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Résumé étendu

Introduction

Analyse d’incertitudes et expériences numériques

On présente ici briévement le cadre général de cette theése : exploitation d’un modéle numérique.
Un modéle est ici une représentation mathématique d’un phénomene physique et son traitement est
effectué au travers d’un systéme de calcul.

Ce modele posséde des entrées et des sorties (ou réponses). Ici, toutes ces quantités seront
considérées scalaires mais d’autres types pourraient étre envisagés, modales par exemple. En fonction
d’un jeu de données d’entrée, le code de calcul va produire un jeu de réponses aprés un certain temps
de calcul. Le cadre des codes déterministes est utilisé : un méme jeu d’entrée produira toujours le
méme jeu de sortie. Dans ce rapport, il sera parfois fait un abus de langage en assimilant le code au
modeéle, pour des raisons de lisibilité.

Une notion essentielle est la quantité d’intérét. Il est en effet possible que ce ne soit pas une valeur
de sortie qui intéresse l'expérimentateur, mais plutot une plage de valeurs ou une quantité définie
a partir des sorties. Il est donc primordial avant toute étude de définir quelle est la quantité d’intérét.

L’analyse de sensibilité est définie par Saltelli et al. [89] comme l’é¢tude de la fagon dont
I'incertitude sur une quantité de sortie du modéle peut étre attribuée aux différentes sources d’incertitudes
dans les variables d’entrée.

L’analyse de sensibilité d’'un modéle numérique peut servir & déterminer les variables d’entrée qui
contribuent le plus & un certain comportement d’une sortie, déterminer celles sans influence ou celles
qui vont interagir & travers le modeéle. Le but peut étre de comprendre le modéle, de le simplifier, ou
encore de prioriser le recueil de données pour mieux modéliser une variable d’entrée. Une approche
récente est I’approche dite globale. L’ensemble du domaine de variation des variables d’entrée est
alors étudié. La plupart des techniques sont développées dans une approche indépendante du modéle
("model free"), c’est-a-dire sans émettre d’hypothéses sur le comportement du modeéle comme par
exemple la linéarité ou la monotonie.

Fiabilité des structures

On cherche a répondre au probléme industriel de savoir si une structure ou un composant peut résister
a des contraintes qui lui sont appliquées. L’approche basée sur des essais et mesures est possible,
mais peut s’avérer difficile pour des raisons de cotits ou de risques. Parfois, I’expérimentation est
impossible. Des modéles numériques sont alors utilisés comme représentation approchée de la réalité
incluant certains mécanismes (comme par exemple ceux de la dégradation, de la propagation des
fissures...).

Afin d’exploiter complétement le modéle, les incertitudes sur les parameétres d’entrées du code
(essentiellement des grandeurs physiques) sont modélisées par des variables aléatoires. Le modeéle

5



RESUME ETENDU

représente donc la structure, dotée d’une certaine résistance, et 'environnement, qui engendre une
sollicitation. Le calcul pour un jeu d’entrées fixées permet d’obtenir un critére de défaillance qui
ameéne & une réponse binaire : la structure est défaillante pour ces entrées ou non défaillante.

Le fait d’inclure les incertitudes comme des variables aléatoires permet de modéliser le risque
comme une probabilité de défaillance. Cette approche est plus fine qu’une approche déterministe oil
les grandeurs sont fixées & des valeurs nominales.

Soit X = (X71,...X4) le vecteur aléatoire d—dimensionnel (dont la densité fx est connue) des
variables d’entrée (scalaires) du modeéle numérique. On s’intéresse a ce que la valeur scalaire Y € R
renvoyée par la fonction de défaillance G du modéle (ou fonction d’état-limite du modele) soit plus
faible qu’un certain seuil &k (usuellement 0) : c’est le critére de défaillance. La structure est défaillante
pour un jeu d’entrée x si y = G(x) < k (o2l x = (21, ...,74) € R? est une réalisation de X et k un
seuil usuellement fixé a 0). L’ensemble de 'espace sur lequel cet événement se produit est appelé
domaine de défaillance Dy. La surface définie par {x € R%, G(x) = k} est dite surface d’état-limite.
La probabilité que I’événement se produise est notée Py, probabilité de défaillance. On a :

P =P(G(X) < k)

= fx(x)dx
Dy

=/ Lo <kfx(x)dx
R4
= E[lgx)<k]

La complexité des modeles et le possible grand nombre de variables d’entrée fait que, dans le cas
général, on ne peut pas calculer la valeur exacte de la probabilité de défaillance. On peut cepen-
dant estimer cette quantité (qui est une espérance mathématique) a l’aide de diverses méthodes
numériques. La base de la fiabilité des structures est de fournir une estimation de Py et une incerti-
tude autour de cette estimation. Cette estimation permet ensuite de répondre a la question initiale
de la résistance de la structure.

Objectifs de la thése

Le but de cette thése est le développement de techniques d’analyse de sensibilité quand la quantité
d’intérét est une probabilité de dépassement de seuil (ce qui équivaut & une probabilité de défaillance
dans le contexte de la fiabilité des structures). Les contraintes du code CWNR qui a motivé le travail
de thése doivent étre prises en compte. La probabilité de défaillance dans le cas le moins pénalisant
(7 variables) a un ordre de grandeur attendu de 107°. Si possible, les méthodes développées doivent
étre en relation avec l'estimation de Py et doivent produire une estimation de I'erreur faite lors de
I'estimation des indices de sensibilité et de P;.

Organisation de la thése

La these est divisée en quatre chapitres.

Le premier chapitre est une revue des stratégies existantes pour estimer des probabilités de
défaillance et des techniques d’analyse de sensibilité.

