P (X < qα) = F (qα) =

ˆ qα

−∞
f(x)dx = α (3.20)

Then 
onsider a random variable, modelling for instan
e an unknown physi
al phenomena value,

de�ned as a standard Gaussian. Its 5% quantile or 5th per
entile is q5% = −1.64.

As far as we noti
ed, in most 
ases, the values of the input leading to the failure event 
omes

from the tails of the input distributions. What if these tails were badly modelled? Therefore a

perturbation based on the quantiles is proposed.

In this �rst toy example, the aim is to in
rease the weight of the left tail. That is to say that

the value q5% is wished to be
ome for the modi�ed density, for instan
e the 7% quantile. This 
an

be written:

ˆ

1]−∞;q5%](x)fmod(x)dx = 7% (3.21)

In Figure 3.4 are plotted the regular (bla
k) and the perturbed (blue) densities. The shaded

areas worth respe
tively

´ q0.05
−∞ f(x)dx = 0.05 in grey and

´ q0.05
−∞ fδ(x)dx = 0.07 in blue. One 
an

remark that there is no longer a 
onservation of the shape with su
h a perturbation, sin
e fδ is not
Gaussian. Additionally, the density is no longer 
ontinuous.

In a similar way, one 
ould de
ide to perturb the densities in su
h a way that the tail is less

weighted, meaning that the extreme values be
ome less frequent. For instan
e, it 
an be written:

ˆ

1]−∞;q5%](x)fmod(x)dx = 3% (3.22)

meaning that the 5% quantile be
omes the 3% quantile. The regular and the perturbed densities

are pi
tured in Figure 3.4. A dis
ontinuity at q5% is present.
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Figure 3.4: Standard Gaussian and perturbed density: quantile in
rease (left) and quantile de
rease

(right)

Methodology of input perturbation Let us denote by qr the referen
e quantile, e.g. the value
su
h that:

ˆ qr

−∞
f(x)dx = r, 0 < r < 1 (3.23)

The 
onstraint is:

ˆ qr

−∞
f
mod

(x)dx = δ, (3.24)

meaning that f
mod

is the density su
h that its δ-quantile is qr. Equivalently, the 
onstraint 
an be

written in the general fashion de�ned in Se
tion 3.3.1.2, Equation 3.11:

ˆ

1]−∞;qr](x)fmod(x)dx = δ (3.25)

Proposition 3.3.5 Under the assumptions of Proposition 3.3.1, and under the 
onstraint 3.25, the

expression of the 
orresponding perturbed density is:

fδ(x) = f(x) exp
[
λ∗1]−∞;qr](x)− ψ(λ∗)

]
(3.26)

with

ψ(λ) = log

(
ˆ

f(x) exp
[
λ∗1]−∞;qr](x)

]
dx

)
(3.27)

and λ∗ is a real number su
h that (3.25) holds.

Some shapes In Figure 3.5 are displayed the original (solid bla
k) and perturbed (dashed blue)

pdf for the following families: Uniform, Triangle and Trun
ated Gumbel. The parameters used for

these variables are the ones from the �ood 
ase (Appendix B.3.). In ea
h 
ase, the perturbation is:

ˆ q0.05

−∞
f
mod

(x)dx = 0.07, (3.28)

that is to say in
reasing the weight of the left-hand tail from 5% to 7%.
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Figure 3.5: Uniform, Triangle and Trun
ated Gumbel pdf: quantile in
rease

3.3.2 Parameters perturbation

3.3.2.1 First example

Problem Assume that we have an input distribution, 
hara
terized by its parameters whi
h are

data-driven. The question of interest is "how does a parametrisation error a�e
ts the failure prob-

ability ?". To do so, the use of the DMBRSI is proposed - although the moments perturbations

might not answer the question. Spe
i�
ally, a perturbation based on the parameters is proposed.

The indi
es are then plotted in fun
tion of the departure in a given divergen
e (Hellinger, De�nition

3.3.3). Let us �rst illustrate the idea on a �rst example.

The input distributions and the model For the sake of 
larity the Weibull distribution ex-

pression (Rinne [83℄) is reminded here:

De�nition 3.3.2 A random variable X has a three-parameters Weibull distribution if its pdf, de�ned

on R+
is:

f(x|a, b, c) = c

b

(
x− a

b

)c−1

exp

[
−
(
x− a

b

)c]

where parameter a, de�ned on R in the same unit as x, is 
alled the origin. It is a lo
ation parameter.

The se
ond parameter b is de�ned on R+
in the same unit as x and is 
alled the s
ale parameter.

The third parameter c bears no dimension, is de�ned on R+
and is 
alled the shape parameter.
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The expe
tation of su
h a random variable writes:

E [Wa,b,c] = a+ bΓ

(
1 +

1

c

)
,

and the varian
e is:

Var [Wa,b,c] = b2

(
Γ

(
1 +

2

c

)
− Γ

(
1 +

1

c

)2
)
,

where Γ is the Gamma fun
tion. In the following it will be stated that a = 0 and this lo
ation

parameter will be ommited.

For this �rst example, an input is distributed a

ording to a Weibull distribution and another

input is distributed a

ording to a standard Gaussian. Assume that the failure model is:

G(X) = G(X1,X2) =
1

2
X1 +

1

10
X2 + 1.5

where X1 ∼ N (µ, σ) and X2 ∼W (b, c) with µ = 0, σ = 1, b = 1.5 and c = π. The failure probability
is roughly P̂ = 4.8× 10−3

.

Use of DMBRSI for sensitivity to the parameters Let us assume that the pra
titioner is

interested in testing the sensitivity of its model to the parameters of the distributions. When dealing

with the Gaussian input, a perturbation of the 2 �rst 
entred moments is equivalent to a perturbation

of the parameters (see Se
tion 3.3.1.3). On the other hand, perturbing the moments of a Weibull

distribution is far from perturbing its parameters, as proven by the expressions of su
h moments.

The interpretation of the indi
es (see the graphs in Se
tion 3.4) might be hard for the pra
titioner.

Therefore a new representation of the indi
es is proposed, in whi
h the parameters of the input

distributions are perturbed. For instan
e a parameter perturbation is presented in Figure 3.6, where

3 Weibull pdfs are plotted: the original pdf with parameters (1.5, π) and two modi�ed pdf where

ea
h parameter varies.

Figure 3.6: Original and perturbed Weibulls pdfs
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This graph shows that ea
h parameter variation produ
es di�erent e�e
ts on several parts of the

support. Pre
isely, in
reasing the s
ale parameter (dotted red 
urve) de
reases the weight of the

right-hand tail whereas in
reasing the shape parameter (dashed blue 
urve) in
reases the weight of

the tail. The e�e
t is reversed on the weight of the mode.

Given the input distributions, it 
an be inferred that in
reasing the mean µ will diminish the

failure probability, in
reasing the varian
e σ2 will in
rease the failure probability. It 
an also be

stated that in
reasing the s
ale parameter b will 
on
entrate the samples in the mode, thus in
reasing

the failure probability whereas in
reasing the shape parameter c will in
rease the weight of the tail,
thus diminish the failure probability. We are interested in the following: assuming that the true

value of the parameters might not be the ones given, whi
h of those 4 parameters 
auses the most

un
ertainty on the failure probability?

The use the DMBRSI is proposed, and it is suggested to plot them in fun
tion of the departure

in density 
aused by the perturbation of the parameter.

Measure of the departure 
aused by parameters perturbation Distan
e quantifying the

departure between two densities are numerous (Cha [24℄), we propose the use the square of the

Hellinger distan
e, whi
h is de�ned as follows.

De�nition 3.3.3 The Hellinger Distan
e H(P,Q) between two probability measures is the L2-distan
e

between the square roots of the 
orresponding pdfs (Pollard [80℄).

H2(P,Q) =

ˆ (√
p(x)−

√
q(x)

)2
dx = 2− 2

ˆ √
p(x)q(x) dx. (3.29)

The Hellinger distan
e satis�es the inequality:

0 ≤ H(P,Q) ≤
√
2. (3.30)

The reasons for using the Hellinger distan
e over Kullba
k-Liebler divergen
e are:

� it is numeri
ally pra
ti
able to estimate (the integral might be estimated by Simpson's rule);

� it is bounded;

� it is a distan
e thus symmetri
al.

As the pra
titioner might not be familiar with the use of the Hellinger distan
e, tables eli
iting

the relationship between a parameter perturbation and the o

asioned departure will be provided.

For instan
e, when referring to Figure 3.6, the Hellinger distan
e between the original density and

the one obtained when in
reasing the s
ale parameter (dotted red 
urve) is 0.0072. Conversely, the
Hellinger distan
e between the original density and the one obtained when in
reasing the shape

parameter (dashed blue 
urve) is 0.0422.

Dealing with the example When dealing with the example, the parameters are perturbed and

the indi
es are plotted in fun
tion of the departure 
aused by the perturbation in Figure 3.7. We

must stress that these are a
tually two graphs 
on
atenated, in a sense that we plot the DMBSRI in

fun
tion of the (square of the) Hellinger distan
e - yet for ea
h parameters there are two perturbations

that 
orrespond to a given departure: the one 
orresponding to an in
rease, the other to a de
rease.

On Figure 3.7, the indi
es 
orresponding to an in
rease of the parameters appear on the right side

of the graph, and the indi
es 
orresponding to a de
rease of the parameters are plotted on the left
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side. Con�den
e intervals are available thanks to asymptoti
 formulae provided in Se
tion 3.2.3; yet

they are not plotted here sin
e it is an illustrative example.

Figure 3.7: DMBRSI with parameters perturbations

Altogether with the Figure, Table 3.1 is provided: it expresses the departure in terms of param-

eters variation. The aim of su
h a table is to help the pra
titioner with quantifying the departure in

terms of parameters perturbation. Note that Table 3.1 only fo
uses on parameters in
reasing (right-

hand part of Figure 3.7). In the numeri
al examples of Se
tion 3.4, both parameters in
reasing and

de
reasing will be dealt with.

X1 ∼ N (µ = 0, σ = 1) X2 ∼W (b = 1.5, c = π)
µ|σ = 1 σ|µ = 0 b|c = π c|b = 1.5

H2(Xi,Xiδ) = 0 0 1 1.5 π

H2(Xi,Xiδ) = 0.05 0.450 1.378 2.102 π + 1.104

H2(Xi,Xiδ) = 0.1 0.641 1.585 2.440 π + 1.691

H2(Xi,Xiδ) = 0.15 0.790 1.773 2.753 π + 2.213

H2(Xi,Xiδ) = 0.2 0.918 1.958 3.064 π + 2.715

Table 3.1: Hellinger distan
e in fun
tion of the parameter perturbation

The indi
es in Figure 3.7 show some 
entral symmetry. This graph states that a variation in

σ has the largest e�e
t on the failure probability. Then 
omes µ, then the s
ale parameter b and
�nally the shape parameter c.

Con
lusion, notion of equivalen
e This �rst example shows how the DMBRSI 
an be used to

assess the in�uen
e of ea
h input distributions' parameter on the failure probability.

We also argue that the perturbation is "equivalent" in the sense evoked in the last paragraph of

Se
tion 3.3.1.3. Indeed, when perturbing two parameters for instan
e expressed in di�erent units or

122



Methodologies of input perturbation

di�erent orders of magnitude, the Hellinger distan
e allows to quantify "equivalently" the amplitude

of the departure produ
ed by the parameter shift.

3.3.2.2 Methodology of input perturbation

In this subse
tion, we formalize what has been done in the previous �rst example.

Let us suppose that the i-th variable Xi of the input ve
tor is distributed a

ording to fi. The

i-th input has pi parameters: it is parametrized by the ve
tor Θi = (θi,1, .., θi,pi). The perturbation

will be on the j-th parameter, and will be of the following form:

θi,j,δ = θi,j + δi,j (3.31)

where δi,j is a given real su
h that Θiδ = (θi,1, .., θi,j+δi,j, ., θi,pi) is still a parametrization ve
tor

for the input fi (for instan
e a varian
e parameter 
annot be
ome negative). Ve
tor Θiδ parametrizes

the modi�ed pdf fiδ. It must be noti
ed as well that the support of the perturbed pdf fiδ must lie

within the support of fi (for estimation purposes, see 
onditions of Lemma 3.2.1).

The framework given in Figure 3.1 is modi�ed in Figure 3.8 to 
onsider the parameters pertur-

bations.
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Get a MC sample

x1, · · · ,xN ∼ f

i = 1, .., d

j = 1, .., pi

Set perturbation

parameter δ within a

given variation range

fiδ ∼ fi(θi,1, .., θi,j + δi,j, ., θi,pi)

Estimate the

quantities:

P̂iδN (see Eq. (3.3))

ŜiδN (see Eq. (3.4))

Σ̂iδ (see Prop. 3.2.1)

Compute H2(fi, fiδ)

Plot the point

(H2(fi, fiδ), ŜiδN )
-on the right hand

graph for δ > 0
-on the left hand

graph for δ < 0

Produ
e the table

H2(fi, fiδ) in fun
tion

of θi,j,δ|(θi,1, .., θi,pi)

While in the

variation range,


hange δ

If i < d, i = i+ 1

If j < pi, j = j + 1

End

Figure 3.8: Spe
i�
 DMBRSI framework for parameters perturbations
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3.3.3 Choi
e of the perturbation given the obje
tives

3.3.3.1 Types of perturbations and variation ranges

The types of perturbations presented in this se
tion are reminded and summarized here. Some

re
ommendations are given on the range of the perturbations.

� Mean shifting (Eq. 3.15): if the inputs are identi
ally distributed, then the perturbation is

straightforward (standard mean shift for all the variables). The range of the perturbation must

be 
hosen so that the 
on�den
e intervals of the indi
es are not too spread (and if possible

separated). If the inputs are not identi
ally distributed, the perturbation proposed in the last

paragraph of Se
tion 3.3.1.3 is the following: the original distribution is perturbed so that its

mean is the original's one plus δ times its standard deviation and the perturbation is 
ondu
ted

on δ. For the moment, a range proposed for δ is from −1 to 1.

� Varian
e shifting (Eq. 3.19): we argue that this perturbation is only to be used if the inputs

are identi
ally distributed. The new varian
es must be 
hosen so that the 
on�den
e intervals

of the indi
es are not too spread.

� Quantile shifting (Eq. 3.25): the following strategy is proposed. First, �x a referen
e quantile

(namely q
ref

), then perturb this quantile for all the inputs. For the beginning of the study, we

propose to perturb the 1st, 2nd and 3rd quartiles altogether with the 5th and 95th per
entiles.

Other quantiles might be perturbed in the following of the study if ne
essary.

� Parameters shifting (Eq. 3.31): this perturbation allows to deal with inputs that are not

identi
ally distributed. Here, the strategy is to perturb all the parameters of the input dis-

tributions. The range of the perturbation is driven by the square of the Hellinger distan
e

between the original and the perturbed distribution. A perturbation so that this distan
e is

H2 = .1 seems enough to us (given our numeri
al tests).

3.3.3.2 Relationship between obje
tives and perturbations

In this paragraph are reminded the di�erent obje
tives presented in Se
tion 1.7. We propose the

adapted perturbations for any given obje
tive.

� REM1 (absolute ranking when the inputs are set): in this 
ase we propose to perform the three

KLM perturbations (mean shift, varian
e shift and quantile shift). For ea
h perturbation, an

input ranking 
an be produ
ed.

� REM2 (quantify the sensitivity to the family or shape): in this 
ase, we propose to perform

only a quantile perturbation, as the quantiles allow to de�ne a distribution.

� REM3 (assess the sensitivity to the parameters): in this spe
i�
 
ase, we propose to use the

parameters perturbation. This meets perfe
tly the obje
tive.

� Obje
tive 1 (variable ranking, assess whi
h input "most needs better determination"). In this


ase, we propose the three KLM perturbations.

� Obje
tive 2 (model simpli�
ation). This 
ase is not treated in the manus
ript but we 
an

propose the following solution. A spe
i�
 perturbation 
an be 
reated, in whi
h the perturbed

input is a narrow distribution within the support of the original input (e.g. an input is set

to a referen
e value and this referen
e value is moved along the support). The impa
t on the

failure probability 
an be dedu
ed from the indi
es thus meeting the obje
tive.
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� Obje
tive 3 (model understanding). As the obje
tive is to determine whi
h parti
ular values

of some inputs leads to some behaviour of the output, we propose to perform the three KLM

perturbations. Ea
h perturbation provides supplementary knowledge on whi
h part of the

support of the input leads to the failure event.

� Obje
tive 4 (
alibration sensitivity). In this 
ase we propose to perform the 4 perturbations

type. The perturbations respe
tively allows to test the sensitivity to the moments, the tails

and the parameters of the inputs.

Table 3.2 summarises the main ideas developed in this subse
tion.

REM1 REM2 REM3 Obj. 1 Obj. 2 Obj. 3 Obj. 4

Mean shifting × × × ×
Varian
e shifting × × × ×
Quantile shifting × × × × ×

Parameters shifting × ×
Spe
i�
 ×

Table 3.2: Type of perturbation re
ommended given the obje
tive or the motivation

In addition with Table 3.2, we stress that the referen
e methods (FORM's Importan
e fa
tors

and Sobol' indi
es) only ful�ll REM1 and Obje
tive 1 (variable ranking).

3.4 Numeri
al experiments

3.4.1 Testing methodology

In this se
tion, the proposed indi
es are tested on the numeri
al 
ases de�ned in Appendix B. A


omparison with two referen
es method (FORM's Importan
e fa
tors and Sobol' indi
es) is provided.

Importan
e fa
tors and Sobol' indi
es are 
omputed using the methodologies given in Lemaire [61℄

and Saltelli [87℄, respe
tively. The R pa
kages mistral and sensitivity have been used. The Sobol'

indi
es are 
omputed using two initial samples of size 106, resulting into N = 106 × (d+2) fun
tion

alls (Saltelli et al. [88℄). The results of the Sobol' indi
es analysis were already provided in Se
tion

1.4.

3.4.2 Hyperplane 6410 test 
ase

This �rst test 
ase was de�ned in Appendix B.1. Remind that all variables are independent standard

Gaussian. Also re
all that variable X2 is most in�uential, then 
omes variable X3. X1 has a small

in�uen
e and X4 has no in�uen
e at all. Finally remind that the failure probability is Pf = 0.014.

3.4.2.1 Importan
e fa
tors

In this ideal hyperplane failure surfa
e 
ase, FORM provides an approximated value P̂FORM =
0.01398, whi
h is as expe
ted (Lemaire [61℄) 
lose to the exa
t value. 39 model 
alls have been

required. The importan
e fa
tors, given in Table 3.3, provide an a

urate variable ranking for the

failure fun
tion.
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Variable X1 X2 X3 X4

Importan
e fa
tor 0.018 0.679 0.302 0

Table 3.3: Importan
e fa
tors for hyperplane 6410 fun
tion

3.4.2.2 Sobol' indi
es

We reprodu
e here table 1.4 and the resulting 
on
lusions.

Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

Estimation 0.002 0.254 0.054 0 0.200 0.940 0.720 0

Table 3.4: Estimated Sobol' indi
es for the hyperplane 6410 
ase

The total indi
es assess that X2 is extremely in�uential, and that X3 is highly in�uential. X1

has a moderate in�uen
e and X4 has a null in�uen
e. This last point is interesting: it shows that

this SA method 
an dete
t the non-in�uential variables.

3.4.2.3 DMBRSI

The method presented throughout this 
hapter is applied on the �rst hyperplane fun
tion. As

explained in se
tion 3.3, several ways to perturb the input distributions exist. A mean shifting, a

varian
e shifting, a quantile shifting and a parameters perturbation will be performed. We follow

the methodology displayed in Figures 3.1 and 3.8. We stress that all the indi
es are estimated with

the same MC sample. The MC estimation gives P̂ = 0.01446 with 105 fun
tion 
alls.

Mean shifting For the mean shifting (see Eq. (3.15)), the domain variation for δ ranges from

−1 to 1 with 40 points, reminding that δ = 0 
annot be 
onsidered as a perturbation sin
e it is the

expe
tation of the original density. The results of the estimation of the indi
es Ŝiδ are plotted in

Figure 3.9, altogether with 95% symmetri
al 
on�den
e intervals (CI).

The indi
es Ŝiδ behave in a monotoni
 way given the importan
e of the perturbation. The

slope at the origin is dire
tly related to the value of ai. For in�uential variables (X2 and X3), the

in
reasing or the de
reasing is faster than linear, whereas the 
urve seems linear for the slightly

in�uential variable (X1). Modifying the mean with a positive amplitude slightly rises the failure

probability for X1, highly de
reases it for X2 and in
reases it for X3. The e�e
ts are reversed with

similar amplitude for negative δ. It 
an be seen that X4 has no impa
t on the failure probability

for any perturbation. Those results are 
onsistent with the expression of the failure fun
tion. One


an see that the CI asso
iated to all variables are fairly well separated, ex
ept for the small absolute

value of δ.

Varian
e shifting For the varian
e shifting (see Eq. (3.19)), the variation domain for V
per

ranges

from 1/20 to 3 with 28 points, where V
per

= 1 is not a perturbation. The estimated indi
es are

plotted in Figure 3.10. The 95% symmetri
al CI are plotted around the indi
es, using the presented

asymptoti
 formulas in Se
tion 3.2.

In
reasing the varian
e of inputs X2 and X3 in
reases the failure probability, whereas it de
reases

when de
reasing the varian
e. Modifying the varian
e of X1 and X4 have no e�e
t on the failure

probability. The in
reasing of the indi
es is linear for X2 and X3, and the de
reasing of the indi
es

is faster than linear, espe
ially for X2. Considering the CI, one 
an see that they are well separated
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Figure 3.9: Estimated indi
es Ŝiδ for the 6410 hyperplane fun
tion with a mean shifting

Figure 3.10: Estimated indi
es Ŝi,Vf
for hyperplane fun
tion with a varian
e shifting

for variables X2 and X3, assessing the relative importan
e of these variables. On the other hand,

the CI asso
iated to X1 and X4 are not separated and 
ontain 0. In�uen
e of X1 and X4 
annot

thus be separated - but is estimated as null for both variables.

Quantile shifting

We �rst perturb the 5th per
entile. The tail is perturbed in su
h ways that it weights between 1%
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and 10%. The results are displayed in Figure 3.11.

Figure 3.11: 5th per
entile perturbation on the hyperplane 6410 test 
ase

Con
erning the left-hand tail, this �gure shows the dominant role of variable X2. E�e
ts of

variables X1 and X3 are small whereas the indi
es asso
iated to X4 are null, assessing the non-

in�uen
e of the last variable - at least when perturbing the left-hand tail.

The �rst quartile or 25th per
entile is then perturbed. The weight of the tail under the 25th

per
entile (meaning the left-hand tail) of the input varies between 10% and 40%. The result of the

numeri
al experiments are displayed in Figure 3.12.

This plot shows that an in
rease of the 1st quartile leads to an in
rease of the failure probability

for variable X2 whereas it leads to a de
rease for variables X3 and X1 in order of in�uen
e. A

quantile perturbation on variable X4 has no e�e
t on the failure probability. On the other hand,

when de
reasing the weight of the 1st quartile, the failure probability in
reases for variable X3 and

X1, and de
reases for variable X2.

We then perturb the se
ond quartile or median. The density is perturbed so that the left-hand

tail weight varies between 25% and 75%. The results are displayed in Figure 3.13.

This last graph shows the relative importan
e of X3 and X2. X1 behaves as X3, only with a

smaller e�e
t. This is relevant given the expression of the model.

Let us now perturb the third quartile or 75th per
entile. The weight of the pdf under the 75th

per
entile of the standard Gaussian varies between 60% and 90% - whi
h is the same as perturbing

the weight of the right-hand tail between 10% and 40%. The result of the numeri
al experiments

are displayed in Figure 3.14.

This shows that the most in�uential variable when perturbing the 3rd quartile is variable X3, then


omes variable X2, then variable X1. Perturbing variable X4 has no e�e
t on the failure probability,

as expe
ted. We pro
eed as before and perturb a more extreme quantile, namely the 95th per
entile.

It varies between 90% and 99%. The results are displayed in Figure 3.15.

This shows the main in�uen
e of variable X3 when dealing with perturbations of the right-hand

tail.
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Figure 3.12: 1st

quartile perturbation on the hyperplane 6410 test 
ase

Figure 3.13: Median perturbation on the hyperplane 6410 test 
ase

As a 
on
lusion on this monotoni
 test 
ase, it 
an be say that the input values leading to the

failure event are mostly the extremes values of the left-hand tail for variable X2 and the extremes

values of the right-hand tail for variable X3.

Parameters perturbation The methodology presented in subse
tion 3.3.2 is tested here. There

are 8 parameters governing this model: the means and standard deviations of ea
h of 4 variables.

Based on the same 105 MC sample, Figure 3.16 
an be plotted.
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Figure 3.14: 3rd quartile perturbation on the hyperplane 6410 test 
ase

Figure 3.15: 95th per
entile perturbation on the hyperplane 6410 test 
ase

This �gure has to be interpreted altogether with table 3.5. Re
all that all the inputs follow

standard Gaussian.

Interpreting both Figure 3.16 and table 3.5 lead us to 
on
lude the following. The most in�uential

parameter with respe
t to the failure probability is the standard deviation of X2. In
reasing this

quantity so that the H2
distan
e between the original and the perturbed density is 0.05 triples

the failure probability. On the other side of the graph, diminishing the varian
e of X2 strongly

diminishes the failure probability with respe
t to the other parameters. Then, the other in�uential

parameter is the mean of X2. It is slightly less important than the standard deviation of X2 yet it
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Figure 3.16: Parameters perturbation on the hyperplane 6410 test 
ase. Dots are for means, triangle

for the standard deviations. Green 
orresponds to X1, bla
k to X2, red to X3 and blue to X4.

Xi ∼ N (µ = 0, σ = 1)
µ|σ = 1 σ|µ = 0

H2(Xi,Xiδ) = 0 0 1

H2(Xi,Xiδ) = 0.01 0.200/−0.200 1.152/0.868

H2(Xi,Xiδ) = 0.025 0.317/−0.317 1.252/0.798

H2(Xi,Xiδ) = 0.05 0.450/−0.450 1.378/0.725

H2(Xi,Xiδ) = 0.1 0.641/−0.641 1.585/0.631

Table 3.5: Hellinger distan
e in fun
tion of the parameter perturbation. The �rst value is an in
rease

of the parameter (right hand of the graph) whereas the se
ond is a de
rease of the parameter (left

hand of the graph). Both perturbation lead to the same H2
departure.

is mu
h more in�uential than others parameters. When in
reasing the standard deviation and (not

at the same time) the mean of X3, it a�e
ts positively the failure probability. The estimated indi
es

are 
onfounded, but the CI are slightly larger for the standard deviations. When de
reasing these

last two parameters, the failure probability de
reases. Yet in this 
ase, the mean is more in�uential
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than the standard deviation. This is an interesting result. When dealing with the parameters of

X1, it must be noti
ed that the estimated indi
es for the standard deviations lie around 0 and are


onfounded with the one forX4. However the indi
es for the mean are slightly positive and in
reasing

when in
reasing this mean while they are slightly negative and de
reasing when diminishing this

parameter. The indi
es asso
iated to X4, both mean and standard deviation are null, thus assessing

the non-in�uen
e of this last variable.

Con
lusion and dis
ussion The DMBRSI has brought the following 
on
lusions:

� When shifting the mean (that is to say the 
entral tenden
y in this 
ase), the most in�uential

variable is X2, followed by X3. X1 is slightly in�uential while X4 is not in�uential at all.

� When shifting the varian
e, variable X2 is more in�uential than variable X3. Variables X1

and X4 have no impa
t when shifting the varian
e that is to say when we are interesting in

the tails behaviour.

� The many graphs asso
iated with several quantiles shifts lead to the 
on
lusion that the in�u-

ential regions leading to the failure event are the extreme left-hand tail values for variable X2

and the extreme right-hand tail values for variable X3.

� When shifting the parameters, it lead to the 
on
lusion that the most in�uential parameters are

the standard deviation of X2, the mean of X2, then the mean of X3 followed by the standard

deviation of X3. Others parameters have a small to null in�uen
e.

These results are 
onsistent with ea
h other. We argue that all these information are mu
h

ri
her than the ones provided by importan
e fa
tors and by Sobol' indi
es. Indeed, the information

is provided about regions of the input spa
e leading to failure event; or on parameters whose variation

will provide a broad 
hange on the failure probability. This is, in our opinion, more of interest to

the pra
titioner than a "simple" variable ranking.

3.4.3 Hyperplane 11111 test 
ase

This se
ond test 
ase was de�ned in Appendix B.1. Remind that all variables are independent

standard Gaussian. Also re
all that all variables have the same in�uen
e. Finally remind that the

failure probability is Pf = 0.0036.

3.4.3.1 Importan
e fa
tors

In this ideal hyperplane failure surfa
e 
ase, FORM provides an approximated value P̂FORM =
0.0036, whi
h is as expe
ted (Lemaire [61℄) 
lose to the exa
t value. 33 model 
alls have been

required. The importan
e fa
tors, given in Table 3.6, provide an exa
t variable ranking for the

failure fun
tion. They assess that all variables have the same importan
e. That was the sought after

result.

Variable X1 X2 X3 X4 X5

Importan
e fa
tor 0.2 0.2 0.2 0.2 0.2

Table 3.6: Importan
e fa
tors for hyperplane 11111 fun
tion
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3.4.3.2 Sobol' indi
es

We reprodu
e here Table 1.5 and the resulting 
on
lusions.

On Table 3.7 the estimated Sobol indi
es with 2 samples of size 106, using the Saltelli 02 method.

The total number of fun
tion evaluations is 7× 106.

Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.015 0.013 0.014 0.009 0.015 0.677 0.673 0.695 0.674 0.685

Table 3.7: Estimated Sobol' indi
es for the hyperplane 11111 
ase

The weak �rst order indi
es (less than 2% of the varian
e explained) and the high total indi
es

assess that all the variables are in�uential in intera
tion with the others. All the total indi
es are

approximatively the same showing that this SA method 
an give the same importan
e to ea
h equally


ontributing input.

3.4.3.3 DMBRSI

As in the previous example, all the types of perturbations proposed in se
tion 3.3 will be tested

on this se
ond numeri
al 
ase. The methodology displayed in Figures 3.1 and 3.8 is used. We

again stress that all the indi
es are estimated with the same MC sample. The MC estimation gives

P̂ = 0.00353 with 105 fun
tion 
alls, whi
h is a good order of magnitude.

Mean shifting The mean of all the variables is shifted (one variable at a time), see Eq. (3.15).

The domain variation for δ ranges from −1 to 1 with 40 points, reminding that δ = 0 
annot be


onsidered as a perturbation sin
e it is the expe
tation of the original density. The result is plotted

in Figure 3.17, with a di�erent 
olor and di�erent sign for ea
h variable. 95% 
on�den
e intervals

are plotted.

For small values (of absolute value smaller than 0.5) of new mean, the estimated indi
es are

similar for all the variables. When the values of the new mean get higher (in absolute value), some

numeri
al noise spreads the indi
es. However, the 
on�den
e intervals are not dis
onne
ted. We


on
lude from this graph that, when dealing with the 
entral tenden
y, all the variables involved in

the 
ode have the same in�uen
e on the failure probability.

Varian
e shifting The varian
e of all the variables is now shifted (still one variable at a time),

see Eq. (3.19). The domain variation for Vf (the perturbed varian
e) ranges from 0.2 to 3 with 71
points, reminding that Vf = 1 is not a perturbation. The result is plotted in Figure 3.18, with a

di�erent 
olor and di�erent sign for ea
h variable. 95% 
on�den
e intervals are plotted.

For small values of perturbation (varian
e ranging from 0.5 to 1.5), the indi
es are 
onfounded.

When in
reasing the strength of the perturbation, one 
an see that the indi
es get disjointed. How-

ever the 
on�den
e intervals are not dis
onne
ted, thus one 
an infer that the values of the indi
es

are roughly the same (they are theoreti
ally the same in this model). An interesting fa
t is that

all 
on�den
e intervals do not have the same width. A 
on
lusion from this graph is that, when

dealing with the tails, all the variables involved in the 
ode have the same in�uen
e on the failure

probability.

Quantile shifting As previously, we perturbed the 1st, 2nd and 3rd quartiles altogether with the

5th and 95th per
entiles. As all the graphs have a similar shape, only one (for the median) is displayed

in Figure 3.19.
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Figure 3.17: Estimated indi
es Ŝiδ for the 11111 hyperplane fun
tion with a mean shifting
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Figure 3.18: Estimated indi
es Ŝiδ for the 11111 hyperplane fun
tion with a varian
e shifting
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Figure 3.19: Median perturbation on the hyperplane 11111 test 
ase

This graph shows that all the variables have an equivalent behaviour when their quantiles are

perturbed.

Parameters shifting 10 parameters drive the model: a varian
e and a standard deviation for

ea
h Gaussian input. Ea
h of these parameters is perturbed and the estimated indi
es are plotted

in fun
tion of the Hellinger distan
e in Figure 3.20, as explained in Figure 3.8. 95% 
on�den
e

intervals are provided as well.

This �gure leads to several 
omments and needs to be interpreted with table 3.5. In
reasing

any parameter leads to an in
rease of the failure probability whereas diminishing any parameter

leads to a redu
tion of the failure probability. When in
reasing the parameters, indi
es are badly

separated. A 
loser look shows that the indi
es asso
iated to the means (dots) are pa
ked down to

(slightly) lower values that the indi
es asso
iated to the standard deviations (triangles), whi
h are

more dispersed. The 
on�den
e intervals (solid lines for the means, dashed lines for the standard

deviations) are smaller for the means than for the standard deviations. On the other side of the

graph, when redu
ing the parameters, an "equivalent" (in the H2
sense) redu
tion of the mean has

more impa
t (on the redu
tion of the failure probability) than a redu
tion of the standard deviations.

The 
on�den
e intervals are well separated. In all 
ases, there is no way to distinguish the e�e
ts of

several variables, whi
h was expe
ted in this model.

Con
lusion and dis
ussion When shifting the mean, for small perturbations, all the variables

are ranked with the same importan
e. This goes the same for a varian
e shift and a quantile shift.

Similarly, a parameter perturbation does not allow to say that a variable is more in�uential than
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Figure 3.20: Parameters perturbation on the hyperplane 11111 test 
ase. Dots are for means, triangle

for the standard deviations. A di�erent 
olor is used for ea
h variable.

another (however the parameters of a given variable does not have the same in�uen
e on the failure

probability).

If the obje
tive was a pure variable ranking, then small variations of moments and quantile

are adapted - at least on this 
ase it has shown the ability to a�e
t roughly the same indi
es to

equivalently in�uential variables.

If the obje
tive of the SA is to know whi
h parameters impa
t the most the failure probability

(and a realisti
 obje
tive would be "where to redu
e the un
ertainty in order to redu
e the failure

probability"), we stress here that the parameters shift has allowed to 
on
lude that for this 
ase the

means of the variables have more in�uen
e than their standard deviations.

3.4.4 Hyperplane with 15 variables test 
ase

This third test 
ase was de�ned in Appendix B.1. Remind that all variables are independent standard

Gaussian. Also re
all that the aim of this example is to test the ability of the proposed method
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Variable X1 to X5 X6 to X10 X11 to X15

Importan
e fa
tor 0.192 7.69 × 10−3
0

Table 3.8: Importan
e fa
tors for the hyperplane 15 variables

to dis
riminate the variables in three 
lasses: in�uential, weakly-in�uential, non-in�uential. Finally

remind that the failure probability is Pf = 0.00425.

3.4.4.1 Importan
e fa
tors

In this ideal hyperplane failure surfa
e 
ase, FORM provides an exa
t value P̂FORM = 0.00425, as
expe
ted. 31 model 
alls have been required. The importan
e fa
tors, given in Table 3.8, provide

an exa
t variable ranking for the failure fun
tion. They give to ea
h group of variable di�erent

values of in�uen
e. The ranking is 
orre
t, namely the in�uential variables are dete
ted as su
h, the

weakly-in�uential variables have a very small importan
e fa
tor and the non-in�uential variables

have importan
e fa
tors of 0. That was the sought after result.

3.4.4.2 Sobol' indi
es

We reprodu
e here Table 1.6 and the resulting 
on
lusions.

On Table 3.9 are presented the estimated Sobol' indi
es with 2 samples of size 106, using the

Saltelli [87℄ method. The total number of fun
tion evaluations is 17× 106.

Index S1 to S5 S6 to S10 S11 to S15

Estimation 0.014 to 0.018 0.001 to 0.002 0

Index ST1 to ST5 ST6 to ST10 ST11 to ST15

Estimation 0.655 to 0.673 0.141 to 0.150 0

Table 3.9: Estimated Sobol' indi
es for the hyperplane with 15 variables 
ase

The �rst order indi
es are all weak, yet separated in three groups. The total indi
es give a

good separation between the in�uential, weakly in�uential and non in�uential variables. The Sobol'

indi
es SA method is able to deal with problems of medium dimension; however it has an heavy


omputational 
ost in this 
ase.