Le second chapitre est consacré a la définition de mesures de sensibilité avec pour but la produc-
tion d’un classement de variables (variable ranking).
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Le troisiéme chapitre présente une méthode originale pour estimer 'importance de chacune des
variables d’entrée sur une probabilité de défaillance. Cette méthode se concentre sur l'impact d’une
modification de densité d’entrée sur la probabilité de défaillance produite en sortie.

Le quatriéme chapitre présente une application des méthodes étudiées sur le cas CWNR, cas réel
qui a motivé la thése.

Méthodes de classement de variables

Le second chapitre présente deux méthodes permettant de classer les variables d’entrée en fonction
de leur influence sur la sortie (binaire). De plus, ces méthodes sont des sous-produits de I’estimation
de la probabilité de défaillance Py.

En effet la premiére technique propose de faire usage de mesures dérivées de I'ajustement de
foréts aléatoires sur un échantillon de type Monte-Carlo. Un rappel sur les arbres binaires puis sur
les foréts aléatoires est proposé, puis I’étude de deux indices (Gini Importance et Mean Decrease
Accuracy) mesurant 'importance des variables sur la quantité d’intérét binaire est proposeé.

La seconde technique mesure ’écart, & chaque étape d’une méthode de type subset simulation,
entre les densités d’entrée et les densités sachant que le sous-ensemble est atteint.

La définition informelle est la suivante : l'indice de sensibilité est défini pour la variable 7 et
I’étape du subset k comme la distance entre la fonction de répartition (f.d.r.) empirique et la f.d.r.
théorique de la variable. Considérant M étapes de subset avec k =1... M ; et en notant :

F?ic,i = Fl(x’Ak)?

la f.d.r. empirique de la i®™® variable sachant que le seuil Ay a été dépassé. L’indice proposé s’écrit
comme suit :

07 (Ap) = d(Fy . Fy),

2?7
ou F; est la f.d.r. de la i®° variable, et d est une distance. Une variable influente aura un grand
écart en f.d.r alors qu'une variable non-influente aura un faible écart en f.d.r., donc un faible indice.
Des travaux sont menés sur le choix de la distance d en fonction du besoin de 'analyste.

Ces deux méthodes peuvent donc étre vues comme des sous-produits de techniques d’estimation
de la probabilité de défaillance.

Méthode basée sur une perturbation des densités (DMBRSI)

Dans le troisieme chapitre, de nouveaux indices de sensibilité pour la fiabilité sont proposés. Cet
indice de sensibilité est basé sur une modification des densités et est adapté aux probabilités de
défaillance. Une méthode pour estimer de tels indices est proposée.

Ces indices refletent l'impact d’une modification d’une densité d’entrée sur la probabilité de
défaillance Py. Ils sont indépendants de la perturbation dans le sens ou l'utilisateur peut choisir la
perturbation adaptée a son probléme.

Pour des raisons de simplicité, un schéma d’échantillonnage Monte-Carlo classique est consid-
éré par la suite, bien que le processus d’estimation a été étendu aux méthodes subset et tirages
d’importance. Les indices de sensibilité peuvent étre estimés en utilisant seulement le jeu de simu-
lations déja utilisé pour estimer la probabilité de défaillance Pr. Ceci limite le nombre d’appels au
code de calcul, comme mentionné dans les contraintes du cas industriel CWNR.

Le chapitre est organisé de la fagon suivante : en premier lieu, les indices et leurs propriétés
théoriques sont présentées ainsi qu'une méthode d’estimation. En second lieu, plusieurs méthodes
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RESUME ETENDU

de perturbation des densités sont présentées. Ces modifications peuvent étre classées en deux grandes
familles : minimisation de Kullback-Leibler et perturbation des paramétres. Le comportement des
indices proposés est testé sur des cas tests, puis les avantages et problémes restants sont finalement
discutés.

Le chapitre 3 est une version étendue du papier par Lemaitre et coauteurs [63].

Indice DMBRSI

Soit une entrée unidimensionnelle X; de densité f;, on appelle X;5 ~ fi5 I’entrée perturbée corre-
spondante.
La probabilité de défaillance modifiée devient :

Pi; = /HG@)@}%JC(X)CZX

ou z; est la i®™¢ composante du vecteur x.
L’indice DMBRSI a la forme suivante.
Définition On définit les indices de sensiblité basés sur une modification des lois (Density Modi-

fication Based Reliability Sensitivity Indices - DMBRSI) comme la quantité S;s :

Pis — Py
Py py>psy + Fis - 1ypy<ppy

Pis Py
Sis = [Ff - 1] Lip,>py + [1 - p—iJ Lips<p;y =

Estimation

Un estimateur Py de Py peut étre calculé en utilisant un plan d’expérience de N points. Par la
suite, N est considéré comme étant assez grand pour que le contexte de la théorie asymptotique
s’applique. Par ailleurs, un échantillonnage de type Monte-Carlo standard est utilisé pour simplifier
les calculs. On écrit alors

. 1 &
Py = N Z 1{G’(x")<0}
n=1

ot x!,---  x" sont des réalisations indépendantes de X. La loi forte des grands nombres et le
théoreme limite centrale (TLC) assurent que pour presque toutes les réalisations, Py N—> Py et
— 00
N

. c
W(PN—Pf)mN(OJ)-

Le cadre Monte-Carlo permet d’estimer P;5 de fagon counsistante sans nouvel appel au code de
calcul G, grace a une technique de tirage d’importance "inverse" (reverse importance sampling):

N
: 1 fis ()
Posn = E 1 n L2,
WON anl {G(x™)<0} f2($zn)

Ceci est tres intéressant quand le code de calcul G est cotiteux en temps de calcul ( Beckman and
McKey, Hesterberg [8, 45]).
Dans la thése, les propriétés asymptotiques des estimateurs de Py et S;s sont étudiées.



Stratégies de perturbation

La Section 3.3 propose plusieurs méthodes de perturbations. On insiste sur le fait que les DMBRSI
et les techniques d’estimation présentées restent valides pour toute perturbation tant que des con-
traintes sur le support sont respectées. Ici on se focalise sur deux familles de méthodes. Dans la
premiére, la densité perturbée est celle minimisant la divergence de Kullback-Leibler sous des con-
traintes fixées par l'utilisateur. Plusieurs contraintes sont proposées (perturbation de la moyenne,
de la variance et des quantiles). L'usage de la seconde méthode est conseillé quand 'utilisateur veut
tester la sensibilité de Py aux parameétres des distributions. Chacque section est introduite par un
exemple jouet.

Cette section illustre la capacité des DMBRSI & traiter des objectifs d’analyse de sensibilité
différents. L’utilisateur est invité a proposer de nouvelles perturbations qui répondraient & ses
objectifs.

Application au cas CWNR

Le quatriéme chapitre présente ’application des méthodes développées au cas CWNR. Ce cas est
présenté dans 'organisation de la thése, page 24. On rappelle que ce modéle de type "boite-noire"
constitue la motivation initiale de ce travail.

Pour estimer Py, la méthode FORM (voir Section 1.2.2.2) et un Monte-Carlo naif (voir Section
1.2.1.1) ont été utilisées. Les résultats produits par la méthode Monte-Carlo sont considérés comme
étant la référence dans ce chapitre.

La partie analyse de sensibilité est consacrée & la mise en ceuvre de trois méthodes : premiérement,
les facteurs d’importance FORM (voir Section 1.3.2.2). Ensuite, des foréts aléatoires (voir Section
2.2) sont construites sur ’échantillon Monte-Carlo et des mesures de sensibilité sont dérivées. Pour
finir, les DMBRSI (voir Chapitre 3) sont utilisés. Plusieurs perturbations (moyenne, quantile et
parametres) sont testées.

Ce chapitre est divisé en trois sections principales, se concentrant chacune sur des cas de dimen-
sion croissante (3, 5 et 7 variables probabilisées), ou plus la dimension est petite, plus le cas est
pénalisant.

Les conclusions de ce chapitre sont les suivantes :

e en ce qui concerne la partie estimation de Py, la méthode de Monte-Carlo reste la référence
sur un code industriel. Le désavantage majeur est bien entendu le temps de calcul nécessaire.

e En ce qui concerne la partie analyse de sensibilité, les foréts aléatoires produisent des résultats
contestables, car les modeéles ajustés sont de mauvaise qualité. La méthode est donc peu
concluante pour 'instant.

e Les DMBRSI semblent une méthode adaptée pour effectuer une analyse de sensibilité sur une
probabilité de défaillance. Plusieurs ajustements et configurations ont été testées.

Axes de recherches futures

Les méthodes présentées dans le Chapitre 2 peuvent étre améliorées. Plus spécifiquement, il y a un
besoin d’améliorer les classifieurs binaires (foréts aléatoires). Les indices MDA couplés & la subset
simulation doivent étre implémentés. Une autre perspective d’amélioration, en utilisant les indices
679(Ag), est de mener un travail incluant la théorie des copules.
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Les DMBRSI introduits dans le Chapitre 3 présentent eux aussi plusieurs perspectives d’amélioration.

La grande partie des travaux sera consacrée a l’amélioration des indices S;5 en termes de réduction
de variance et d’appels au code de calcul. Le couplage des estimateurs avec la subset simulation
doit aussi étre perfectionné. Une perturbation basée sur I’entropie pourrait également étre proposée,
mais des calculs plus poussés doivent étre menés pour obtenir une solution du probléme de minimi-
sation de la divergence de Kullback-Leibler. Un autre axe serait de changer la métrique/divergence.
Par ailleurs, une autre idée pourrait étre la prise en compte des dépendances entre variables et de
perturber cette dépendance entre marginales via la théorie des copules.

Des perspectives plus larges sont a considérer, en particulier I'utilisation de méthodes séquen-
tielles couplées avec des méta-modeles (Bect et al. [9]) est & étudier.

Récemment, Fort et al. [35] ont introduit de nouveaux indices de sensibilité pouvant étre consid-
érés comme une généralisation des indices de Sobol’. La notion de fonction de contraste adaptée au
besoin est introduite. Cet indice doit étre testé et comparé avec les DMBRSI dans un travail futur.
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Context, objectives and outline

On computer experiments

Numerical simulation is the process that allows to reproduce a physical phenomenon with a computer.
This phenomenon is represented via a mathematical model, and this model is solved during a
computation time.

The numerical simulation can be costly, due to the time needed to prepare the set of inputs or
to the possibly large number of calculations needed. Moreover, the result of the simulation may
be uncertain, thus this scientific topic is often referred to as numerical experiments. The use of
simulation in conception and safety of an industrial system equipment - two applicative domains of
interest in this thesis - has grown over the last decades.

Uncertainty quantification and sensitivity analysis

We briefly present the general framework of our work: the study of a deterministic numerical model.
As explained before, a model is a mathematical representation of a complex physical phenomenon.

This model receives inputs and produces outputs (or responses). For the sake of simplicity, these
quantities will be considered as scalar and continuous but other types could be considered, modal
for instance. Given a certain input value, the model produces a certain output after computation.
The deterministic framework is considered here, that is to say that a given set of input values always
produces the same output values.

Consider the quantity of interest. It might be possible that the experimenter is interested in a
quantity defined from one or several outputs. It is therefore of outmost importance to first define
above all study the quantity of interest.