3.4.4.3 DMBRSI

As in the previous example, all the types of perturbations proposed in se
tion 3.3 will be tested on

this third numeri
al 
ase. The methodology displayed in Figures 3.1 and 3.8 is used. We stress again

that all the indi
es are estimated with the same MC sample. The MC estimation gives P̂ = 0.0042
with 105 fun
tion 
alls, whi
h is 
lose from the real result.

Mean shifting The mean of all the variables is shifted (one variable at a time), see Equation

(3.15). The domain variation for δ ranges from −1 to 1 with 40 points, reminding that δ = 0

annot be 
onsidered as a perturbation sin
e it is the expe
tation of the original density. The result

is plotted in Figure 3.21, with a di�erent 
olor for ea
h variable and di�erent sign for ea
h group

variable. 95% 
on�den
e intervals are plotted.
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Figure 3.21: Estimated indi
es Ŝiδ for the 15 variables hyperplane fun
tion with a mean shifting

For the in�uential variables (big dots), in
reasing the mean in
reases the failure probability

whereas de
reasing this parameter de
reases the failure probability. However distinguish the e�e
ts

of the weakly-in�uential variables (triangles) from the e�e
ts of the non-in�uential variables (small

dots) is not possible due to the 
overing of the 
on�den
e intervals. So far, DMBRSI does not allow

to separate the e�e
ts of the two last groups of variables. However, another test with a MC size of

106 draws (graphs non provided here) allows a good separation of the weakly and non-in�uential

variables.

Varian
e shifting The varian
e of all the variables is now shifted (still one variable at a time),

see Equation (3.19). The domain variation for Vf (the perturbed varian
e) ranges from 0.2 to 3 with
71 points, reminding that Vf = 1 is not a perturbation. The result is plotted in Figure 3.22, with a

di�erent 
olor and di�erent sign for ea
h variable. 95% symmetri
al 
on�den
e intervals are plotted.

The in�uential variables (big dots) are well separated from the others. As expe
ted for these

variables, in
reasing (respe
tively de
reasing) the varian
e in
reases (respe
tively de
reases) the

failure probability. However, the e�e
ts for the weakly-in�uential (triangles) and non-in�uential

(small dots) variables, the e�e
ts are hardly separable (see the 
on�den
e intervals). As well as

previously, DMBRSI does not allow to separate the e�e
ts of the two last groups of variables (weakly

and non-in�uential).

However, in
reasing the sample size of a fa
tor 10 (graph not provided here) still does not allow to

separate the e�e
ts of the last two groups of variable. This might be due to the relative null-in�uen
e

of a varian
e shift in the last 10 variables.
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Figure 3.22: Estimated indi
es Ŝiδ for the 15 variables hyperplane fun
tion with a varian
e shifting

Quantile shifting As in the previous numeri
al experiments, the 1st, 2nd and the 3rd quartiles

altogether with the 5th and 95th per
entiles were perturbed. All the graphs are similar, only the left

s
ale (the value of the sensitivity indi
es) varies, thus only one (relative to the median perturbation)

is displayed in Figure 3.23.

This graph somehow allows the ranking in in�uential, weakly-in�uential and non-in�uential

variables. This graph shows that the method allows a separation of the 15 variables into 3 groups

of in�uen
e: medium, small and null in�uen
e although the separation between the two last groups

is not straightforward.

The 10 �rst variables (2 �rst groups of 5 variables) have an equivalent behaviour when their

quantiles are perturbed: in
reasing the weight of the left-hand tail in
reases the failure probability

whereas it de
reases this probability when in
reasing the weight of the right-hand tail. The indi
es

asso
iated to the last 5 variables have 
on�den
e interval values that in
lude 0.

In
reasing the sample size by a fa
tor 10 allows to obtain a graph that a

urately separates the

diverse groups of variables (the graph is not provided here as it is the same as Figure 3.23).

With this type of perturbation, the DMBRSI allows to separate the variables by group of in�u-

en
e.

Parameters perturbation The model is driven by 30 parameters: a varian
e and a standard

deviation for ea
h Gaussian input. Ea
h of these parameters is perturbed and the estimated in-

di
es are plotted in fun
tion of the Hellinger distan
e in Figure 3.24, as explained in Figure 3.8.

95% 
on�den
e intervals are provided as well. As the graph gets too 
ompli
ated for an adequate

representation, only one variable per group is plotted.
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Figure 3.23: Median perturbation on the hyperplane with 15 variables test 
ase

Table 3.5 is needed as well to interpret this graph. From the graph with all the indi
es plotted

(not showed here) and from Figure 3.24, one 
an infer the following. The parameters related to

the �rst variable - related to the �rst in�uen
e group - (bla
k, dots for the mean, triangle for the

standard deviation) are the most in�uential, with a bigger in�uen
e from the mean when de
reasing

the parameter. When in
reasing the parameters, the e�e
ts of the standard deviation and of the

mean are not dis
ernible. The 
on�den
e interval for the standard deviations (dashed lines) is quite

wider than the one asso
iated with the mean. However the indi
es asso
iated with the means and

varian
e of the other groups of variables are too noisy and 
annot be interpreted.

Con
lusion and dis
ussion DMBRSI is not adapted to this medium dimension 
ase. Indeed,

only the quantile perturbation is able to distinguish the weakly from the non-in�uential variables.

The parameter perturbation method espe
ially leads to representation problem, with 30 
urves to

plot plus the 
on�den
e intervals. This leads to the 
on
lusion that DMBRSI should not be used as

a s
reening method.

3.4.5 Hyperplane with same importan
e and di�erent spreads test 
ase

This fourth test 
ase was de�ned in Appendix B.1. Remind that all variables are independent

Gaussian with mean 0 and in
reasing standard deviation. Also re
all that the aim of this example is

to give to equivalently in�uential variables that are not distributed similarly the same importan
e.

Finally remind that the failure probability is Pf = 0.0036.

3.4.5.1 Importan
e fa
tors

In this ideal hyperplane failure surfa
e 
ase, FORM provides an approximated value P̂FORM =
0.0036, whi
h is as expe
ted (Lemaire [61℄) 
lose to the exa
t value. 33 model 
alls have been

141



3. Density Modifi
ation Based Reliability Sensitivity Indi
es

−
2

−
1

0
1

2

Hellinger Distance

S
iδ^

0.1 0.05 0 0.05 0.1

Figure 3.24: Parameters perturbation on the 15 variables hyperplane test 
ase. Dots are for means,

triangle for the standard deviations. Bla
k is for the �rst group of in�uen
e, red is for the se
ond

and blue for the third.

required. The importan
e fa
tors, given in Table 3.10, provide an exa
t variable ranking for the

failure fun
tion. They assess that all variables have the same importan
e. That was the expe
ted

result.

Variable X1 X2 X3 X4 X5

Importan
e fa
tor 0.2 0.2 0.2 0.2 0.2

Table 3.10: Importan
e fa
tors for hyperplane with di�erent spreads fun
tion

3.4.5.2 Sobol' indi
es

We reprodu
e here Table 1.7 and the resulting 
on
lusions.

On Table 3.11 are presented the estimated Sobol' Indi
es. The 
omputation was done with 2
samples of size 106, using the Saltelli [87℄ method. The total number of fun
tion evaluations is
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7× 106.

Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.027 0.028 0.025 0.025 0.028 0.611 0.622 0.618 0.618 0.624

Table 3.11: Estimated Sobol' indi
es for the hyperplane with di�erent spreads 
ase

The weak �rst order indi
es (less than 3% of the varian
e explained) and the high total indi
es

assess that all variables are in�uential in intera
tion with the others, and that no variable is in�uential

on its own. All the total indi
es are approximatively equal showing that this SA method gives to

ea
h equally 
ontributing variable the same importan
e, despite their di�erent spread.

3.4.5.3 DMBRSI

One 
an noti
e that the di�erent inputs follow various distributions (unlike the other examples), thus

the question of "equivalent" perturbation arises. Due to this non-similarity of the distributions, only

a (modi�ed) mean shift, a quantile shift and a parameter shift will be applied on this test 
ase. It

has been dis
ussed further in Se
tion 3.3.1.3.

Mean shifting As stressed in Se
tion 3.3.1.3 the 
hoi
e has been made to shift the mean relatively

to the standard deviation, hen
e in
luding the spread of the various inputs in their respe
tive

perturbation. So for any input, the original distribution is perturbed so that its mean is the original

one plus δ times its standard deviation, δ ranging from −1 to 1 with 40 points. The results of the

numeri
al experiment are displayed in Figure 3.25.

The indi
es have similar values for similar perturbations, thus assessing the equal impa
t of the

variables. However this information was obtained with a �ne tuning of the perturbations.

Quantile shifting As in the previous numeri
al experiments, the 1st, 2nd and the 3rd quartiles

altogether with the 5th and 95th per
entiles were perturbed. As the graphs behave in a similar way,

only one is displayed in Figure 3.26.

The perturbation of the 2nd quantile a�e
ts all the variables in the same way, despite their

di�erent distributions. This shows that the quantile perturbation method gives to ea
h equally


ontributing variable the same importan
e.

Additionally, we 
an 
on
lude the following on the appli
ation of the quantile perturbation on

monotoni
 
ases (3.4.2 to 3.4.5):

� the graphs for the median perturbation are similar to the ones relative to a mean perturbation.

� when a left-hand quantile α1 (if α1 < 50%) is in�uent (meaning a perturbation of δ% of this

quantile produ
es an index superior to a threshold t) then α2 < α1 has more in�uen
e. In the


ase of a right-hand quantile (if α1 > 50%) then α2 > α1 has more in�uen
e.

Parameters perturbation The model is driven by 10 parameters: a varian
e and a standard

deviation for ea
h Gaussian input. Ea
h of these parameters is perturbed and the estimated indi
es

are plotted in fun
tion of the Hellinger distan
e in Figure 3.27 as explained in Figure 3.8. 95%

on�den
e intervals are provided as well. As the graph gets too 
ompli
ated for an adequate rep-

resentation, only three variables are plotted: X1 (bla
k), X3 (red) and X5 (blue). As usual, the

indi
es asso
iated with the means are plotted as dots and the indi
es asso
iated with the standard

deviations are plotted as triangles.
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Figure 3.25: Estimated indi
es Ŝiδ for the hyperplane with di�erent spreads 
ase with a mean shifting

Xi ∼ N (µ = 0, σ = 2) Xi ∼ N (µ = 0, σ = 6) Xi ∼ N (µ = 0, σ = 10)
µ|σ = 2 σ|µ = 0 µ|σ = 6 σ|µ = 0 µ|σ = 10 σ|µ = 0

H2(Xi, Xiδ) = 0 0 2 0 6 0 10

H2(Xi, Xiδ) = 0.01 0.400/−0.400 1.736/2.299 1.193/−1.193 5.208/6.897 1.989/−1.989 8.679/11.521

H2(Xi, Xiδ) = 0.025 0.634/−0.634 1.597/2.499 1.898/−1.898 4.790/7.496 3.163/−3.163 7.985/12.526

H2(Xi, Xiδ) = 0.05 0.900/−0.900 1.451/2.748 2.695/−2.695 4.353/8.245 4.492/−4.492 7.255/13.784

H2(Xi, Xiδ) = 0.1 1.281/−1.281 1.262/3.158 3.839/−3.839 3.785/9.475 6.398/−6.398 6.308/15.853

Table 3.12: Hellinger distan
e in fun
tion of the parameter perturbation

This �gure leads to several 
omments and needs to be interpreted with table 3.12. In
reasing any

parameter leads to an in
rease of the failure probability whereas diminishing any parameter leads to

a redu
tion of the failure probability. When in
reasing the parameters, indi
es are badly separated.

One 
an however see that the 
on�den
e intervals asso
iated to the means are narrower than the ones

asso
iated to the standard deviations. On the other side of the graph, when redu
ing the parameters,

an "equivalent" (in the H2
sense) redu
tion of the mean has more impa
t (on the redu
tion of the

failure probability) than a redu
tion of the standard deviations. The 
on�den
e intervals (for the

means and for the standard deviations) are well separated. In all 
ases, the 
on�den
e intervals

prevent from 
on
luding that any variable is more in�uential than another. However, the indi
es

for the �rst variable (bla
k) seem a bit lower than the one asso
iated to the other inputs in the

de
reasing 
ase.
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Figure 3.26: Estimated indi
es Ŝiδ for the hyperplane with di�erent spreads 
ase with a median

shifting

Con
lusion and dis
ussion When shifting the mean with small perturbations, all the variables

are ranked with the same importan
e. We must insist that this result is obtained in shifting the

mean in
luding the spread of the various inputs in their respe
tive perturbation. All the variables

seem to have the same in�uen
e when shifting their quantiles. Similarly, a parameter perturbation

does not allow to say that a variable is more in�uential than another - but this might be 
aused by

numeri
al noise. Supplementary numeri
al experiments must be 
ondu
ted on this topi
.

3.4.6 Tresholded Ishigami fun
tion

A modi�ed (thresholded) version of the Ishigami fun
tion will be 
onsidered in this subse
tion, as

de�ned in Appendix B.2. Remind that all variables are independent Uniform with support [−π, π].
Finally, the failure probability is roughly P̂ = 5.89 × 10−3

.

3.4.6.1 Importan
e fa
tors

The algorithm FORM 
onverges to an in
oherent design point (6.03, 0.1, 0) in 50 fun
tion 
alls,

giving an approximate probability of P̂FORM = 0.54. The importan
e fa
tors are displayed in Table

3.13. The bad performan
e of FORM is expe
ted given that the failure domain 
onsists in six

separate domains and that the fun
tion is highly non-linear, leading to optimization di�
ulties.

The design point is aberrant, therefore the importan
e fa
tors results for SA are in
orre
t. Noti
e

that the user is not warned that the result is in
orre
t.
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Figure 3.27: Parameters perturbation on the hyperplane with di�erent spreads 
ase. Dots are for

means, triangle for the standard deviations. Bla
k is for X1, red is for X3 and blue is for X5.

Variable X1 X2 X3

Importan
e fa
tor 1e−17 1 0

Table 3.13: Importan
e fa
tors for Ishigami fun
tion

3.4.6.2 Sobol' indi
es

The �rst-order and total indi
es are displayed in Table 3.14 whi
h is a reprodu
tion of Table 1.8.

The following 
ommentary is also 
oming from Chapter 1.

Index S1 S2 S3 ST1 ST2 ST3

Estimation 0.018 0.007 0.072 0.831 0.670 0.919

Table 3.14: Sobol' indi
es estimation for the thresholded Ishigami fun
tion

The �rst order indi
es are 
lose to 0. The variable with the most in�uen
e on its own is X3,
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explaining 7% of the output varian
e. Total indi
es state that all the variables are of high in�uen
e.

A variable ranking 
an be made using the total indi
es, ranking X3 with the highest in�uen
e, then

X1 and then X2. Figure B.1 allows to understand the meaning of the total indi
es. Ea
h variable

�
auses� the failure event on a restri
ted portion of its support. On the other hand, the knowledge

of a single variable does not allow to explain the varian
e of the indi
ator, thus the weakness of �rst-

order indi
es. The fa
t that the failure points are grouped in narrow strips 
an only be explained

by the 3 variables together, thus the high third order index.

3.4.6.3 DMBRSI

The method presented throughout this 
hapter is applied on the thresholded Ishigami fun
tion. As

previously, a MC sample of size 105 is used to estimate both the failure probability and the indi
es

with all the perturbations. There are 574 failing points therefore the failure probability is estimated

by P̂ = 5.74 × 10−3
. The order of magnitude here is quite good. As for the hyperplane test 
ase, a

mean shifting and a varian
e shifting are applied at �rst, followed by a quantile perturbation. The

parameters perturbation 
ase is then dis
ussed.

Mean shifting For the mean shifting (see Equation (3.15)), the variation domain for δ ranges

from −3 to 3 with 60 points - numeri
al 
onsideration forbidding to 
hoose a shifted mean 
loser to

the endpoints. The results of the estimation of the indi
es Ŝiδ are plotted in Figure 3.28.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

δ

S
iδ^

X1

X2

X3

Figure 3.28: Estimated indi
es Ŝiδ for the thresholded Ishigami fun
tion with a mean shifting

A perturbation of the mean for X2 and X3 will in
rease the failure probability, though the

impa
t for the same mean perturbation is stronger for X3 (Ŝ3,−3 and Ŝ3,3 approximately equal

respe
tively 9.5 and 10, Figure 3.28). On the other hand, the indi
es 
on
erning X1 show that a
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mean shift between −1 and −2 in
reases the failure probability, whereas an in
reasing of the mean or

a large de
reasing strongly diminishes the failure probability (Ŝ1,3 approximatively equals −7.1011).
Therefore, Figure 3.28 leads to two 
on
lusions. First, the failure probability 
an be strongly redu
ed

when in
reasing the mean of the �rst variable X1 (this is also provided by Figure B.1 wherein all

failure points have a negative value of X1). Se
ond, any 
hange in the mean for X2 or X3 will lead to

an in
rease of the failure probability. The 
on�den
e intervals are well separated, ex
ept in the −1
to 1 zone. One 
an noti
e that the 
on�den
e interval asso
iated to X2 
ontains 0 between values

of δ from −1.5 to 1.5, thus the asso
iated indi
es might be null in these 
ase. This has to be taken

into a

ount when assessing the relative importan
e of X2.

Varian
e shifting For varian
e shifting, the variation domain for V
per

ranges from 1 to 5 with 40
points. Let us re
all that the original varian
e is Var[Xi] = π2/3 ≃ 3.29. The modi�ed pdf when

shifting the varian
e and keeping the same expe
tation is proportional to a trun
ated Gaussian when

de
reasing the varian
e. When in
reasing the varian
e, the perturbed distribution is a symmetri
al

distribution with 2 modes 
lose to the endpoints of the support (see Figure 3.3). The results of the

estimation of the indi
es Ŝi,V
per

are plotted in Figure 3.29. The upper �gure is a zoom where the

Ŝi,V
per

axis lies into [−0.5, 0.5]. The lower �gure shows almost the whole range variation for Ŝi,V
per

.

The 
urves 
ross for the value of V
per

that 
orresponds to the original varian
e, namely π2/2.

Figure 3.29 (upper part) shows that a 
hange in the varian
e has little e�e
t on X2 and X1,

though the 
hange is of opposite e�e
t on the failure probability. However, 
onsidering that the

indi
es Ŝ2,V
per,i

and Ŝ1,V
per,i

lie between −0.4 and 0.4, one 
an 
on
lude that the varian
e of theses

variables are not of great in�uen
e on the failure probability. On the other hand, Figure 3.29 (lower

part) shows that any redu
tion of Var [X3] strongly de
reases the failure probability, and that an

in
rease of the varian
e slightly in
reases the failure probability. This is relevant with the expression

of the failure surfa
e, as X3 is fourth powered and multiplied by the sinus of X1. A varian
e

de
reasing as formulated gives a distribution 
on
entrated around 0. De
reasing Var [X3] shrinks
the 
on
erned term in G(X). Therefore it redu
es the failure probability. The 
on�den
e intervals

asso
iated to X3 are broadly separated from the others.

Quantile shifting First, the 5th per
entile is perturbed and the result is displayed in Figure 3.30.

This graph shows that for variable X1, an in
rease of the weight of the right-hand tail diminishes

the failure probability and a de
rease of the weight a�e
ts positively the failure probability. It is the

opposite for variable X2 and X3: an in
rease of the weight of the left-hand tail in
reases the failure

probability and a de
rease of the weight de
reases the failure probability. The e�e
t is stronger for

variable X3.

Then, the �rst quartile is perturbed. The results of the experiment are plotted in Figure 3.31.
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Figure 3.29: Estimated indi
es Ŝi,V
per

for the thresholded Ishigami fun
tion with a varian
e shifting
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Figure 3.31:

st

quartile perturbation on the thresholded Ishigami test 
ase
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Figure 3.30: 5th per
entile perturbation on the thresholded Ishigami test 
ase

This graph shows that a 1st quartile perturbation of variable X2 has no e�e
t on the failure

probability, for the 
onsidered range of variation. It also shows that variables X1 and X3 behave

the same when the 1st quartile is perturbed: an in
rease of the weight of the left-hand tail in
reases

the failure probability and a de
rease of the weight de
reases the failure probability.

It is interesting to note that the impa
t of the 5%-quantile perturbation of X1 produ
es a dif-

ferent e�e
t than a perturbation on the 1st quartile. It means that the relationship established for

the monotoni
 
ase is not valid in this non-monotoni
 
ase.

The median is perturbed next and the results are shown in Figure 3.32.

0.3 0.4 0.5 0.6 0.7

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4

δ

S
iδ^

X1

X2

X3

Figure 3.32: Median perturbation on the thresholded Ishigami test 
ase
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As it 
omes to a median perturbation, only variable X1 produ
es e�e
ts. A de
rease (in
rease)

of the weight of the left-hand tail redu
es (in
reases) the failure probability. 0 is in
luded whithin

the 
on�den
e intervals for variables X2 and X3.

The third quartile is perturbed next and the results are displayed in Figure 3.33.
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Figure 3.33: 3rd quartile perturbation on the thresholded Ishigami test 
ase

An in
rease of the weight of the right-hand tail of variable X1 in
reases the failure probability

whereas it redu
es the failure probability for variable X3, with the same order of magnitude. The

e�e
t is reversed when de
reasing the weight. A perturbation of the third quartile of variable X2

has no e�e
t on the failure probability.

Finally, the 95th per
entile is perturbed and the results are displayed in Figure 3.34.
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Figure 3.34: 95th per
entile perturbation on the thresholded Ishigami test 
ase

This last �gure shows the higher in�uen
e of the right-hand quantile of X3 over the two other

variables. Pre
isely, in
reasing the weight of the 95%-quantile (whi
h is equivalent to de
reasing the

weight of the right-hand tail) redu
es the failure probability for variables X2 and X3 whereas the

failure probability in
reases for X1. The e�e
t is the opposite when de
reasing the weight of the

95%-quantile.

This non-monotoni
 
ase shows that it is important to test several 
on�gurations of quantile

perturbation before assessing the importan
e or non-in�uen
e of a variable.

Parameters perturbation The methodology presented in subse
tion 3.3.2 is tested here. The

model is driven by 6 parameters: a minimum and maximum boundaries for ea
h Uniform input.

Here, we must stress a limitation of the method. The parameters of the inputs de�ne their support.

Yet, due to the 
onditions in Lemma 3.2.1, the support of the perturbed input 
annot be broader

than the one of the initial input. On this test 
ase, this amounts to saying that the parameters

perturbations 
an only lead to a support redu
tion, i.e. in
reasing the minimum and diminishing

the maximum. Spe
i�
ally, the parameters are perturbed so that the minimum varies from −π to 0
and the maximum varies from π to 0. The result of su
h perturbations is presented in Figure 3.35

and Figure 3.36. 95% 
on�den
e intervals are provided as well. The amplitude of the perturbation

given the Hellinger distan
e is given in Table 3.15.

At �rst in this �gure we fo
us on small perturbations of the parameters, so that the deviation

is no broader than 0.1 in Hellinger distan
e (refer to Table 3.15 for the equivalent in terms of

parameters). On the right-hand of the graph are plotted (as triangles) the indi
es 
orresponding to

an in
rease of the minimum bound of the inputs. On the left-hand of the graph are plotted (as dots)

the indi
es 
orresponding to a de
rease of the maximal bound of the inputs.

It 
an be seen that the indi
es are symmetri
al. In
reasing (diminishing) the minimum (max-

imum) for variable X1 slightly in
reases the failure probability. On the other hand, in
reasing

(diminishing) the minimum (maximum) for variable X2 slightly de
reases the failure probability.

However shifting the parameters of variable X3 produ
e the following e�e
ts: in
reasing its mini-

mum until 2.771 (Hellinger distan
e 0.06) diminishes the failure probability (almost dividing it by
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Figure 3.35: Parameters perturbation on the thresholded Ishigami test 
as. Triangles 
orrespond to

a minimum bound, dots to a maximum bound. X1 is plotted in red, X2 in bla
k and X3 in blue.

2). Then, an in
reasing of the minimum is re�e
ted by a slightly lower diminution of the failure

probability. The e�e
t is symmetri
al when de
reasing the minimum of variable X3.

Figure 3.36 fo
uses on large perturbations of the parameters (at most, the minimum and the

maximum worth 0). This �gure essentially shows that an in
rease of the minimum of variable X1

strongly diminishes the failure probability. On the other hand, a de
rease of the minimum of variable

X1 slightly in
reases the failure probability. When dealing with variable X2, the symmetry of the

e�e
ts 
an be seen. When in
reasing the minimum, it diminishes the failure probability at �rst

then it in
reases it. Finally, setting the minimum (or maximum) to 0 has no impa
t on the failure

probability. Con
erning variable X3, the attenuation of the de
rease in failure probability des
ribed

in Figure 3.35 goes on until the minimum (maximum) worth 0 - the impa
t on the failure probability

is then null.

From Figures 3.36,3.35 and Table 3.15, it 
an be 
on
luded that the most in�uential parameters

when dealing with small perturbations are the ones related to X3. When dealing with large pertur-

bation of parameters, the minimum of X1 is the most in�uential parameter. This is 
on�rmed by

Figure B.1.

Con
lusion and dis
ussion This non-linear 
ase has shown that:

� When dealing with a mean perturbation, the failure probability 
an be strongly redu
ed when
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Figure 3.36: Parameters perturbation on the thresholded Ishigami test 
ase. Triangles 
orrespond

to a minimum bound, dots to a maximum bound. X1 is plotted in red, X2 in bla
k and X3 in blue.

Xi ∼ U(min = −π,max = π)
min |max = π max |min = −π

H2(Xi,Xiδ) = 0 −π π

H2(Xi,Xiδ) = 0.01 −3.079 3.079

H2(Xi,Xiδ) = 0.025 −2.985 2.985

H2(Xi,Xiδ) = 0.05 −2.832 2.832

H2(Xi,Xiδ) = 0.1 −2.529 2.529

H2(Xi,Xiδ) = 0.3 −1.398 1.398

Table 3.15: Hellinger distan
e in fun
tion of the parameter perturbation

in
reasing the mean of X1. Any 
hange in the mean for X2 or X3 will lead to an in
rease of

the failure probability.

� When dealing with a varian
e perturbation, any redu
tion of Var [X3] strongly de
reases the

failure probability. The impa
t of the other variables is negligible in this 
ase.

� When dealing with a quantile perturbation, it is important to test several 
on�gurations before

assessing the importan
e or non-in�uen
e of a variable. In parti
ular, the in�uen
e of the

median of X1 
an be noti
ed, altogether with the tails of X3. X2 has a smaller in�uen
e.

� When perturbing the parameters, a limitation of the method has been highlighted (
onstraint

on the support of the perturbed density). The various in�uen
es of the parameters have

been noti
ed, espe
ially the broad in�uen
e of the minimum of X1 when dealing with large

perturbations, and the parameters 
ondu
ting X3 when dealing with small perturbations.
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Additionally, we argue that it is of prime importan
e to keep in mind the shape of the perturbed

density when interpreting the �gures.

3.4.7 Flood test 
ase

This test 
ase has been des
ribed in Appendix B.3. As stressed in the appendix, the inputs follows

di�erent distributions and the failure probability is roughly P̂ = 7.88 × 10−4
.

3.4.7.1 Importan
e fa
tors

The algorithm FORM 
onverges to a design point (1.72,−2.70, 0.55,−0.18) in 52 fun
tion 
alls,

giving an approximate probability of P̂FORM = 5.8× 10−4
. The importan
e fa
tors are displayed in

Table 3.16.

Variable Q Ks Zv Zm

Importan
e fa
tor 0.246 0.725 0.026 0.003

Table 3.16: Importan
e fa
tors for the �ood 
ase

FORM assesses that Ks is of extremely high in�uen
e, followed by Q that is of medium in�uen
e.

Zv has a very weak in�uen
e and Zm is negligible. It 
an be noti
ed that the estimated failure

probability is twi
e as small as the one estimated with 
rude MC, but remains in the same order of

magnitude.

3.4.7.2 Sobol' indi
es

The �rst-order and total indi
es are displayed in Table 3.17 whi
h is a reprodu
tion of Table 1.9.

The Sobol' indi
es are estimated with 2 samples of size 106, using the Saltelli [87℄ method. The total

number of fun
tion evaluations is 6× 106.

Index SQ SKs SZv SZm STQ STKs STZv STZm

Estimation 0.019 0.251 0 0 0.746 0.976 0.248 0.115

Table 3.17: Estimated Sobol' indi
es for the �ood 
ase

Considering the �rst order indi
es, Zv and Zm are of null in�uen
e on their own. Q is 
onsidered

to have a minimal in�uen
e (2% of the varian
e of the indi
ator fun
tion) by itself, and Ks explains

25% of the varian
e on its own. When 
onsidering the total indi
es, it 
an be noti
ed that both Zv

and Zm have a weak impa
t on the failure probability. On the other hand, Q has a major in�uen
e

on the failure probability. Ks total index is 
lose to one, therefore Ks explains (with or without any

intera
tion with other variables) almost all the varian
e of the failure fun
tion.

Let us 
ompare the informations provided by the Sobol' indi
es with the information provided by

the importan
e fa
tors. One 
annot 
on
lude from the total Sobol' indi
es that Zm is not in�uential

whereas the importan
e fa
tors assess that this variable is of negligible in�uen
e. Additionally, the

total Sobol' index asso
iated to Ks and Q state that both these variables are of high in�uen
e

whereas the importan
e fa
tors state that Ks is of high in�uen
e and Q is of medium in�uen
e.

155



3. Density Modifi
ation Based Reliability Sensitivity Indi
es

3.4.7.3 DMBRSI

Noti
e that the di�erent inputs follow various distributions, thus the question of "equivalent" per-

turbation arises. Due to this non-similarity of the distributions, only a (modi�ed) mean shift, a

quantile shift and a parameter shift will be applied on this test 
ase. It has been dis
ussed further

in 3.3.1.3. Additionally, a numeri
al tri
k is used to deal with trun
ated distributions, as stressed in

Appendix D.4.

Mean shifting The 
hoi
e has been made to shift the mean relatively to the standard deviation,

hen
e in
luding the spread of the various inputs in their respe
tive perturbation. So for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points.

Figure 3.37: Estimated indi
es Ŝiδ for the �ood 
ase with a mean perturbation

Figure 3.37 assesses that an in
reasing of the mean of the inputs in
reases the failure probability

slightly for Zv, strongly for Q, and diminishes it slightly for Zm and strongly for Ks. This goes

the opposite way when de
reasing the mean. In terms of absolute modi�
ation, Ks and Q are of

same magnitude, even if Ks has a slightly stronger impa
t. On the other hand, the e�e
ts of mean

perturbation on Zm and Zv are negligible. The CI asso
iated to Q and Ks are well separated from

the others, ex
ept in a δ = −.3 to .3 zone. The 
on�den
e intervals asso
iated to Zv and Zm

overlap. Thus even though the indi
es seem to have di�erent values, it is not possible to 
on
lude

with 
ertainty about the in�uen
e of those variables.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of su
h a perturbation for all the variables is plotted in Figure 3.38.
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Figure 3.38: 5th per
entile perturbation on the �ood 
ase

When it 
omes to a left-hand tail perturbation, the in�uen
e of Ks over the three other variables

is preponderant. In parti
ular, a redu
tion of the weight of the 5th per
entile to 0.015 leads to a

division by 3 of the failure probability.

The 1st quartile is then perturbed and the results are plotted in Figure 3.39.

Figure 3.39: 1st quartile perturbation on the �ood 
ase

On
e again when perturbing the left-hand tail, the in�uen
e of Ks is larger than the in�uen
e

of the other variables.

The median of the input distributions is then perturbed, the resulting indi
es are plotted in

Figure 3.40.

The in�uen
e of KS is weaker than in the two previous �gures, as Ks and Q have a similar
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Figure 3.40: Median perturbation on the �ood 
ase

in�uen
e (although the e�e
ts of a median perturbation of these variables is reversed). Zm has less

impa
t on the failure probability than Zv, when dealing with a median perturbation.

The third quartile is then perturbed and the indi
es are plotted in Figure 3.41.

Figure 3.41: 3rdquartile perturbation on the �ood 
ase

In
reasing the weight of the right hand tail (that is to say de
reasing the weight of the 3rd

quartile) in
reases the failure probability for Q and Zv whereas it redu
es the probability for Zm

and Ks. The magnitude of in�uen
e is the following: Q has most in�uen
e, then Ks and Zv have

almost the same in�uen
e, then 
omes Zm.

Finally, the extreme right-hand tail is perturbed, this 
omes to a perturbation on the 95th

per
entile. Results are plotted in Figure 3.42.
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Figure 3.42: 95th per
entile perturbation on the �ood 
ase

This last graph shows the strongest in�uen
e of Q when perturbing extreme right-hand quantiles.

More pre
isely, in
reasing the weight of the right-hand tail of Q in
reases the failure probability

whereas it is the opposite when de
reasing this weight. The impa
t of the other variables is mu
h

smaller.

As a 
on
lusion, we would say that the pra
titioner needs to be 
areful when modelling the

right-hand tail of Q and the left-hand tail of Ks, as the failure probability is sensitive to a variation

of these two quantities. Additionally, the 
ode seems to behave in a monotoni
 fashion (the indi
es

of a given variable have the same sign all along the interval of variation).

Parameters perturbation The model is driven by 12 parameters:

� a lo
ation parameter, a s
ale parameter and a minimum for Q;

� a mean, a standard deviation and a minimum for Ks;

� a minimum, a maximum and a mode for Zv;

� a minimum, a maximum and a mode for Zm.

However on this 
ase we de
ide to perturb only the parameters that do not a�e
t the support of

the densities, namely the lo
ation, the s
ale, the mean, the standard deviation and the two modes.

These parameters are perturbed and the estimated indi
es are plotted in fun
tion of the Hellinger

distan
e in Figure 3.43 as explained in Figure 3.8. 95% 
on�den
e intervals are provided as well.

Table 3.18, presenting the relationship between the parameter perturbation and the Hellinger

distan
e, is needed to interpret Figure 3.43.

In
reasing the parameters value in
reases the failure probability when dealing with the standard

deviation of Ks, the s
ale, the lo
ation of Q and the mode of Zv. It de
reases the failure probability

when dealing with the mode of Zm and the mean of Ks. The e�e
t on the failure probability are

reversed when de
reasing the value of the parameters. The perturbation of the parameters produ
es

a large perturbation of the failure probability for the parameters asso
iated to Ks and for the s
ale
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Figure 3.43: Parameters perturbation on the �ood test 
ase. The indi
es 
orresponding to Q are

plotted in green: dark green for the lo
ation parameter and light green for the s
ale parameter. The

indi
es 
orresponding to Ks are plotted as follows: bla
k for the mean, dark grey for the standard

deviation. The indi
es of the mode of Zv are plotted in red while the ones 
orresponding to the

mode of Zm are plotted in blue.

parameter of Q. The impa
t on the failure probability is moderate when perturbing the lo
ation of

Q, and is quasi-null when perturbing the modes of Zv and Zm.

It is thus of prime importan
e to model 
orre
tly the parameters 
ondu
ting Ks, and the s
ale

parameter of Q.

Con
lusion and dis
ussion On this test 
ase, we 
an 
on
lude the following:

� In terms of mean perturbation, the indi
es asso
iated to Ks and Q have a high value.

� The quantile perturbation has shown that the right-hand tail of Q and the left-hand tail of Ks

are parti
ularly in�uential on the failure probability. Additionally, the 
ode seems to behave

in a monotoni
 fashion.

� The parameters perturbation has demonstrated that the parameters of Ks and the s
ale pa-

rameter of Q impa
t most the output.
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Xi ∼ GT (lo
 = 1013, s
ale = 558,min = 0) Xi ∼ NT (µ = 30, σ = 7.5,min = 1)
lo
|s
ale = 558,min = 0 s
ale|lo
 = 1013,min = 0 µ|σ = 7.5,min = 1 σ|µ = 30,min = 1

H2(Xi, Xiδ) = 0 1013 558 30 7.5

H2(Xi, Xiδ) = 0.01 893/1128 478/661 28.49/31.50 6.51/8.65

H2(Xi, Xiδ) = 0.025 820/1194 437/736 27.62/32.38 5.99/9.42

H2(Xi, Xiδ) = 0.05 732/1269 395/838 26.62/33.38 5.44/10.40

H2(Xi, Xiδ) = 0.1 590/1377 342/1021 25.19/34.81 4.73/12.08

Xi ∼ T (a = 49, b = 51, c = 50) Xi ∼ T (a = 54, b = 56, c = 55)
c|a = 49, b = 51 c|a = 54, b = 56

H2(Xi, Xiδ) = 0 50 55

H2(Xi, Xiδ) = 0.01 49.79/50.21 54.79/55.21

H2(Xi, Xiδ) = 0.025 49.65/50.35 54.65/55.35

H2(Xi, Xiδ) = 0.05 49.49/50.51 49.49/50.51

H2(Xi, Xiδ) = 0.1 49.26/50.74 49.26/50.74

Table 3.18: Hellinger distan
e in fun
tion of the parameter perturbation

This more realisti
 test 
ase has shown that the DMBRSI provide several 
omplementary infor-

mations.