Some parameters (such as physical values) are not precisely characterized due to a lack of data
or variability for instance, therefore these parameters can be seen as random variables. Some
other inputs will be considered as known and modelled by deterministic values. Let us denote
X = (Xi,...X4) the d—dimensional random vector (with known density fx) of random (scalar)
input variables of the numerical model. Let us also denote by t the p-dimensional vector of de-
terministic input. Let us consider without loss of generality, a single output ¥ € R defined as
Y = G(X,t) where G is the deterministic model. The quantity of interest is Z or a function of
it. In the following, we will denote ¥ = G(X). Also, it is important to notice that in the whole
thesis, independent inputs will be considered, although the study of models with dependent inputs
is a major field of research.

Figure 1 summarizes the reference framework for uncertainty treatment (de Rocquigny et al.
[30]). The breakdown of the study in several steps is done as follows:
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Figure 1: Uncertainty study reference framework

e Step A, problem specification: the objectives are defined, as well as the model used, the
quantity of interest and the input variables (some of which are considered uncertain).

e Step B, quantification of uncertainty sources: the input variables considered uncertain are
modelled by random distributions. This step is done collaborating with experts and collecting
data points.

e Step C, propagation of uncertainty sources: the quantity of interest is evaluated according to
the uncertainty on the input variables defined in step B.

e Step C’, sensitivity analysis: the relative uncertainty contribution of each input on the output’s
uncertainty is evaluated.

The genericness allows this framework to address numerous problems. This thesis will mainly fo-
cuses on Step C’, even if this step cannot easily be separated from Step C.

Sensitivity analysis (SA) is defined by Saltelli et al. [89] as “the study of how the uncertainty in
the output of a model can be apportioned to different sources of uncertainty in the model input”. It
may be used to determine the most contributing input variables to an output behaviour. It can also
be used to determine non-influential inputs, or ascertain some interaction effects within the model.
The objectives of SA are numerous; one can mention model understanding, model simplifying or
factor prioritisation.

There are many application examples, for instance Makowski et al. [67] analyse, for a crop
model prediction, the contribution of 13 genetic parameters on the variance of two outputs. Another
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example is given in the work of Varet [99] where the aim of SA is to determine the most influential
inputs among a great number (around 60), for an aircraft infrared signature simulation model.
In nuclear engineering field, Auder et al. [5] study the influential inputs on thermohydraulical
phenomena occurring during an accidental scenario, while Iooss et al. |50] and Volkova et al. [100]
consider the environmental assessment of industrial facilities.

The first historical approach to sensitivity analysis is known as the local approach. The impact of
small perturbations of the inputs on the output is studied. These small perturbations occur around
nominal values (the mean of a random variable for instance). This is a counterpart to the partial
derivatives of the model in certain points of the input space. Most of these methods (some of them
will be itemized in section 1.3.2) make strong assumptions on the model and/or on the inputs (in
terms of linearity, normality, ...).

A second approach, more recent due to the development of computational power is known as
the global approach. The whole variation range of the inputs is therein considered. An applicative
introduction can be found in Iooss [49]. Most techniques (some of them will be defined in section
1.3.1 and tested in sections 1.4 and 1.5) are developed in an independent approach (“model free”),
without making assumptions such as linearity or monotony.

Structural reliability

Consider the industrial problem of knowing if a structure, subject to physical loads or constraints,
goes undamaged or goes to a state of failure. This will be referred as structural reliability. A
“trial and measures” approach might be possible, but can be difficult to manage for safety or costs
reason. Within this context, computer models are used in order to assess the safety of complex
systems. These models are then used as an approximate representation of the reality, including
some mechanisms such as flaw propagation, friction laws...

In order to completely use the model, uncertainties on the model inputs (essentially physical
values) are modelled by random variables. The model is therefore representing the structure gifted
with a certain toughness and the environment providing a load. Computation for a fixed set of
inputs allows to obtain a failure criterion leading to a binary response: for this set of inputs, the
structure fails or behaves soundly.

The fact that uncertainties are modelled by random variables enables risk modelling as a failure
probability. This approach is more subtle than a deterministic approach where inputs are fixed to
nominal values (generally penalized).

One is interested in the fact that the value Y € R given by the failure function G is smaller than
a given threshold & (usually 0): it is the failure criterion. The structure is failing for a given set of
input x if y = G(x) <0, where x = (21, ..., z4) € R%is a realization of X. The part of space in which
this event occurs is called failure domain, denoted Dy. The surface defined by {x € R%, G(x) = 0}
is called limit-state surface. The probability for the event to occur is denoted Py, failure probability.
One has:

Py =P(G(X) <0) (1)
=/, Fx(x)dx (2)
= /Rd lax)<ofx(x)dx (3)
= E[1gx)<o (4)
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The complexity of models and the possible great number of inputs make difficult, in a general
case, to compute the exact value of P;. However, it can be estimated (since written under the form
of a mathematical expectation) with the help of several methods that will be itemized in section 1.2.
The primer of structural safety is to provide an estimation of Py and some uncertainty surrounding
this estimation. It can be used to answer the original question of the structure supporting the loads.

Context: component within nuclear reactor (CWNR)

This case-study provided the initial motivation for this work. It focuses on the reliability and risk
analysis of a nuclear power plant component. However the results of this thesis must be considered
as textbook exercises, which can not be used to draw conclusions about the integrity or safety
assessment of nuclear power plants.

During the normal operation of a nuclear power plant, the component within nuclear reactor
(CWNR) is exposed to ageing mechanisms. In order to assess the integrity of the component, it has
been demonstrated that a postulated manufacturing flaw can withstand severe mechanical loads.