3.5 Improving the DMBRSI estimation

This 
hapter has presented a new SA methodology based on density perturbations. For the sake of

simpli
ity, we have 
onsidered a 
rude Monte-Carlo framework. However, this 
onsideration might

be unrealisti
 when dealing with real appli
ation 
ases where the number of fun
tion 
alls is limited.

We thus propose in this Se
tion to improve the DMBRSI estimation with importan
e sampling

(Se
tion 3.5.1) and with subset simulation (Se
tion 3.5.2).

3.5.1 Coupling DMBRSI with importan
e sampling

3.5.1.1 Estimating Pf with IS

Denoting f̃ a d−dimensional importan
e density su
h that Supp(f̃) ⊇ Supp(f). Suppose one has

an i.i.d. N-sample with pdf f̃ , denoted xn
with n going from 1 to N .

The failure probability Pf 
an be estimated with Importan
e Sampling method (see Se
tion

1.2.1.3) and the asso
iated estimator with N fun
tion 
alls is:

P̂NIS =
1

N

N∑

n=1

1{G(xn)<0}
f(xn)

f̃(xn)
. (3.32)

One 
an show that:

Var

[
P̂NIS

]
=

1

N
Varf̃

[
1{G(X)<0}

f(X)

f̃(X)

]
=

1

N

(
ˆ

1{G(x)<0}
f2(x)

f̃(x)
dx− P 2

f

)
(3.33)

NB : the varian
e redu
tion from IS is not straightforward, one should 
ompare Varf̃

[
1{G(X)<0}

f(X)

f̃(X)

]

and Varf

[
1G(X)<0

]
to 
on
lude, as stressed in Se
tion 1.2.1.3.
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3.5.1.2 Estimating Piδ with IS

Let us re
all that

Piδ =

ˆ

1{G(x)<0}
fiδ(xi)

fi(xi)
f(x)dx. (3.34)

Thus the expression of Piδ using IS is:

Piδ =

ˆ

1{G(x)<0}
fiδ(xi)

fi(xi)

f(x)f̃(x)

f̃(x)
dx. (3.35)

Then supposing one has an i.i.d. N-sample with pdf f̃ , denoted xn
as previously, one 
an estimate

Piδ with:

P̂iδNIS =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )

f(xn)

f̃(xn)
. (3.36)

It is straightforward that the expe
tation of P̂iδNIS is Piδ.

One is obviously interested in the varian
e of su
h an estimate, therefore one has:

Varf̃

[
1{G(X)<0}

fiδ(Xi)

fi(Xi)

f(X)

f̃(X)

]
=

ˆ

1{G(X)<0}
f2iδ(xi)

f2i (xi)

f2(x)

f̃(x)
dx− P 2

iδ . (3.37)

Then:

Var

[
P̂iδNIS

]
=

1

N

(
ˆ

1{G(X)<0}
f2iδ(xi)

f2i (xi)

f2(x)

f̃(x)
dx− P 2

iδ

)
(3.38)

3.5.1.3 Asymptoti
 results

Proposition 3.5.1 Assume the usual 
onditions

(i) Supp(fiδ) ⊆ Supp(fi),

(ii) Supp(f̃) ⊇ Supp(f)

(iii)

ˆ

Supp(fi)

f2iδ(x)

fi(x)
dx <∞,

then

P̂iδNIS −−−−→
N→∞

Piδ (3.39)

and √
N
(
P̂iδNIS − Piδ

) L−−−−→
N→∞

N (0, σ2iδ). (3.40)

One has:

σ2iδ = Varf̃

[
1{G(X)<0

fiδ(Xi)}
fi(Xi)

f(X)

f̃(X)

]
=

ˆ

1{G(X)<0}
f2iδ(xi)

f2i (xi)

f2(x)

f̃(x)
dx− P 2

iδ. (3.41)

This 
omes from Van der Vaart [98℄, 2.17.

σ2iδ 
an be 
onsistently estimated by:

σ̂2iδN =
1

N

N∑

n=1

[
1{G(xn)<0}

f2iδ(x
n
i )

f2i (x
n
i )

f2(xn)

f̃(xn)
− P̂ 2

iδNIS

]
. (3.42)
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Proposition 3.5.2

√
N

(
P̂NIS

P̂iδNIS
−
(
Pf

Piδ

))
L−−−−→

N→∞
N (0,ΣiδIS) (3.43)

where:

ΣiδIS =




´

1{G(X)<0}f2(x)

f̃(x)
dx− P 2

f

´

1{G(X)<0}
fiδ(xi)

fi(xi)
f2(x)

f̃(x)
dx− PfPiδ

´

1{G(X)<0}
fiδ(xi)

fi(xi)
f2(x)

f̃(x)
dx− PfPiδ

´

1{G(X)<0}
f2iδ(xi)

f2i (xi)
f2(x)

f̃(x)
dx− P 2

iδ


 . (3.44)

This 
omes a

ording to Van der Vaart [98℄, 2.18.

We propose the following estimator for ΣiδIS :

Σ̂NiδIS =





1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

)

− P̂ 2
NIS

1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

fiδ(xi)

fi(xi)

)

− P̂NISP̂iδNIS

1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

fiδ(xi)

fi(xi)

)

− P̂NISP̂iδNIS
1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

f2
iδ(xi)

f2
i (xi)

)

− P̂ 2
iδNIS




.

(3.45)

Proposition 3.5.3 Introdu
ing the fun
tion s(x, y) =
( y
x − 1

)
1{y>x} +

(
1− x

y

)
1{x>y}, denoting:

(i) Siδ = s(Pf , Piδ)

(ii) ŜNiδIS = s(P̂NIS , P̂iδNIS).

As s is di�erentiable in (P,Piδ) (see Proposition 3.2.2), one has:

√
N
(
ŜNiδIS − Siδ

) L−−−−→
N→∞

N (0, dTs ΣiδISds). (3.46)

The proof lies in Theorem 3.1 in Van der Vaart [98℄.

3.5.2 Coupling DMBRSI with subset simulation

We refer to Se
tion 1.2.3 for more details about subset simulation. The aim of the 
urrent se
tion

is to show that it is possible to use the results of a subset simulation algorithm to estimate the

quantity Piδ, the perturbed failure probability (see Equation 3.1).

Let us imagine, for the sake of 
larity, a two-step subset where the levels are �xed in advan
e.

Let us denote by A, B, 0 the thresholds to 
ross at the algorithm's steps, with A > B > 0.

We have PA =

ˆ

1{G(x)≤A}f(x)dx; PB =

ˆ

1{G(x)≤B}f(x)dx and Pf =

ˆ

1{G(x)≤0}f(x)dx.

Additionally, let us remind that

Piδ =

ˆ

1{G(x)≤0}
fiδ(xi)

fi(xi)
f(x)dx = E[1{G(Xiδ)≤0}] = P (G(Xiδ) ≤ 0) (3.47)

The algorithm starts with N points x(j),1, j = 1 . . . N distributed a

ording to f , the original

density. PA 
an be estimated by:

P̂A =
1

N

∑
1{G(x(j),1)≤A} (3.48)
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where one has:

E

[
P̂A

]
=

ˆ

1{G(x)≤A}f(x)dx = PA. (3.49)

Then, after a mutation/sele
tion step, one has N points x(j),2, j = 1 . . . N distributed a

ording

to f(x|A) = 1{G(x)≤A}f(x)

PA
. The following estimator is proposed for PB|A =

ˆ

1{G(x)≤B|G(x)≤A}f(x)dx =
´

1{G(x)≤B∩G(x)≤A}f(x)dx
´

1{G(x)≤A}f(x)dx
=
´

1{G(x)≤B}f(x)dx
´

1{G(x)≤A}f(x)dx
= PB

PA
:

P̂B

PA
=

1

N

∑
1{G(x(j),2)≤B}. (3.50)

One has:

E

[
P̂B

PA

]
=

ˆ

1{G(x)≤B}
1{G(x)≤A}f(x)

PA
dx =

´

1{G(x)≤B}f(x)dx

PA
=
PB

PA
(3.51)

After a se
ond mutation/sele
tion step, one has N points x(j),3, j = 1 . . . N distributed a

ording

to f(x|B) =
1{G(x)≤B}f(x)

PB
. The following estimator is proposed for P0|B =

ˆ

1{G(x)≤0|G(x)≤B}f(x)dx:

P̂0|B =
1

N

∑
1{G(x(j),3)≤0}. (3.52)

One 
an 
he
k that:

E

[
P̂0|B

]
=

ˆ

1{G(x)≤0}
1{G(x)≤B}f(x)

PB
dx =

´

1{G(x)≤0}f(x)dx

PB
=

P

PB
(3.53)

Finally, Pf = PA × PB|A × P0|B,A. Yet B ⇒ A thus P0|B,A = P0|B . P is estimated by:

P̂ = P̂AP̂B|AP̂0|B

Considering P̂A ,P̂B|A et P̂0|B as realisation of independent random variables

1

one has:

E

[
P̂
]
= E

[
P̂A

]
E

[
P̂B|A

]
E

[
P̂0|B

]
= PA × PB

PA
× P

PB
= P.

Then, it is observed that:

Piδ =
Piδ

PB

PB

PA
PA

Considering the N points x(j),3, j = 1..N distributed a

ording to f(x/B) =
1{G(x)≤B}f(x)

PB
.

Piδ

PB

is estimated by:

P̂iδ

PB
=

1

N

∑
1{G(x(j),3)≤0}

fiδ(x
(j),3
i )

fi(x
(j),3
i )

.

One 
an 
he
k that:

E

[
P̂iδ

PB

]
=

ˆ

1{G(x)≤0}
1{G(x)≤B}f(x)

PB

fiδ(xi)

fi(xi)
dx =

1

PB

ˆ

1{G(x)≤0}
fiδ(xi)

fi(xi)
f(x)dx =

Piδ

PB
.

1

This is not the 
ase in reality, the mutation step is just performed several times
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Considering

P̂iδ

PB
,

P̂B

PA
et P̂A as realisation of independent random variables

2

one has:

E

[
P̂iδ

]
= E

[
P̂iδ

PB

]
E

[
P̂B

PA

]
E

[
P̂A

]
= Piδ .

Con
lusion To 
ouple DMBRSI and subset simulation, one just has to perturb the points 
oming

from the last step of the subset. However, the varian
e of P̂iδ is intra
table so far. This will be the

obje
t of further resear
hes.

3.6 Dis
ussion and 
on
lusion

3.6.1 Con
lusion on the DMBRSI method

The method presented in this 
hapter gives relevant 
omplementary information in addition of

traditional SA methods applied to a reliability problem. Traditional SA methods provide variable

ranking, whereas the proposed method provides an indi
ation on the variation in the probability

of failure given the variation of parameter δ. This is useful when the pra
titioner is interested on

whi
h 
on�gurations of the problem lead to an in
rease of the failure probability. This might also

be used to assess the 
onservatism of a problem, if every variations of the input lead to de
rease in

the probability of failure. Additionally, it has three advantages:

� the ability for the user to set the most adapted 
onstraints 
onsidering his/her problem/obje
tive.

� The MC framework allowing to use previously done fun
tion 
alls, thus limiting the CPU 
ost

of the SA, and allowing the user to test several perturbations.

� They are easy to interpret.

We argue that with an adapted perturbation, this method 
an ful�ll the presented reliability engi-

neer's obje
tive (see Se
tion 3.3.3 for further dis
ussions on this topi
). From this point of view, the

DMBRSI are a good alternative to FORM/SORM's importan
e fa
tors (as they 
an provide wrong

results, see the Ishigami 
ase) and to Sobol' indi
es (as they are 
ostly and non-informative).

3.6.2 Equivalent perturbation

The question of "equivalent" perturbation arises from 
ases where all inputs are not identi
ally

distributed. Indeed, problems may emerge when some inputs are de�ned on in�nite intervals and

when other inputs are de�ned on �nite intervals (su
h as uniform distributions). We have proposed

three ways to deal with these problems:

� perform a mean perturbation relatively to the standard deviation, hen
e in
luding the spread

of the various inputs in their respe
tive perturbation;

� perform a quantile shifting;

� perform a parameters perturbation.

2

This is not the 
ase in reality
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3.6.3 Support perturbation

In most examples given throughout this 
hapter, the perturbations of the inputs left the support

of those variables unperturbed. However, a support modi�
ation has been tested on the Ishigami


ase where the parameters de�ning the support have been perturbed. Yet, we stress that given the

estimation method (reverse importan
e sampling), it is mandatory that the support of the perturbed

density is in
luded in the support of the original density. Thus one 
annot perturb the inputs so

that the perturbed support is wider than the original one.

3.6.4 Further work

Most of the further work will be devoted to adapting the estimator of the indi
es Siδ in term of

varian
e redu
tion and of number of fun
tion 
alls. Further work will be made with importan
e sam-

pling methods (test the proposed estimators). The adaptation of estimators using subset simulation

must also be done.

A perturbation based on an entropy 
onstraint might also be proposed. The di�erential entropy

of a distribution 
an be seen as a quanti�
ation of un
ertainty (Auder et al. [6℄). Thus an example

of (non-linear) 
onstraint on the entropy 
an be:

−
ˆ

fiδ(x) log fiδ(x)dx = −δ
ˆ

fi(x) log fi(x)dx.

Yet further 
omputations have to be made to obtain a tra
table solution of the KL minimization

problem under the above 
onstraint.

Another avenue worth exploring would be to 
hange the metri
s/divergen
es. That would amount

to 
hange the D in equation 3.9 (
hoi
e was made to take KLD); and to take another distan
e than

Hellinger's in the parameter perturbation 
ontext. This has to be tested.
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Chapter 4

Appli
ation to the CWNR 
ase

4.1 Introdu
tion

This fourth 
hapter presents the appli
ation of some of the developed methods to the CWNR 
ase.

This numeri
al model has been presented in the outline of the thesis, page 24. Remind that this

bla
k-box model provided the initial motivation for this thesis.

The software interfa
ing is done using the Open TURNS [2℄ software that manages the probabilist

part of the analysis. A wrapper 
alls the model when ne
essary. Con
erning the sensitivity analysis

part, post-pro
essing of the data obtained is done using the R software.

In this thesis, fo
us has been set on SA methods that are separated from the sampling step (see

Chapter 2), Chapter 3), thus the separation between the estimation of Pf and the sensitivity analysis.

To estimate Pf , the failure probability, FORM (see Se
tion 1.2.2.2) method and 
rude Monte-Carlo

(see Se
tion 1.2.1.1) have been used. Crude Monte-Carlo is 
onsidered to be the referen
e method

in this 
hapter. Importan
e sampling (see Se
tion 1.2.1.3) was available but was not used due to

the la
k of knowledge to set the importan
e densities. Subset simulation (see Se
tion 1.2.3) was

also available but was not used due to the fa
t that the Open TURNS module only provides an

estimation for Pf and not the sampling points.

The sensitivity analysis part then fo
uses on three methods: �rst, importan
e fa
tors (see Se
tion

1.3.2.2) are derived from the FORM sampling. Then, random forests (see Se
tion 2.2) are built on

the MC sample and sensitivity measures are obtained. Finally, DMBRSI (see Chapter 3) are used.

Several perturbations (mean, quantile and parameters) are proposed.

Sobol' indi
es (see Se
tion 1.4) are not tested in this 
hapter due to the limited information

provided and the high 
omputational 
ost. δSSi (Ak) indi
es (see Se
tion 2.3) are not used in this


hapter sin
e a sampling s
heme from subset simulation was not available.

This 
hapter is divided in three main se
tions, fo
using respe
tively on random input of dimension

3 (Se
tion 4.2), dimension 5 (Se
tion 4.3) and dimension 7 (Se
tion 4.4). Noti
e that the smaller

the dimension of the input, the more penalizing the 
ase (sin
e non-probabilised variables are set to

penalizing values). Thus the failure probability diminishes as the dimensionality growths. A �nal

se
tion (Se
tion 4.5) 
on
ludes.

4.2 Three variables 
ase

In this �rst se
tion, three variables are probabilised. Table 1 is partially reprodu
ed in Table 4.1 to

indi
ate whi
h distributions follow the variables. Table A.1 is a reminder of the inputs' densities.
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Random var. Distribution Parameters

Thi
kness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, s
ale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (b) = −1.53, ln (c) = 0.55

Table 4.1: Distributions of the random physi
al variables of the CWNR model - 3 variables

4.2.1 Estimating Pf

4.2.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 10000. 683 points
were failing points thus the failure probability is estimated by:

P̂f = 0.0683.

This will be 
onsidered as the referen
e result. The sampling s
heme will be used to build random

forests (Se
tion 4.2.2.1) and DMBRSI (Se
tion 4.2.2.2).

4.2.1.2 FORM

FORM has been used. 52 fun
tion 
alls have been done. However the estimated failure probability

is here of:

P̂FORM = 3.19 × 10−16,

whi
h is several orders of magnitude beneath the referen
e value. The results of FORM are not

trustworthy in this 
ase, therefore no sensitivity analysis will be performed with FORM in this 
ase.

Noti
e that the user is not warned that the FORM results are wrong. This is a major drawba
k of

this te
hnique.

4.2.2 Sensitivity Analysis

4.2.2.1 Random Forests

The methodology presented in Se
tion 2.2 is used along this se
tion. A forest of 500 trees is �tted

on the MC sample. The referen
e value ⌊
√
d⌋ is used as the number of variables randomly sele
ted

at ea
h step. In this 
ase, it means that 1 variable is sele
ted as d = 3.

Variable Thi
kness h Ratio

Index 0.01448048 0.10574811 0.02529668

Table 4.2: MDA index - 3 variables

MDA From Table 4.2, it 
an be inferred that the most in�uential variable is h, with 5 times as

mu
h in�uen
e as the se
ondly important variable, namely the ratio. Finally 
omes the thi
kness

with an index twi
e as small as the one of the ratio. However from the numeri
al results of Se
tion

2.2, it 
an be stated that the thi
kness has some in�uen
e on its own, a

ording to the MDA indi
es.
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Three variables 
ase

Variable Thi
kness h Ratio

Index 103.473 998.0205 169.5899

Table 4.3: Gini importan
e - 3 variables

Gini importan
e Table 4.3 assesses that the variable ranking is not modi�ed when swit
hing the

measure. The index of h is more than 5 times higher than the one of the ratio, whi
h is almost twi
e

as large as the one of the thi
kness. However, due to the fa
t that here the Gini importan
e is used,

it 
annot be 
ertain that the thi
kness has an in�uen
e on its own.

Model validation The 
onfusion matrix (on the out-of-bag samples) of the forest is presented in

Table 4.4.

Observed

Class predi
tion error

0 1

Predi
ted

0 9299 18 0.001931952
1 43 640 0.062957540

Table 4.4: Confusion matrix of the forest - 3 variables

It 
an be seen that the 
lass predi
tion error is around 30 times bigger for the failing points than

for the safe points. This is mu
h less than in the tests of Se
tion 2.2, but the model is still uneven.

4.2.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,

a mean shift, a quantile shift and a parameter shift will be applied on this test 
ase. It has been

dis
ussed further in Se
tion 3.3.1.3, and the �ood 
ase (Se
tion 3.4.7) might be used as an example.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points. The result is plot in Figure 4.1.

Figure 4.1 shows two tenden
ies. First the thi
kness and the ratio behave as follows: in
reasing

the mean of these variables slightly de
reases the failure probability whereas de
reasing their mean

slightly in
reases the failure probability. The e�e
t is a little bit stronger for the thi
kness, but

the 
on�den
e intervals are not well separated thus it is di�
ult to 
on
lude with 
ertainty on the

relative in�uen
e of these two variables. On the other hand, in
reasing the mean of h in
reases the

failure probability and de
reasing the mean of h strongly de
reases the failure probability. The e�e
t

is mu
h stronger for h than it is for the two other variables.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of su
h a perturbation for all the variables is plotted in Figure 4.2.
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Figure 4.1: Estimated indi
es Ŝiδ for the CWNR 
ase with a mean perturbation - 3 variables
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Figure 4.2: 5th per
entile perturbation on the CWNR 
ase - 3 variables

This graph shows that a quantile weight redu
tion for the thi
kness and the ratio diminishes

the failure probability, whereas it in
reases the failure probability for h. The e�e
t is reversed when
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Three variables 
ase

in
reasing the weight of the quantile. The in�uen
e is of the same order of magnitude for the three

variables, with a slightly smaller in�uen
e for the ratio. However, the 
on�den
e intervals for the

ratio and the thi
kness are not well separated.

The 1st quartile is then perturbed and the results are plotted in Figure 4.3.
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Figure 4.3: 1st

quartile perturbation on the CWNR 
ase - 3 variables

When perturbing less extreme values of the left-hand tail, the results are similar. In parti
ular,

the in�uen
es are of the same order of magnitude yet h has a larger in�uen
e than the thi
kness,

whi
h has a larger in�uen
e than the ratio. The 
on�den
e intervals are separated.

The median of the input distributions is then perturbed, the resulting indi
es are plotted in

Figure 4.4.

When perturbing the median, tenden
ies are similar to the two previous graphs. The in�uen
e

of h is larger than the in�uen
e of the other variables. The thi
kness has a larger in�uen
e than the

ratio. Con�den
e intervals are well separated.

The third quartile is then perturbed and the indi
es are plotted in Figure 4.5.
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Figure 4.4: Median perturbation on the CWNR 
ase - 3 variables
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Figure 4.5: 3rd quartile perturbation on the CWNR 
ase - 3 variables

Tenden
ies are similar to the three previous graphs. The in�uen
e of h is mu
h larger than the

in�uen
e of the thi
kness and of the ratio. Con�den
e intervals are well separated.
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Finally, the extreme right-hand tail is perturbed, this 
omes to a perturbation on the 95th

per
entile. Results are plotted in Figure 4.6.
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Figure 4.6: 95th per
entile perturbation on the CWNR 
ase - 3 variables

The in�uen
e of h over the two other variables is tremendous. This variable is mu
h more

sensitive to a right-hand tail perturbation than the thi
kness and the ratio.

As a 
on
lusion, the pra
titioner needs to be 
areful when modelling the right-hand tail of h.
The left-hand tail of the three variables is equally important, but the indi
es are mu
h smaller than

for the right-hand tail. Additionally, the 
ode seems to behave in a monotoni
 fashion.

Parameters shifting 6 parameters will be perturbed on this 
ase:

� a minimum and a maximum for the thi
kness;

� a s
ale and a shape for h;

� a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the

ratio.

These parameters are perturbed

1

and the estimated indi
es are plotted in fun
tion of the Hellinger

distan
e in Figure 4.7 as explained in Figure 3.8. 95% 
on�den
e intervals are provided as well.

First, the two parameters driving the thi
kness bear a small in�uen
e with respe
t to the others.

Diminishing the maximum of the thi
kness in
reases slightly the failure probability whereas in
reas-

ing its minimum slightly diminishes the failure probability. Se
ond, the s
ale of h has the largest

in�uen
e over the model. In
reasing it largely in
reases the failure probability whereas diminishes

it diminishes in a tremendous way the failure probability. The 
on�den
e intervals get broader yet

1

noti
e that the minimum of the thi
kness is only in
reased and the maximum is de
reased
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Figure 4.7: Parameters perturbation on the CNWR 
ase - 3 variables

stay well separated from the others. Third, in
reasing the shape of h strongly diminishes the failure

probability. De
reasing the shape of h in
reases the failure probability. The e�e
t of this augmen-

tation is not linear, as the growing tenden
y seems to vanish when de
reasing strongly the shape.

This is an interesting result. Then, diminishing the meanlog of the ratio in
reases slightly the failure

probability whereas in
reasing it slightly diminishes the failure probability. Finally, the sdlog of the

ratio behaves in a similar manner, yet with a smaller in�uen
e. The �nal ranking of the parameters

in terms of in�uen
e is: the s
ale, the shape, the sdlog. Other parameters bear a quasi-null in�uen
e.

These results are 
onsistent with the ones provided by the mean and the quantile perturbation.

4.2.2.3 Con
lusion

On the three variables CWNR 
ase, the following 
an be 
on
luded:

� The ranking provided by the forest is h, ratio then thi
kness.

� In terms of mean perturbation, the indi
es asso
iated to h have a high (absolute) value whereas

the ones asso
iated to the two other variables are mu
h smaller.

174



Five variables 
ase

� The quantile perturbation has shown that the right-hand tail of h has the more impa
t on the

failure probability. The left-hand tail of the three variables is equally important. Additionally,

the 
ode seems to behave in a monotoni
 fashion.

� The parameters perturbation has demonstrated that the model is mostly driven by the s
ale

and the shape of h and by the sdlog of the ratio.

4.3 Five variables 
ase

In this se
tion, �ve variables are probabilised. Table 1 is partially reprodu
ed in Table 4.5 to remind

whi
h distributions follows the variables. Table A.1 is a reminder of the inputs' densities.

Random var. Distribution Parameters

Thi
kness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, s
ale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (b) = −1.53, ln (c) = 0.55

Azimuth �aw (°) Uniform a = 0, b = 360

Altitude (mm) Uniform a = −5096, b = −1438

Table 4.5: Distributions of the random physi
al variables of the CWNR model - 5 variables

4.3.1 Estimating Pf

4.3.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 105. Only 81
points were failing points thus the failure probability is estimated by:

P̂f = 0.00081.

This will be 
onsidered as the referen
e result. The sampling s
heme will be used to build random

forests (Se
tion 4.3.2.1) and DMBRSI (Se
tion 4.3.2.2).

4.3.1.2 FORM

FORM has been used. 106 fun
tion 
alls have been done. However the estimated failure probability

is here of:

P̂FORM = 6.28 × 10−2,

whi
h is two orders of magnitude above the referen
e value (the failure probability is overestimated).

The results of FORM are not trustworthy here, therefore no sensitivity analysis will be performed

with FORM in this 
ase.

4.3.2 Sensitivity Analysis

4.3.2.1 Random Forests

The methodology presented in Se
tion 2.2 is used along this se
tion. A forest of 500 trees is �tted

on the MC sample. 2 variables are sele
ted at ea
h step of the tree building.
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Variable Thi
kness h Ratio Azimuth Altitude

Index 3.99 × 10−5 5.16 × 10−4 5.52 × 10−5 3.91× 10−4 3.19 × 10−4

Table 4.6: MDA index - 5 variables

MDA Indi
es are quite 
lose to 0, as if no variable was in�uential. The variables with the strongest

indi
es are h, the azimuth and the altitude.

Variable Thi
kness h Ratio Azimuth Altitude

Index 19.79398 53.43655 22.38101 37.72627 28.28982

Table 4.7: Gini importan
e - 5 variables

Gini importan
e Indi
es are smaller than in the tests. The ranking provided is the following: h,
azimuth, altitude, the ratio and the thi
kness.

Model validation The 
onfusion matrix (on the out-of-bag samples) of the forest is presented in

Table 4.8.

Observed

Class predi
tion error

0 1

Predi
ted

0 99917 2 2× 10−5

1 59 22 0.73

Table 4.8: Confusion matrix of the forest - 5 variables

It 
an be seen that the 
lass predi
tion error for the failure points is above 0.7. The �tted model

is then unusable. No 
on
lusion should be drawn from this forest, therefore the rankings provided

above are not to be 
onsidered. This la
k of quality of the �tted model is a major drawba
k of the

method.

4.3.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,

a mean shift, a quantile shift and a parameter shift will be applied on this test 
ase.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points. The result is plot in Figure 4.8.

Figure 4.8 shows three di�erent behaviours. First the thi
kness and the ratio behave as is the

three variables 
ase: in
reasing the mean of these variables slightly de
reases the failure probability

whereas de
reasing their mean slightly in
reases the failure probability. The e�e
t is a little bit

stronger for the thi
kness when in
reasing the mean, while it is a little bit stronger for the ratio

when de
reasing the mean. The 
on�den
e intervals are not well separated here. Then, in
reasing

the mean of h in
reases the failure probability and de
reasing the mean of h strongly de
reases

the failure probability. The behaviour is the same for the altitude with a smaller impa
t. Finally,
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Figure 4.8: Estimated indi
es Ŝiδ for the CWNR 
ase with a mean perturbation - 5 variables

in
reasing or de
reasing the mean of the azimuth slightly in
reases the failure probability. The two

more in�uential variables here are h and the altitude, yet it has to be noti
ed that h is of primary

importan
e.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of su
h a perturbation for all the variables is plotted in Figure 4.9.

This graph shows two opposite behaviours. First, de
reasing the weight of the 5th per
entile

de
reases the failure probability for the thi
kness, the ratio and the azimuth. For these variables,

in
reasing the weight of the 
onsidered quantile in
reases the failure probability. Then, the behaviour

is reversed for h and the altitude. Con
erning the variable ranking, the azimuth has the more

in�uen
e, while the altitude and h have the same small in�uen
e. The ratio has a larger in�uen
e

than the thi
kness, but the 
on�den
e intervals are not well separated here.

The 1st quartile is then perturbed and the results are plotted in Figure 4.10.

When perturbing less extreme values of the left-hand tail, the behaviour are similar, but the

order of in�uen
e is modi�ed. In parti
ular, the azimuth that was the most in�uential variable in

Figure 4.9 is now the less in�uential. Then 
omes the thi
kness, and the three remaining variables

have an equivalent in�uen
e.

The median of the input distributions is then perturbed, the resulting indi
es are plotted in

Figure 4.11.

When perturbing the median, tenden
ies are similar to the two previous graphs for the thi
kness,

h, the ratio and the altitude. However, the tenden
y is modi�ed for the azimuth: in
reasing the

weight of the median slightly de
reases the failure probability whereas de
reasing the weight in
reases
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Figure 4.9: 5th per
entile perturbation on the CWNR 
ase - 5 variables
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Figure 4.10: 1st quartile perturbation on the CWNR 
ase - 5 variables
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Figure 4.11: Median perturbation on the CWNR 
ase- 5 variables

the failure probability. The in�uen
e of h is the largest, then 
omes the altitude, followed by the

ratio and the thi
kness. The azimuth has the smallest in�uen
e.

The third quartile is then perturbed and the indi
es are plotted in Figure 4.12.

Tenden
ies are similar to the previous graphs. The in�uen
e of h and of the altitude is larger

than the one of the other variables. Con�den
e intervals are well separated ex
ept for the ratio and

the thi
kness.

Finally, the extreme right-hand tail is perturbed, this 
omes to a perturbation on the 95th

per
entile. Results are plotted in Figure 4.13.
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Figure 4.12: 3rd quartile perturbation on the CWNR 
ase - 5 variables
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Figure 4.13: 95th per
entile perturbation on the CWNR 
ase - 5 variables

The in�uen
e of h over the other variables is tremendous. The azimuth is also more in�uential
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than the three remaining variables.

As a 
on
lusion, the pra
titioner needs to be 
areful when modelling the right-hand tail of h,
and the tails of the azimuth. In terms of value of the indi
es, the right-hand tails have mu
h more

impa
t than the left-hand tails. Additionally, this analysis revealed the non-monotoni
 behaviour of

the azimuth.

Parameters shifting 10 parameters will be perturbed on this 
ase:

� a minimum and a maximum for the thi
kness;

� a s
ale and a shape for h;

� a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the

ratio.

� a minimum and a maximum for the azimuth;

� a minimum and a maximum for the altitude;

These parameters are perturbed so that the support is not in
reased: the minimums are only

in
reased and the maximums are de
reased. The estimated indi
es are plotted in fun
tion of the

Hellinger distan
e in Figure 4.14 as explained in Figure 3.8. 95% 
on�den
e intervals are provided

as well.

Due to the large number of parameters perturbed, the image is di�
ult to read. However, the

in�uen
e of the parameters driving h (plotted in red) is tremendous. The indi
es asso
iated to the

s
ale are larger than the ones asso
iated to the shape, however the width of the 
on�den
e intervals

grows quite large, thus it is di�
ult to 
on
lude on these two parameters. Then, the maximum of

the altitude seems to have the most in�uen
e over the failure probability. Diminishing the maximum

of the altitude leads to a de
rease of the failure probability. It is followed by the meanlog of the

ratio. The indi
es asso
iated with other parameters are too noisy and sta
ked around 0.

4.3.2.3 Con
lusion

On the �ve variables CWNR 
ase, the following 
an be 
on
luded:

� The ranking provided by the forest is not to be 
onsidered as the model is badly �tted.

� In terms of mean perturbation, the indi
es asso
iated to h have the highest (absolute) value.

Then 
omes the altitude, followed by the ratio, the azimuth and the thi
kness. Noti
e that

the relative in�uen
e of the ratio, the azimuth and the thi
kness is hardly separable.

� The quantile perturbation has shown that the right-hand tail of h, and the tails of the azimuth

are more in�uential than the tails of others variable. The right-hand tails have mu
h more

impa
t than the left-hand tails though. Additionally, this analysis revealed the non-monotoni


behaviour of the azimuth.

� The parameters perturbation has demonstrated that the model is mostly driven by the s
ale

and the shape of h. Then, the maximum of the altitude seems to have the most in�uen
e over

the failure probability, followed by the meanlog of the ratio.

It is noti
eable that the ranking di�ers from the three variables 
ase, yet the dimension of the

�aw h is still the most in�uential variable. Additionally, it seems interesting to noti
e that the

altitude is in�uential, but mostly in the right-hand tail (see Figure 4.12).
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Figure 4.14: Parameters perturbation on the CNWR 
ase - 5 variables

4.4 Seven variables 
ase

In this se
tion, seven variables are probabilised. Table 1 is reprodu
ed in Table 4.9 to remind whi
h

distributions follows the variables. Table A.1 is a reminder of the inputs' densities.

Random var. Distribution Parameters

Thi
kness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, s
ale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (b) = −1.53, ln (c) = 0.55

Azimuth �aw (°) Uniform a = 0, b = 360

Altitude (mm) Uniform a = −5096, b = −1438

σ∆TT Gaussian µ = 0, σ = 1

σRes Gaussian µ = 0, σ = 1

Table 4.9: Distributions of the random physi
al variables of the CWNR model - 7 variables
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4.4.1 Estimating Pf

4.4.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 7 × 106. Noti
e
that this samples took several weeks to be 
omputed. 468 points were failing points thus the failure

probability is estimated by:

P̂f = 6.68 × 10−5.

This will be 
onsidered as the referen
e result.

4.4.1.2 FORM

FORM has been used. 183 fun
tion 
alls have been done. The estimated failure probability is here

of:

P̂FORM = 4.23 × 10−7,

whi
h is two orders of magnitude under the referen
e value (the failure probability is underestimated).

The results of FORM are not trustworthy in this 
ase.

4.4.2 Sensitivity Analysis

4.4.2.1 Random Forests

The methodology presented in Se
tion 2.2 is used along this se
tion. We tried to �t a forest of 500
trees on the MC sample whi
h dimension was 7× 7000000, with 2 variables sele
ted at ea
h step of

the tree building. However the �tting step failed due to the size of the sample (as in Se
tion 2.2.5.2,

paragraph "in
reasing the sample size").

4.4.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,

a mean shift, a quantile shift and a parameter shift will be applied on this test 
ase.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points. The result is plot in Figure 4.15.

Three di�erent behaviours 
an be observed. When in
reasing the mean of h, of the altitude

and of σ∆TT it in
reases the failure probability while when de
reasing their means it de
reases the

failure probability. The e�e
t is reversed for the thi
kness, the ratio and σRes. Finally, in
reasing or
de
reasing the mean of the azimuth slightly in
reases the failure probability. In terms of amplitude,

three variables di�erentiate themselves from the others: h, σ∆TT and σRes. Others variables have
a smaller in�uen
e and their 
on�den
e intervals 
ontains 0.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of su
h a perturbation for all the variables is plotted in Figure 4.16.

It �rst should be noti
es that the indi
es for h and for σ∆TT 
oin
ide. This graph shows

two opposite behaviours. First, de
reasing the weight of the 5th per
entile de
reases the failure

probability for the thi
kness, the ratio, the azimuth and for σRes. For these variables, in
reasing

the weight of the 
onsidered quantile in
reases the failure probability. Then, the behaviour is reversed

for h, the altitude and σ∆TT . Con
erning the variable ranking, σRes has the more in�uen
e. Then
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Figure 4.15: Estimated indi
es Ŝiδ for the CWNR 
ase with a mean perturbation - 7 variables


omes the azimuth that has a medium in�uen
e, while the rest of the variables have the same small

in�uen
e.

The 1st quartile is then perturbed and the results are plotted in Figure 4.17.

The indi
es for h and for the altitude 
oin
ide. When perturbing less extreme values of the left-

hand tail, the behaviour are similar, but the order of in�uen
e is modi�ed. The azimuth that was

an in�uential variable in Figure 4.16 is now the less in�uential. The two most in�uential variables

are σ∆TT and σRes.

The median of the input distributions is then perturbed, the resulting indi
es are plotted in

Figure 4.18.

When perturbing the median, tenden
ies are similar to the two previous graphs for all the

variables but the azimuth. Indeed in
reasing or de
reasing the weight of the median for this variable

does not impa
t the failure probability. The in�uen
e of σ∆TT is the largest, followed by h and

σRes that have a similar impa
t (but a di�erent behaviour). Then 
omes the ratio and the thi
kness.

The two other variables have a small to null impa
t.

The third quartile is then perturbed and the indi
es are plotted in Figure 4.19.