The CWNR mechanical model includes three parts. Firstly, a simplified representation of the
loading event, which analytically describes as functions of the time, the temperature 7', the pressure
and the heat transfer coefficient between the environment and the surface of the CWNR. Secondly,
a thermo-mechanical model of the CWNR thickness, incorporating the CWNR material properties
depending on the temperature. Lastly, an integrity model allowing to evaluate the nocivity of a
manufacturing flaw, including different variables: (a) a variable, h, summarizing the dimension of
the flaw, (b) a stress intensity factor, (c) the toughness depending on the temperature at the flaw
and the level of deterioration, whose discrepancy with operation time is evaluated with some codified
forecasting formulas. In practice, the modelling of the CWNR may assign probabilistic distributions
to some physical sources of uncertainty. In this manuscript, a maximum of 7 input physical variables
will be considered as random. Table 1 summarizes the distributions of the independent physical
random inputs of the CWNR model. Table A.1 is a reminder of the inputs’ densities.

Random var. ‘ Distribution ‘ Parameters
Thickness (m) Uniform a = 0.0075, b = 0.009
h (m) Weibull a = 0.02, scale= 0.00309, shape= 1.8
Ratio height/length | Lognormal | a =0.02, In(x) = —1.53, In (o) = 0.55
Azimuth flaw (°) Uniform a=0,b=360
Altitude (mm) Uniform a = —5096, b = —1438
oATT Gaussian u=00=1
oRes Gaussian u=0,0=1

Table 1: Distributions of the random physical variables of the CWNR, model.

Also, for the numerical applications over the CWNR model, the random input will be considered
as 3, b or 7 dimensional and will respectively correspond to the 3, 5 and 7 first random variables
presented in Table 1.

Objectives

The aim of this dissertation is the development of sensitivity analysis techniques when the quantity of
interest is a probability of exceedance of a given threshold (which is equivalent to a failure probability
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in the field of structural reliability). The constraints of the CWNR code are to be taken into account.
The expected magnitude of the failure probability is less than 1075, If possible, the methods must
be related to the estimation of Py and must provide an estimation of the error made when estimating
sensitivity indices as well as an estimation of the error made when estimating Py.

Outline

The following thesis is organised in four chapters.

The first chapter is an overview of both existing strategies for estimating failure probabilities and
methods of sensitivity analysis. In this chapter, states of the art for reliability and sensitivity analysis
(SA) techniques will be separately developed. More precisely, three main families of reliability
techniques will be studied: Monte-Carlo methods, structural reliability methods and sequential
Monte-Carlo methods. Finally, two families of well-known sensitivity analysis techniques will be put
to the proof on reliability test cases (which are itemized in Appendix B). These techniques show
some limitations, confirming the need to develop SA methods focused on failure probabilities. A
table (Table 1.13) summarizing the presented methods is proposed, and a discussion on the meaning
of sensitivity analysis in the reliability context is conducted.

The second chapter focuses on defining measures of sensitivity in order to produce a variable
ranking. More specifically, the use of random forests on a Monte-Carlo sample is proposed in the
first place. Two importance measures derived from the random forests predictors are tested on the
usual cases. In the second place, a technique using a sample produced by sequential Monte-Carlo
methods is elicited. This last method is based on the departure between the marginal distribution
of an input and its equivalent given the step of the subset method.

The third chapter presents an original method to estimate the importance of each variable on
a failure probability. This method focuses on the impact of perturbations upon the original input
densities f;. A general framework defining appropriate perturbations is elaborated, then sensitivity
indices are presented. An estimation technique of these indices that makes no further calls to the
model is given. The methodology is then tested on the usual cases.

The fourth chapter presents the application of the developed methods to the CWNR case. Several
tunings will be studied to assess or infirm the ability of the different SA methods to identify influential
variables.
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Chapter 1

State of the art for reliability and
sensitivity analysis

1.1 Introduction

The outline of the chapter is the following: in Section 1.2, a state of the art for reliability is proposed.
Several techniques for estimating failure probabilities are presented. Then in Section 1.3, a review
of Sensitivity Analysis (SA) is given. The application of a well-known SA method, Sobol” indices
(1.3.1.3) on a failure probability, is tested on numerous application cases in Section 1.4. In Section
1.5, the so-called moment independent sensitivity measures (presented in Section 1.3.1.4) are tested
within the reliability context. Next, Section 1.6 proposes a synthesis of these states of the art.
Finally, Section 1.7 discusses the meaning and objectives of sensitivity analysis when dealing with
failure probabilities.

1.2 State of the art: reliability and failure probability estimation
techniques

This state of the art for reliability is widely inspired by the PhD thesis of Gille-Genest [41]|, Can-
nameéla [22] (in French) and Dubourg [33] (in English). In addition, monographs by Madsen et al.
[66] and Lemaire |[60] have been used. In this section, a state of the art for the estimation techniques
of failure probabilities is detailed. Choice is set to present 3 families of methods.

e Monte-Carlo (MC) simulation methods: these techniques are standard in statistics. The MC
methods are used to estimate an expectation. These are based upon an application of the
Strong Law of Large Numbers for estimation and on the Limit Central Theorem for error
control. Several variance-reduction techniques are available in the literature. The most appro-
priate of them will be itemised in 1.2.1.

e Reliability methods: historically these methods come from mechanical engineering. They
provide answers based upon a linear (FORM) or quadratic (SORM) approximation of the
failure surface. This approximation is then used to estimate the failure probability. As far as
we know, error control is not easily made. These methods are presented in 1.2.2.

e Subset simulation methods: sometimes also referred as particle methods, sequential MC or
splitting techniques, these methods have been more recently developed. They are based upon
a decomposition of the objective probability as a product of conditional probabilities, that
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are easier to estimate. These estimations are made running a large number of Monte-Carlo
Markov Chains (MCMC). Some techniques will be presented in 1.2.3.