Tenden
ies are similar to the previous graphs ex
ept for the altitude and the thi
kness. The

in�uen
e of h and of σ∆TT is larger than the one of the other variables. The impa
t of the ratio

and of σRes is similar.

Finally, the extreme right-hand tail is perturbed, this 
omes to a perturbation on the 95th

per
entile. Results are plotted in Figure 4.20.

This �gure shows 
learly the impa
t of the following variables (for whi
h in
reasing the weight

of the quantile de
reases the failure probability), ordered by in�uen
e: h, σ∆TT , the azimuth. The

others variables have a small to null impa
t.
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Figure 4.16: 5th per
entile perturbation on the CWNR 
ase - 7 variables
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Figure 4.17: 1st quartile perturbation on the CWNR 
ase - 7 variables

185



4. Appli
ation to the CWNR 
ase

0.3 0.4 0.5 0.6 0.7

−
0
.2

0
.0

0
.2

0
.4

δ

S
iδ^

Thickness

h

Ratio

Azimuth

Altitude

σ∆TT

σRes
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Figure 4.19: 3rd quartile perturbation on the CWNR 
ase - 7 variables
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Figure 4.20: 95th per
entile perturbation on the CWNR 
ase - 7 variables

As a 
on
lusion, the pra
titioner needs to be 
areful when modelling the right-hand tail of h
and σ∆TT altogether with the left-hand tail of σRes. The tails of the azimuth need 
aution too.

Additionally, this analysis revealed the non-monotoni
 behaviour of the azimuth for the 7 variables


ase.

Parameters shifting 14 parameters will be perturbed on this 
ase:

� a minimum and a maximum for the thi
kness;

� a s
ale and a shape for h;

� a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the

ratio.

� a minimum and a maximum for the azimuth;

� a minimum and a maximum for the altitude;

� a mean and a standard deviation for σ∆TT ;

� a mean and a standard deviation for σRes.

These parameters are perturbed so that the support is not in
reased: the minimums are only

in
reased and the maximums are de
reased. The estimated indi
es are plotted in fun
tion of the

Hellinger distan
e in Figure 4.21 as explained in Figure 3.8. 95% 
on�den
e intervals are provided

as well.

Due to the large number of parameters perturbed, the image is very di�
ult to read.
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Figure 4.21: Parameters perturbation on the CNWR 
ase - 7 variables

However, the in�uen
e of the parameters driving h (plotted in red), of σ∆TT and of σRes is

tremendous. The impa
t of a parameter perturbation for other variables is mu
h smaller. In parti
-

ular for h, in
reasing the s
ale or de
reasing the shape in
reases the failure probability. Con
erning

σ∆TT , in
reasing the mean and the standard deviation in
reases the failure probability while de-


reasing these parameters has a mu
h smaller impa
t. Finally when shifting the parameters of σRes
it 
an be seen that de
reasing the mean or in
reasing the standard deviation strongly in
reases the

failure probability. However the width of the 
on�den
e intervals grows quite large.

4.4.2.3 Con
lusion

On the seven variables CWNR 
ase, the following 
an be 
on
luded:

� The forest model 
ould not be �tted due to the size of the sample.

� In terms of mean perturbation, the indi
es asso
iated to h, σ∆TT and σRes have the highest
(absolute) value.
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� The quantile perturbation has shown that the right-hand tail of h and σ∆TT altogether with

the left-hand tail of σRes and the tails of the azimuth are more in�uential than the tails

of others variable. Additionally, this analysis revealed the non-monotoni
 behaviour of the

azimuth.

� The parameters perturbation has demonstrated that the model is mostly driven by the pa-

rameters of h of σ∆TT and of σRes . This 
on�rms the 
on
lusion of the mean perturbation.

It is noti
eable that the ranking di�ers from the three and the �ve variables 
ase. However the

dimension of the �aw h is still an in�uential variable.

4.5 Con
lusion

Con
erning the Pf estimation part, the MC method is still the referen
e method on an industrial


ode. The major drawba
k is of 
ourse the 
omputational time needed. FORM is wrong in all the


ases and should not be used.

Con
erning the sensitivity analysis part, the random forest te
hnique provides questionable re-

sults, sin
e the �tted models are uneven or bad. This method is in
on
lusive at the moment.

DMBRSI seems an adapted method to perform sensitivity analysis on a failure event. Several

tunings for several problems have been tested. However, if a single graph had to be provided to

de
ision makers, we would present the mean perturbation one, as it 
arries most of the information.

In all the 
on�guration studied, h is a priority variable. This is also the 
ase for σ∆TT and

σRes in the 7 variables 
ase.

The improvement perspe
tives of this study are:

� to 
ombine subset simulation with the DMBRSI. To do so, an implementation of subset sim-

ulation that provides the sampling s
heme must be performed;

� to 
ombine importan
e sampling with the DMBRSI, now that the priority zones are known.
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Summary and 
ontributions

This thesis' �rst obje
tive was to perform a sensitivity analysis on a bla
k-box model, the CWNR


ase. Be
ause the quantity of interest is a (small) failure probability, appropriate methods had to

be used. Thus this thesis fo
used on two �elds: stru
tural reliability in one hand, and sensitivity

analysis on the other hand.

First step was a bibliographi
al 
hapter (Chapter 1). This 
hapter aimed at 
larifying the main

existing te
hniques to estimate a failure probability (Se
tion 1.2) and the main sensitivity analysis

methods (Se
tion 1.3). Then one of the most used sensitivity analysis te
hnique (Sobol' indi
es)

was tested on reliability toy-
ases (Se
tion 1.4). Sobol' indi
es applied to a failure indi
ator have

highlighted a 
apa
ity to distinguish the non-in�uential from the in�uential variables. However, tests

have shown that the following 
on�guration -low �rst-order indi
es, high total order indi
es- is often

present. Therefore the information provided by su
h indi
es is limited and may only 
on�rm that all

the variables intera
t to 
ause the failure event. Next, a moment-independent method (Borgonovo's

δi indi
es) was tested on reliability toy-
ases (Se
tion 1.5). However, the produ
ed indi
es were

rather small with a positive bias in the estimations. The 
on
lusion is that moment independent

te
hniques are not adapted within the reliability 
ontext. A synthesis of the tested methods was

proposed in Se
tion 1.6. Finally, a dis
ussion on the meaning and obje
tives of sensitivity analysis

when dealing with failure probabilities, that we argue might be of use for the pra
titioner, was


ondu
ted in Se
tion 1.7.

The 
on
lusion of this bibliographi
al 
hapter is that there is a need for new sensitivity analysis

methods in the reliability 
ontext. The next two 
hapters aimed at rea
hing this obje
tive.

The se
ond 
hapter fo
used on sensitivity analysis te
hniques with a variable ranking obje
tive.

Two sensitivity analysis methods were presented, thought as by-produ
ts of two sampling te
hniques

(Monte-Carlo and subset simulation). The �rst part of the 
hapter (Se
tion 2.2) was devoted to

importan
e measures derived from random forests.

Reminders on spe
i�
 binary 
lassi�ers (random trees) were proposed altogether with a review

on stabilisation methods, in
luding random forests. The importan
e measures (Gini importan
e and

Mean De
rease A

ura
y importan
e) were eli
ited. Then a bibliographi
al step was performed on

the "sensitivity analysis using random forests" theme. Then the importan
e measures have been

tested on reliability toy-
ases. The 
on
lusions were that the Mean De
rease A

ura
y importan
e

indi
es seemed more adapted sin
e the Gini importan
e indi
es 
ould a�e
t a non-null importan
e

to a non-in�uential variable. However, it must be stressed that the �tted models' quality is not

satisfying. Indeed, from the imbalan
e of the 
lasses in the original sample, there is a tenden
y in

getting "weak" predi
tors that make mu
h more predi
tion error on the minority 
lass. This is a

problem when drawing 
on
lusions on sensitivity analysis with these types of models. The se
ond
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part of the 
hapter (Se
tion 2.3) proposed a new sensitivity measure based upon the departure, at

ea
h step of a subset method, between ea
h input original density and the density given the subset

rea
hed. Several tunings of the departure 
an be used. However this sensitivity analysis method

gives a similar information that the one provided by the Sobol' indi
es on the failure indi
ator.

The third 
hapter presented an original sensitivity analysis method, 
alled Density Modi�
ation

Based Reliability Sensitivity Indi
es (DMBRSI). This sensitivity index is based upon input density

modi�
ation, and is adapted to failure probabilities. The proposed indi
es re�e
t the impa
t of

an input density modi�
ation on the failure probability. One needs to di�erentiate the proposed

index and the perturbations. The indi
es are independent of the perturbation in the sense that

the pra
titioner 
an set the perturbation adapted to his/her problem. The sensitivity index 
an

be 
omputed using the sole set of simulations that has already been used to estimate the failure

probability, thus limiting the number of 
alls to the numeri
al model.

First, the indi
es and their theoreti
al properties have been presented in Se
tion 3.2, altogether

with the estimation methodology. For the sake of simpli
ity, a Monte-Carlo sampling s
heme was


onsidered. Se
ond, Se
tion 3.3 dealt with several perturbation methodologies. These perturbations


an be 
lassi�ed into two main families: Kullba
k-Leibler minimization methods and parameter

perturbations methods. The behaviour of the indi
es was examined in Se
tion 3.4 through numeri
al

simulations. In Se
tion 3.5, it was proposed to improve the DMBRSI estimation with importan
e

sampling and with subset simulation.

This 
hapter presented an original method designed for failure probabilities. One of the main

advantage is the possibility to modify the perturbation applied without new 
alls to the model.

However a major drawba
k persists: when there are too many parameters to perturb, the results

may be 
ompli
ated to interpret.

The fourth 
hapter presented the appli
ation of some of the developed methods to the CWNR


ase. Remind that this bla
k-box model provided the initial motivation for this thesis.

To estimate Pf , two methods were used: 
rude Monte-Carlo and FORM. It appeared that FORM

was wrong in every 
ase, thus Monte-Carlo stays the referen
e method.

The sensitivity analysis part then fo
used on two methods: random forests (Chapter 2), and

DMBRSI (Chapter 3). Sobol' indi
es (see Se
tion 1.4) were not tested in this 
hapter due to the

limited information provided and their high 
omputational 
ost. δSSi (Ak) indi
es (see Se
tion 2.3)

were not used either sin
e a sampling s
heme from subset simulation was not available.

This 
hapter is divided in three main se
tions, fo
using respe
tively on random input of dimension

3 , dimension 5 and dimension 7. Noti
e that the smaller the dimension of the input, the more

penalizing the 
ase (sin
e non-probabilised variables are set to penalizing values). Thus the failure

probability diminishes as the dimensionality growths.

DMBRSI appeared as an adapted method to perform sensitivity analysis on a failure event. In

all the 
on�gurations studied, h (the dimension of the �aw) is a priority variable. This is also the


ase for σ∆TT and σRes in the 7 variables 
ase.

Future avenues for resear
h and appli
ation

The methods presented in Chapter 2 
an be improved. Spe
i�
ally, there is a need to improve the

binary 
lassi�ers (random forests). The MDA indi
es when using subset simulation must be imple-

mented Another perspe
tive of improvement, when using the δSSi (Ak) indi
es, is to 
ondu
t a work
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in
luding the 
opula theory.

The DMBRSI introdu
ed in Chapter 3 have several ways of improvement. Most of the further

work will be devoted to adapting the estimator of the indi
es Siδ in terms of varian
e redu
tion and

of number of fun
tion 
alls. The adaptation of estimators using subset simulation must also be done.

A perturbation based on an entropy 
onstraint might also be proposed. Yet further 
omputations

have to be made to obtain a tra
table solution of the KL minimization problem. Another avenue

worth exploring would be to 
hange the metri
s/divergen
es. That would amount to 
hange the

D in equation 3.9 (
hoi
e was made to take KLD); and to take another distan
e than Hellinger's

in the parameter perturbation 
ontext. Another avenue might be the introdu
tion of a stru
tural

dependen
y between the marginals of the input ve
tor, and to perturb this dependen
y via the


opula theory.

Further work 
an be done in Chapter 4. The main improvement perspe
tives of this study is

to use subset simulation, to improve the estimation of Pf and to redu
e the 
omputational time.

A 
oupling with the random forests via adapted MDA indi
es might be of interest as well. This


ould also allow the use of the 
.d.f. departure measures δSSi (Ak). Still to redu
e the varian
e of the

estimators, importan
e sampling must be tested.

Broader perspe
tives have to be 
onsidered. In parti
ular, the use of sequential methods 
oupled

with meta-models (Be
t et al. [9℄) is to be tested.

Re
ently, Fort et al. [35℄ introdu
ed a new sensitivity index as a generalisation of Sobol' indi
es.

They propose an adapted 
ontrast fun
tion for ea
h statisti
al purpose. It is interesting to noti
e

that the 
ontrast adapted to a threshold ex
eed is presented. This index then has to be tested and


ompared with DMBRSI in further work.
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Con
lusion

Communi
ations

Publi
ations

� P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa, and B. Iooss. Density modi�-


ation based reliability sensitivity analysis. Journal of Statisti
al Computation and Simulation,

In press, 2014

� E. Sergienko, P. Lemaître, A. Arnaud, D. Busby and F. Gamboa. Reliability sensitivity analysis

based on probability distribution perturbation with appli
ation to CO2 storage. A

epted with

minor reviews in Stru
tural Safety, 2014

Oral presentations

� P. Lemaître and A. Arnaud. Hiérar
hisation des sour
es d'in
ertitudes vis à vis d'une proba-

bilité de dépassement de seuil - Une méthode basée sur la pondération des lois. In Pro
eedings

des 43 èmes Journées de Statistique, Tunis, Tunisia, June 2011.

� P. Lemaître. Analyse de sensibilité pour des probabilités de dépassement de seuil. In Pro
eed-

ings of GdR MASCOT NUM, Bruyères-le-Châtel, Fran
e, Mar
h 2012.

� P. Lemaître, E. Sergienko, F. Gamboa and B. Iooss. A global sensitivity analysis method for

reliability based upon density modi�
ation. In Pro
eedings of SIAM Conferen
e on Un
ertainty

Quanti�
ation, Raleigh, North Carolina USA, April 2012.

� A.L. Popelin, A. Dutfoy and P. Lemaître. Open TURNS: Open sour
e Treatment of Un
er-

tainty, Risk 'N Statisti
s. In Pro
eedings of SIAM Conferen
e on Un
ertainty Quanti�
ation,

Raleigh, North Carolina USA, April 2012.

� P. Lemaître, A. Arnaud and B. Iooss. Sensitivity analysis methods for a failure probability.

In Pro
eedings of Lambda Mu 18, Tours, Fran
e, O
tober 2012.

Poster

� P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa, and B. Iooss. Sensitivity

analysis method for failure probability. Poster presented at SAMO 2013, Ni
e, Fran
e, June

2013.

Software developments

� P. Lemaître. Density modi�
ation based reliability sensitivity indi
es (DMBRSI Fun
tion). R

Sensitivity Pa
kage: http://
ran.r-proje
t.org/web/pa
kages/sensitivity/
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Appendix A

Distributions formulas

Distribution Parameters pdf Support

Uniform a,b f(x) = 1
b−a [a, b]

Weibull a, b, c f(x) = c
b

(
x−a
b

)c−1
exp

[
−
(
x−a
b

)c]
x ≥ a

Lognormal µ, σ f(x) = 1
xσ

√
2π
e−

(lnx−µ)2

2σ2 x > 0

Gaussian µ,σ f(x) = 1
σ
√
2π
e−

1
2(

x−µ
σ )

2

]−∞,+∞[

Table A.1: Distributions of the random physi
al variables taken for the CWNR models.
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Appendix B

Test 
ases

In the present subse
tion, usual sensitivity test 
ases will be presented. They will be used as

ben
hmark 
ases for the sensitivity analysis methods. One should note that these test 
ases return

binary values, failure or non-failure of the studied system. One should noti
e that the fo
us is set

on the probability Pf = P(G(X) ≤ 0).

B.1 Hyperplane test 
ase

For the �rst 
ase, X is set to be a d−dimensional ve
tor, with d independent marginals normally

distributed. Unless otherwise mentioned (that is to say for the last 
ase), one has fi ∼ N (0, 1) for
i = 1, .., d. The failure fun
tion G(.) is de�ned as:

G(X) = k −
d∑

i=1

aiXi (B.1)

where k is a threshold and a = (a1, . . . , ad) are the parameters of the model. One 
an see that

the model is solely linear. What 
an be expe
ted in terms of SA is that the in�uen
e of ea
h variable

on Pf depends on its 
oe�
ient, namely ai. The greater the absolute value of the 
oe�
ient is, the

bigger the expe
ted in�uen
e is. One 
an, by adjusting k, set the failure probability Pf to a value

of interest. An expli
it expression for Pf 
an be given as the sum of the d variables behaves like a

Gaussian distribution with parameters 0 and standard deviation

√√√√
d∑

i=1

a2i , unless in the last 
ase.

In table B.1 the usual test 
ases that will be employed throughout the do
ument are detailed.

Number of variables Values of ai Value of k Value of P

4 (1,−6, 4, 0) 16 0.014

5 ai = 1 ∀i = 1 : 5 6 0.0036

15
ai = 1 ∀i = 1 : 5
ai = 0.2 ∀i = 6 : 10
ai = 0 ∀i = 11 : 15

6 0.00425

5 a = (12 , ...,
1
10 ) 5 0.0036

Table B.1: Usual hyperplane test 
ases
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B. Test 
ases

In the �rst test 
ase, with the spe
i�
 values of a, the in�uen
e of X2 is greater than the in�uen
e

of X3 whi
h is greater than X1's. X4 has no impa
t on the output. It should be noted that X1 and

X3 The aim of 
hoosing one non-in�uential variable is to assess if the SA methods 
an identify this

variable as non-in�uential on the failure probability.

In the se
ond test 
ase, with all the 
omponents equally in�uential, the aim is to assess or in�rm

the 
apability of the SA method to give the same importan
e to ea
h input.

In the third 
ase, the SA method is put to the test of determining the in�uential from the

little-in�uential and non-in�uential variables.

In the last test 
ase, the impa
t of having variables with the same importan
e, but distributed

with a di�erent spread is studied. Pre
isely, variables are su
h that fi ∼ N (0, σ = 2i) for i = 1..5.
Thus given the ai, the variables have the same impa
t on the failure probability. The aim of this test

is to assess or in�rm the 
apability of the SA method to give to ea
h equally 
ontributing variable

the same importan
e, despite their di�erent spread.