However, the partition must be qualified. In practice, methods can be associated; for instance one
can first use FORM numerical approximation, then perform some importance sampling around the
most probable failing point. In the same way, most of Munoz-Zuniga’s works |72] are devoted to a
stratified sampling technique (MC variance-reduction method) combined with directional simulation.

1.2.1 Monte-Carlo methods

These methods allow the estimation of an expectation of form:

I'=E[p(X)] (1.1)

or on the integral form:

Izéﬂmkww (1.2)

where ¢(.) is a function from £ C R? = R and X is a d—dimensional random vector (with known
density fx). In a reliability framework, the function ¢(.) is written as an indicator, 1g(x)<g-

1.2.1.1 Crude Monde-Carlo method

Presentation of the estimator The main idea of this method is to generate a large number of
ii.d. vectors with density fx, then to estimate I with the empirical mean of the N values. The
Strong Law of Large Numbers allows to get an unbiased estimator of I.

1 X .
I= 5 o) (13)
with given N and where x? are i.i.d with fx. In the reliability case, an unbiased estimator of Py is:
. 1
P = N;chxixk} (1.4)

The variance of the estimator of E[p(X)] is:

A 1
Var [I] = NVar[go(X)] (1.5)
and it can be estimated by:
1 (1
Uar [7] — = 200 _ 72
Var[[]—N_llN;gp(x) 1] (1.6)

When ¢(.) is an indicator function, as usual in structural reliability studies, a simplified expression
can be obtained:

Var [P] = %Pfa _py). (1.7)

Its classical estimator is:

~ ~

Var [P] = %P(l ~-P) (1.8)

Thanks to the Limit Central Theorem, one can build confidence intervals around the estimator.

28



State of the art: reliability and failure probability estimation techniques

1.0

PR

04

. oo,

0.z

P

0.0
1}

0o 0.z 04 0.6 0.4 1.0 0o 0.z 04 06 0.a 1.0

Figure 1.1: Space filling comparison: Sobol’s sequence (left) and uniform random sampling (right).

Advantages and drawbacks of the MC method This method makes no hypothesis on the
regularity of ¢(.). The produced estimator is unbiased. Confidence intervals can be obtain around
the estimator, which are useful to quantify the precision of the latter. Furthermore, quality of the
estimation only depends on the sample size. This means that the MC method is independent of the
dimension of the problem, unlike other integration methods.

However, this technique needs a fair number of function calls to reach sufficient precision. Ac-
cording to the rule of thumb, to obtain a variation coefficient of 10% on a 10~* failure probability,
N = 10**2 simulations are needed. This can be unrealistic in some applications when dealing
with very low failure probabilities (< 1076 ). Furthermore, computer models can be complex and
time-consuming.

Variance-reduction The variance of the estimator decreases in Var[p(X)]/N. Therefore a large
sample is needed to get a good estimation. Variance-reduction techniques consist in reducing the
uncertainty involved by the numerical integration technique, thus diminishing fluctuations of esti-
mations around the searched value.

In the reference books (see Rubinstein [85]), numerous variance-reduction techniques can be
found. In a reliability context, such methods are based on focusing the exploration of the sample
space around the limit state (ie, the failure) surface. In the following, we present three main methods.

1.2.1.2 Quasi Monte-Carlo Methods

Presentation of the method The idea beneath Quasi Monte-Carlo (QMC) method is to replace
the random sampling by quasi-random sequences. These are deterministic sequences having good
equirepartition properties. These sequences are called low-discrepancy sequences, or quasi-random
sequences. Loosely speaking, discrepancy is a measure of departure from the uniform distribution.
There exist a number of different definitions (L°°, L%, modified L?,...). Examples of pseudo-random
sequences as well as theoretical developments are given in Niederreiter [75]. Figure 1.1 displays a
two-dimensional example of “better” space filling by a low-discrepancy sequence (Sobol’s sequence),
compared with an uniform random sampling.
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QMC estimation of the desired quantity is obtained substituting in the MC estimator the random
samples by the pseudo-random samples. However, it is not possible to obtain a variance estimation of
the QMC estimator. Koksma-Hlakwa’s inequality allows to bound the error made when integrating
with QMC method, depending on the chosen sequence and on ¢(.)’s regularity.

Reliability case QMC methods are not well adapted for structural reliability. The main issue
when estimating small failure probabilities by MC is to get “extreme” samples (within the distribution
tail) leading to the failure event, rather than getting evenly distributed samples. However, these
methods will be applied in Section 1.4 to decrease the number of function calls when estimating
Sobol” indices (which are defined in Section 1.3.1.3).

1.2.1.3 Importance sampling

Presentation of the method The basic idea of importance sampling is to modify the sampling
density. The estimator is then obtained by including a density ratio. The aim is to foster sampling
in significant regions. In a reliability context, this is simply increasing the number of failure samples.
Let us denote fg a density selected by the practitioner. It will be referred to as the instrumental
density. The problem rewrites as follows:

I= /E () fx (x)dx (1.9)
B N fx(x) da
= [ e g X0 (1.10)
o it

where E¢ is the expectation when X is of density fg. The estimation is then made by:

1 o fx(x?)
I;1g=— X! : 1.12
7 L o) G (1.12)
where x° are i.i.d with density Jx- One can also get the variance of the estimator:
> 1 fX(X)]
Var(I7;s) = — Vary |: X 1.13
(I1s) = 3 Vers. [#(X0 (113)

where Varg is the variance when X follows density fx. It should be noticed that the support of fx
must be included within the support of the initial density fx. Otherwise, the estimator is biased.

This technique does not consistently provide a variance reduction. A given instrumental density
Jx useful only if:

fx(X)
Varg [@(X) < Varx [p(X)] (1.14)
x fx(X)
Minimal variance is obtained with the following optimal density:
X e

— [le)|fx(y)dy

However, the denominator on the latter is difficult to estimate as it boils down to I in the case of a
positive function ¢(.). Choosing of a well-fitted instrumental density is a problem in itself. Chapter
2 of Cannaméla [22| provides a state of the art of selecting a quasi-optimal instrumental density.
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Reliability context The estimator of Py is:

5 1 & fx(x')
Prg = — Lrcxi . 1.16
1S =N ; CCERES ey (1.16)
Thus the optimal density can be rewritten as:
1 xeD fX(X) 1 xeD fX(X)
folw) = o2 BEPLTE ik (xIDy) (1.17)

b, Ix(y)dy Py

This density is intractable in practice, Py being the quantity of interest. Choice of a good instru-
mental density is therefore a problem in reliability as well. One can quote chapter 5 of Munoz
Zuniga [72] in which an adaptive and non parametric technique for instrumental density selection
(adapted to this reliability context) is presented. Additionally, Pastel [79] developed an interesting
non-parametric adaptive technique, still within the reliability framework.

1.2.1.4 Directional sampling

In practice this technique is specific to structural reliability studies.

Principle First, the random input vector is transformed into a random vector for which all com-
ponents are standard Gaussian random variables. This is also referred as transforming the physical
space into the standard Gaussian space (sometimes referred to as U-space). Such an isoprobabilistic
transformation 7" which turns the random vector X of density fx into a random vector whose all
components are independent standard Gaussians. Given X = (X7, ..., X4) the random input vector,
one obtains U = (Uy,..,Uy) = T(X) where U;, i = 1, ...,d are independent standard Gaussians. Let
us denote:

H(u) = G(T™}(u)) = G(x). (1.18)

Several isoprobabilistic transformations exist. Nataf, generalized Nataf and Rosenblatt transforma-
tions (see Lebrun and Dutfoy [58, 59]|) are the most adapted. The latter is developed in Appendix
C. Ounce the transformation is done, the quantity of interest can be rewritten as:

Py =P(H(U) < k). (1.19)

The main idea of this method is to generate directions from the center of the standard Gaussian
space in a uniform and independent way. Then, the failure function is computed along the directions.
Given the direction, this allows a conditional estimation of the failure probability. Vector U can be
rewritten as a product:

U =RA

with R > 0, R? following a x? distribution with d degrees of freedom and A an uniform random
variable on the unit sphere €4, independent of R. Denoting fa the uniform density on {24, one can
rewrite the failure probability conditionally to the directions:

Py — /Q P(H(Ra) < k)fa(a)da (1.20)
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Figure 1.2: 2-dimensional illustration of directional sampling

The directional sampling probability failure estimator thus writes:

N
Py = %Z]P’(H(Rai) < k) (1.21)
=1

where a; are N random independent uniform directions on €24. The variance of the estimator is:

Var[Pyi,] = — [E[P(H(RA) < k))?] — P?] (1.22)

1
N
Computation of P(H(Ra;) < k) In practice, one does not have an explicit expression for H(.).

It is therefore necessary to use the G(T~1(.)) form to get the roots of equation H(Ra;) = k. If r is
the only root of the equation, then:

P(H(Ra;) < k) =1 — x3(r*)G(T(0)) > 0. (1.23)
If several roots exist (r;,7 = 1,...,n), one has:
P(H(Ra;) < k) = Z(—1)i+1(1 —X%(r?)) if G(T(0)) > 0. (1.24)

i

A root finding method must be used (the simplest being the dichotomic method). One can fix a
bound beyond which the failure probability is considered to be negligible. Figure 1.2 illustrates
directional simulation’s principle in two dimensions. Isoprobability contours are plotted in grey, the
limit-state surface is plotted in red. The dashed lines staring from the center are the directions a;.

32



State of the art: reliability and failure probability estimation techniques

1.2.2 Structural reliability methods
1.2.2.1 Reliability indices

Reliability indices give indications about the relative weights of input parameters in the whole
reliability of the considered structure(they are also sometimes called safety index). They allow a
comparison of several setups possible. The larger the index, the safer the structure. In the following,
two indices are presented.

Hasofer-Lind index Proposed by Hasofer and Lind in 1974 [43], it is an exact geometric index,
invariant with respect to the geometry of the limit state surface. It is defined in the Gaussian
standard space. Let us define the most probable failure point as the closest failure point to the
origin of the standard space (the origin of the standard space is considered outside of the failure
domain). Such a point is also referred as a design point. Assuming the design point is unique, one
can define the Hasofer-Lind index as the distance between the origin and the design point:

BuL = Hlai)rio(uTu)l/z (1.25)

Algorithms to find such design points are numerous, one can quote the Hasofer-Lind-Rackwitz-
Fiessler algorithm [82] and its improved version iHLRF (Zhang and Der Kiureghian, [102]). One can
also quote a work carried out at EDF R&D about testing the quality of a design point (Dutfoy and
Lebrun,[34]). Further details on design point finding algorithms are given in section 1.2.2.2. One
should note that an estimation of the Hasofer-Lind index does not require an estimation of Py but
only an estimated design point.

Generalized reliability index The generalized reliability index was proposed by Ditlevsen in
1979 [32] to take account of the curvature of the failure surface around the design point. Defining
a reliability measure v by integrating a weight function (in practice the d-dimensional standard
Gaussian distribution) over the safe set S:

v = / wqdsS. (1.26)
S
The generalized reliability index is defined as a monotonically increasing function of ~:
o =27} (y) (1.27)

where ®~! is the inverse cumulative distribution function of the standard Gaussian. One can estimate
the index by: .