B.2 Tresholded Ishigami fun
tion

The Ishigami fun
tion (Ishigami [51℄) is a 
ommon test 
ase in SA sin
e it has a 
omplex expres-

sion, with intera
tions between the variables. A modi�ed version of the Ishigami fun
tion will be


onsidered here. A threshold is added to the value obtained with the regular expression and this is


onsidered as the failure fun
tion. Therefore:

G(X) = sin (X1) + 7 sin2 (X2) + 0.1X4
3 sin (X1) + k (B.2)

where k = 7. X is a 3−dimensional ve
tor of independent marginals uniformly distributed on

[−π, π] . In �gure B.1, the failure points (where G(x) < 0) are plotted in a 3-d s
atterplot.

Figure B.1: Ishigami failure points from a MC sample
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Flood 
ase

The failure probability here is roughly P̂ = 5.89 × 10−3
(estimated by Monte-Carlo te
hnique,

see se
tion 1.2.1). The 
omplex repartition of the failure points 
an be noti
ed. Those points lay in

a zone de�ned by the negative values of X1, the extremal and mean values of X2 (around −π, 0 and

π), and the extremal values of X3 (around −π and π)

B.3 Flood 
ase

The goal of this test 
ase is to assess the risk of a �ood over a dyke for the safety of industrial

installations (Bernardara [10℄). This 
omes down to model the level of a �ood. As a fun
tion

of hydrauli
al parameters, many of them being randomized to a

ount for un
ertainty. From a

simpli�
ation of the Saint-Venant equation, a �ood risk model is obtained.

The quantity of interest is the di�eren
e between the level of the dyke and the height of water. If

this quantity is negative, the installation is �ooded. Hydrauli
 parameters are the following: Q the

�ow rate, L the water
ourse se
tion length studied, B the water
ourse width, Ks the water
ourse

bed fri
tion 
oe�
ient (also 
alled Stri
kler 
oe�
ient), Zm and Zv respe
tively the upstream and

downstream bottom water
ourse level above sea level and Hd the dyke height measured from the

bottom of the water
ourse bed. The water level model is expressed as:

H =


 Q

KsB
√

Zm−Zv

L




3
5

. (B.3)

Therefore the following quantity is 
onsidered:

G = Hd − (Zv +H). (B.4)

Among the model inputs, the 
hoi
e is made that the following variables are known pre
isely:

L = 5000 (m), B = 300 (m), Hd = 58 (m), and the following are 
onsidered to be random. Q
(m

3.s−1
) follows a positively trun
ated Gumbel distribution of parameters a = 1013 and b = 558

with a minimum value of 0. Ks (m

1/3
s

−1
) follows a trun
ated Gaussian distribution of parameters

µ = 30 and σ = 7.5, with a minimum value of 1. Zv (m) follows a triangular distribution with

minimum 49, mode 50 and maximum 51. Zm (m) follows a triangular distribution with minimum

54, mode 55 and maximum 56.
The failure probability here is roughly P̂ = 7.88× 10−4

(estimated by MC te
hnique, see 1.2.1).
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Appendix C

Isoprobabilisti
 transformations

Here, we brie�y introdu
e the notion of 
opula, whi
h is needed for the presentation of isoprobabilisti


transformations. Copulas are a mathemati
al obje
t des
ribing the dependen
ies in a random ve
tor

without referring to the marginal distributions. Nelsen's monograph [74℄ presents su
h obje
ts.

C.1 Presentation of the 
opulas

De�nition C.1.1 A d dimensional fun
tion f is said d−in
reasing if:

2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+idf(x1,i1 , . . . , x2,id) ≥ 0

where xj,1 = aj and xj,2 = bj ∀j ∈ {1, . . . , d} and aj , bj ∈ [0, 1], aj ≤ bj∀j ∈ {1, . . . , d}

De�nition C.1.2 A d−dimensional 
opula C is a d−dimensional 
umulative distribution fun
tion

de�ned over [0, 1]d, whose marginal distributions are uniform over [0, 1]:

� C is d−in
reasing;

� for all u ∈ [0, 1]d whi
h have at least one 
omponent equal to 0, C(u) = 0;

� for all u ∈ [0, 1]d whi
h have all their 
omponents equal to 1 ex
ept one, uk, C(u) = uk.

Theorem C.1.1 (Sklar 1959)

Let F be a d−dimensional 
umulative distribution fun
tion with F1, . . . , Fp the marginal distri-

bution fun
tions. There exists a d−dimensional 
opula, C, su
h that for all x ∈ Rd
we have:

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)). (C.1)

If the marginal distributions F1, . . . , Fp are 
ontinuous, then the 
opula C is unique, otherwise it

is uniquely determined over Im(F1) × · · · × Im(Fp). In the 
ontinuous 
ase, for all u ∈ [0, 1]d we

have:

C(u) = F (F−1
1 (u1), . . . , F

−1
p (up) (C.2)

if absolutely 
ontinuous

f(x) = c ((F1(x1), . . . , Fp(up))

d∏

i=1

fi(xi) (C.3)
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C. Isoprobabilisti
 transformations

with c the probability distribution fun
tion asso
iated to C, f the probability distribution fun
tion

asso
iated to F and fi the marginal distributions fun
tion asso
iated to F .

De�nition C.1.3 Let us denote SOd(R) the rotation group over Rd
and supp(X) the set of the val-

ues that 
an be taken by a random ve
tor X. An isoprobabilisti
 transformation T of a d−dimensional

random ve
tor X is a di�eomorphism from supp(X) into Rd
su
h that the random ve
tors U = T (X)

and rU have the same distribution for all r ∈ SOd(R).

C.2 Obje
tives, Rosenblatt transformation

We wish to transform a random ve
tor X of pdf fX and of 
opula C in a Gaussian ve
tor U of same

dimension but with independent, standard Gaussian as 
omponents.

If the variables are independent and that the marginals are known, the transformation is straight-

forward :

ui = φ−1(Fi(xi))

If there is a dependen
y stru
ture in the variables, Rosenblatt and Nataf transformations are

possibilities [2℄.

We present here the Rosenblatt [84℄ transformation. This transformation is not unique if the

variables are 
orrelated: it depends on the order in whi
h the variables are transformed

1

.

Transformation is done as follows:

u1 = φ−1(F1(x1))

u2 = φ−1(F2(x2|X1 = x1))

...

ud = φ−1(Fd(xd|X1 = x1, ...,Xd−1 = xd))

where Fi(.|X1, ...Xi−1) is the 
df of variable Xi given the realisations of the previous variables.

1

It has been shown in Lebrun and Dutfoy [57℄ that if the 
opula of X is Gaussian, the order in whi
h the variables

are transformed does neither impa
t the norm of the design point, nor the derivatives of the failure surfa
e in this

point. In other words, the following quantities use in FORM/SORM methods do not depend upon the order of

transformation: βHL,P̂FORM , P̂SORM .

210



Appendix D

Appendi
es for Chapter 3

D.1 Proofs of asymptoti
 properties

Proof of Lemma 3.2.1

Under assumption (i), we have

ˆ

Supp(fiδ)
1{G(x)<0}

fiδ(xi)

fi(xi)
f(x) dx ≤

ˆ

Supp(fiδ)
fiδ(xi) dxi = 1.

So that, the strong LLN may be applied to P̂iδN . De�ning

σ2iδ = Var

[
1{G(X)<0}

fiδ(Xi)

fi(Xi)

]
, (D.1)

one has

σ2iδ =

ˆ

Supp(fi)
1{G(x)<0}

f2iδ(xi)

fi(xi)

d∏

j 6=i

fj(xj) dx− P 2
iδ < ∞ under assumption (ii).

Therefore the CLT applies:

√
Nσ−1

iδ

(
P̂iδN − Piδ

)
L−→ N (0, 1) .

Under assumption (ii), the strong LLN applies to σ̂2iδN . So that, the �nal result is straightforward

using Slutsky's lemma.

Proof of Proposition 3.2.1

First, note that

E

[
P̂ P̂iδ

]
− PPiδ = E

[
1

N2

(
N∑

n=1

1{G(xn)<0}

)(
N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )

)]
− PPiδ

=
1

N2
E




N∑

n=1

[
1{G(xn)<0}

]2 fiδ(xni )
fi(xni )

+

N∑

n=1

N∑

j 6=i

1{G(xn)<0}1{G(xj)<0}
fiδ(x

j
i )

fi(x
j
i )




−PPiδ

=
1

N2
[NPiδ +N (N − 1)PPiδ]− PPiδ

=
1

N
(Piδ − PPiδ) .
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D. Appendi
es for Chapter 3

Assuming the 
onditions under whi
h Lemma 1 is true, the bivariate CLT follows with

Σiδ =

(
P (1− P ) Piδ(1− P )
Piδ(1− P ) σ2iδ

)
.

Ea
h term of this matrix 
an be 
onsistently estimated, using the results in Lemma 1 and Slutsky's

lemma.

D.2 Computation of Lagrange multipliers

Let H be the Lagrange fun
tion:

H(λ) = ψi(λ)−
K∑

k=1

λkδk.

Thus, using the results of Csizar [26℄, one has

λ
∗ = argminH(λ).

The expression of the gradient of H with respe
t to the jth variable is

∇jH(λ) =

´

gj(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)
− δj .

Similarly, the expression of the se
ond derivative of H with respe
t to the hth and the jth variables

is

DhjH(λ) =

´

gh(x)gj(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)

−
´

gj(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)

´

gh(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)
.

This method has been used in this paper for 
omputing the optimal ve
tor λ
∗
when a varian
e

shifting was applied. The integrals were evaluated with Simpson's rule.

D.3 Proofs of the NEF properties

In this Appendix, the details of the 
al
ulus for the Proposition 3.3.4 are provided.

NEF spe
i�
ities : If the original density fi(x) is a NEF, then under a set of K linear 
onstraints

on f(x), one has :

f(x) = b(x) exp [xθ − η(θ)] ,

thus :

fδ(x) = f(x) exp

[
K∑

k=1

λkgk(x)− ψ(λ)

]

The regularization 
onstant from (3.13) 
an be written as:

ψ(λ) = log

ˆ

b(x) exp

[
xθ +

K∑

k=1

λkgk(x)− η(θ)

]
dx (D.2)

If the integral on (D.2) is �nite, fδ exists and is a density.
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Proofs of the NEF properties

Mean shifting With a single 
onstraint formulated as in (3.15), (D.2) be
ames :

ψ(λ) = log

ˆ

b(x) exp [xθ + λx− η(θ)] dx

= log

ˆ

b(x) exp [x (θ + λ)− η(θ) + η(θ + λ)− η(θ + λ)] dx

if η(θ + λ) is well de�ned.

ψ(λ) = (η(θ + λ)− η(θ)) + log

[
ˆ

b(x) exp [x (θ + λ)− η(θ + λ)]

]
dx

= η(θ + λ)− φ(θ)

sin
e

b(x) exp [x (θ + λ)− η(θ + λ)] = fθ+λ(x)

with notation from (3.3.4), is a density of integral 1. Thus

fδ(x) = b(x) exp [xθ − φ(θ)] exp [λx− η(θ + λ) + η(θ)]

= b(x) exp [x [θ + λ]− η(θ + λ)] = fθ+λ(x)

Thus the mean shifting of a NEF of CDF η(.) results in another NEF with mean η′(θ + λ) = δ
(
onstraint) and varian
e η′′(θ + λ).

Varian
e shifting With a single 
onstraint formulated as in (3.19), using (D.2), the new distri-

bution has for density:

fδ(x) = b(x) exp
[
xθ + xλ1 + x2λ2 − ψ(λ)− η(θ)

]

Sin
e λ is known or 
omputed, and θ is also known, 
onsider the variable 
hange z =
√
λ2x assuming

λ2 is stri
tly positive (the variable 
hange is z =
√−λ2x if λ2 is stri
tly negative). Thus,

fδ(x) = b(
z√
λ2

) exp
[
z2
]
exp

[
z√
λ2

(θ + λ1)− ψ(λ)− η(θ)

]

= exp

[
η

(
(θ + λ1)√

λ2

)
− η(θ)− ψ(λ)

]
c(z) exp

[
z
(θ + λ1)√

λ2
− η

(
(θ + λ1)√

λ2

)]

with

c(z) = b(
z√
λ2

) exp
[
z2
]
.

By (3.13),

ψ(λ) = log

ˆ

b(x) exp
[
xθ + xλ1 + x2λ2 − η(θ)

]
dx

= log

ˆ

b(
z√
λ2

) exp
[
z2
]
exp

[
(θ + λ1)√

λ2
z − η(θ) + η

(
(θ + λ1)√

λ2

)
− η

(
(θ + λ1)√

λ2

)]
dx

=

(
η

(
(θ + λ1)√

λ2

)
− η(θ)

)
+ log

ˆ

c(z) exp

[
(θ + λ1)√

λ2
z − η

(
(θ + λ1)√

λ2

)]
dx

= η

(
(θ + λ1)√

λ2

)
− η(θ)

Thus one has :

fδ(x) = c(z) exp

[
z
(θ + λ1)√

λ2
− η

(
(θ + λ1)√

λ2

)]

thus the varian
e shifting of a NEF results in another NEF parameterized by

(θ+λ1)√
λ2

.
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es for Chapter 3

D.4 Numeri
al tri
k to work with trun
ated distribution

In the 
ase where a mean shifting is 
onsidered on a left trun
ated distribution. We present a tip

that 
an help to 
ompute λ
∗
.

The studied trun
ated variable YT has distribution fY T . Let us denote Y ∼ fY the 
orresponding

non-trun
ated distribution. The trun
ation o

urs for some real value a. This trun
ation may

happen for some physi
al modelling reason. One has:

fY T (y) =
1

1− F (a)
1[a,+∞[(y)fY (y).

The formal de�nition of MY T (λ) the mgf of YT for some λ is:

MY T (λ) =
1

1− FY (a)

ˆ +∞

a
fY (y) exp [λy] dy.

Let us re
all that we are looking for λ
∗
su
h as:

δ =
M ′

Y T (λ
∗)

MY T (λ
∗)

=

´ +∞
a yfY (y) exp [λy] dy
´ +∞
a fY (y) exp [λy] dy

. (D.3)

When the expression does not take a pra
ti
al form, one 
an use numeri
al integration to es-

timate the integral terms. Unfortunately, for some heavy tailed distribution (for instan
e Gumbel

distribution), this numeri
al integration might be 
omplex or not possible. This is due to the multi-

pli
ation by an exponential of y. The following tip helps to avoid su
h problems. Denoting MY (λ)
the mgf of the non-trun
ated distribution, one 
an remark that:

MY (λ) =

ˆ +∞

−∞
fY (y) exp [λy] dy =

ˆ a

−∞
fY (y) exp [λy] dy +

ˆ +∞

a
fY (y) exp [λy] dy

Thus another expression for MY T (λ) is:

MY T (λ) =
1

1− FY (a)

[
MY (λ)−

ˆ a

−∞
fY (y) exp [λy] dy

]
.

The integral term is mu
h smaller in the left heavy tailed distribution 
ase. Therefore the numeri
al

integration (for instan
e using Simpson's method) is mu
h more pre
ise or be
ame possible.

The same goes for M ′
Y T (λ) whi
h has alternative expression:

M ′
Y T (λ) =

1

1− FY (a)

[
M ′

Y (λ)−
ˆ a

−∞
yfY (y) exp [λy] dy

]
.

Finally, another form of D.3 is:

δ =
M ′

Y (λ)−
´ a
−∞ yfY (y) exp [λy] dy

MY (λ)−
´ a
−∞ fY (y) exp [λy] dy

. (D.4)

This alternative expression may lead to more pre
ise estimations of λ
∗
when MY (λ) and M

′
Y (λ)

are known (whi
h is the 
ase for most usual distribution) sin
e the integral term are mu
h smaller

than in the �rst expression.
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Résumé

Cette thèse porte sur l'analyse de sensibilité dans le 
ontexte des études de �abilité des stru
tures. On


onsidère un modèle numérique déterministe permettant de représenter des phénomènes physiques


omplexes. L'étude de �abilité a pour obje
tif d'estimer la probabilité de défaillan
e du matériel à

partir du modèle numérique et des in
ertitudes inhérentes aux variables d'entrée de 
e modèle. Dans


e type d'étude, il est intéressant de hiérar
hiser l'in�uen
e des variables d'entrée et de déterminer


elles qui in�uen
ent le plus la sortie, 
e qu'on appelle l'analyse de sensibilité. Ce sujet fait l'objet de

nombreux travaux s
ienti�ques mais dans des domaines d'appli
ation di�érents de 
elui de la �abilité.

Ce travail de thèse a pour but de tester la pertinen
e des méthodes existantes d'analyse de sensibilité

et, le 
as é
héant, de proposer des solutions originales plus performantes. Plus pré
isément, une étape

bibliographique sur l'analyse de sensibilité d'une part et sur l'estimation de faibles probabilités de

défaillan
e d'autre part est proposée. Cette étape soulève le besoin de développer des te
hniques

adaptées. Deux méthodes de hiérar
hisation de sour
es d'in
ertitudes sont explorées. La première

est basée sur la 
onstru
tion de modèle de type 
lassi�eurs binaires (forêts aléatoires). La se
onde est

basée sur la distan
e, à 
haque étape d'une méthode de type subset, entre les fon
tions de répartition

originelle et modi�ée. Une méthodologie originale plus globale, basée sur la quanti�
ation de l'impa
t

de perturbations des lois d'entrée sur la probabilité de défaillan
e est ensuite explorée. Les méthodes

proposées sont ensuite appliquées sur le 
as industriel CWNR, qui motive 
ette thèse.

Mots-
lés Analyse de sensibilité ; Fiabilité; In
ertitudes ; Expérien
es numériques ; Perturbation

des lois

Abstra
t

This thesis' subje
t is sensitivity analysis in a stru
tural reliability 
ontext. The general framework

is the study of a deterministi
 numeri
al model that allows to reprodu
e a 
omplex physi
al phe-

nomenon. The aim of a reliability study is to estimate the failure probability of the system from

the numeri
al model and the un
ertainties of the inputs. In this 
ontext, the quanti�
ation of the

impa
t of the un
ertainty of ea
h input parameter on the output might be of interest. This step

is 
alled sensitivity analysis. Many s
ienti�
 works deal with this topi
 but not in the reliability

s
ope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more e�
ient

original methods. A bibliographi
al step on sensitivity analysis on one hand and on the estimation

of small failure probabilities on the other hand is �rst proposed. This step raises the need to develop

appropriate te
hniques. Two variables ranking methods are then explored. The �rst one proposes to

make use of binary 
lassi�ers (random forests). The se
ond one measures the departure, at ea
h step

of a subset method, between ea
h input original density and the density given the subset rea
hed.

A more general and original methodology re�e
ting the impa
t of the input density modi�
ation

on the failure probability is then explored. The proposed methods are then applied on the CWNR


ase, whi
h motivates this thesis.

Keywords Sensitivity Analysis; Reliability; Un
ertainties; Computer experiments; Input pertur-

bations
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