Ba=o"11-P) (1.28)
where P is an estimation of the failure probability (obtained for instance through MC integration or
by FORM/SORM, see section 1.2.2.2). This index equals the Hasofer-Lind one if the failure surface
is an hyperplane in the standard Gaussian space. Finally, the estimation of this index requires an
estimation of the failure probability Py.

1.2.2.2 FORM-SORM methods

The First Order Reliability Method (FORM) and Second Order Reliability Method (SORM) are
estimation techniques for a failure probability based upon integration of an approximation of the
failure surface. In practice, they are considered as a standard solution in structural reliability since
they are not costly, easy to understand and to implement.

These methods proceed in four steps:
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transformation of the input space;

design point search;

e approximation of the limit-state surface by an hyperplane (FORM) or a quadratic surface
(SORM);

failure probability estimation from the limit-state approximation.

Figure 1.3 graphically summarises the ideas of FORM/SORM.

H(u)=0 = Quadratic
U L approximation

/ | \ H(w) <0
[ / H\ O\,

| Br
\ \ / U Hyperplane
\ \ / \.. approximation

U-space

Figure 1.3: [llustration of FORM/SORM

Transformation of the input space It is an isoprobabilistic transformation as described in
section 1.2.1.4. These techniques are reminded in appendix B.

Design point search Once within the standard Gaussian space, finding the design point requires
to solve the following optimization problem:

*= min (u' 1.29
u H%Iio(““) (1.29)

This is a crucial step since it is needed to make as few function calls as possible, while it is required
to find all the design points. The objective function is quadratic and convex, thus the minimization
difficulties will come from the constraints (H(u) = 0). Let us make a distinction between local and
global optimization methods.
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Local methods Local minima search is efficient if one has an explicit expression of the
gradient of H. This is seldom the case in industrial applications and one has to use approximations
based upon finite differences. These approximations may be costly in terms of function calls, and
they can lead to a loss of convergence of the algorithms. Most algorithms search for the optimum «*
in an iterative way. The idea is, starting from a given point ©*), to find the best descent direction
d®) and the best length of the step a(*):

WEHD) — ) () g). (1.30)

The iteration can be followed by a projection.

Numerous methods are described in Lemaire [60], which are divided in 4 main categories : zero
order methods, first order methods, second order methods and hybrid methods. Zero order methods
(dichotomy for instance) does not require a computation of the gradient. However their convergence
is slow. In the reliability case, this implies a large number of function calls. Thus these zero order
methods are not adapted to reliability problems considered in this thesis

Here is presented the first order Hasofer-Lind-Rackwitz-Fiessler (HL-RF') algorithm. It has been
developed specifically for reliability studies. Its convergence is not assured but the method is effective
in many cases. It is worth noticing that the algorithm has been adapted to led to convergence
improvements (Abdo and Rackwitz [1]). The iteration is as follows:

H(u®) . VH(u®)
(k1) _ (0t gonygio _ H@Y) gy ey VH@®) L 31
W = WA Ry M A = M) (131)

Global methods If the limit-state surface presents several design points, the previously de-
scribed algorithms may not identify these design points. Der Kiureghian and Dakessian [31] proposed
to force the convergence of the HL-RF algorithm to a new design point by disturbing the vicinity of
the previously found design point.

Approximation of the limit-state surface FORM method replaces the limit-state surface by a
hyperplane tangent at the design point. A loss of precision depending on the form of the limit-state
surface at the design point occurs. If the limit-state surface is close from the hyperplane, this method
provides good precision compared to the needed number of function calls. The linear approximation
writes as follows:

VH(u),_, . (u—u*)=0 (1.32)

|lu=usx*

The SORM method replaces the limit-state surface by a second-order (quadratic) hypersurface. Such
a method requires the estimation of the curvature of the limit-state surface at the design point u*.
Several techniques are provided in Lemaire [60]. The key message is that the use of SORM over
FORM is justified when it is known that the surface is almost quadratic.

Failure probability estimation In the FORM approximation, one uses the Hasofer-Lind relia-
bility index presented in section 1.2.2.1 and estimates Py with:

Prorv =1—®(Bur) (1.33)

SORM approximation is a more complex problem, for which an asymptotic approximation was
provided by Breitung [18].
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On the geometric approximations FORM/SORM techniques are popular methods in the do-
main of structural reliability, because a few function calls are needed to get an estimation of Py.
Also, FORM is easy to understand and to implement. However, a significant error can be made
when using FORM. Consequently, these methods should only be used when it is known that the
limit-state surface has a given geometrical shape (almost hyperplane or almost quadratic). Such an
information is not always available.

1.2.3 Subset simulation
1.2.3.1 Introduction

Subset simulation methods are based upon a division of the failure probability in a product of
conditional probabilities. These are larger therefore easier to estimate. Let us consider a sequence
of M + 1 thresholds T such as:

T = {+oo,t1, oty = 0}
and let us also define the sequence of nested subsets (also sometimes referred to as intermediate

failure events):

Ak = {X’G(X) < tk}.
One has:

k
Plx e 4] = [[Px € Ailx € 4;_4]
=1

and one can rewrite Py as:

M+1
Pr=Plxe Ayl = [] Plx € Ailx € 4;1] (1.34)
i=1
thus the estimation of Py is reduced to the estimation of the conditional failure probabilities. The
name “subset simulation” has been introduced by Au and Beck [4]. For the sake of simplicity, let us
denote:

P(Ag) =P[x € Ay

and
P(Ak|Ak_1) =P [X S AZ|X S Ai—l] .

The algorithm first step is to estimate P(A4;) by standard Monte Carlo simulation. One has:

N

— 1

P(A) =+ > ey
k=1

where x* are i.i.d. to f. MCMC techniques are thereafter used to estimate the conditional failure
probabilities P(Ag|Ax_1),k = 2,..., M. Let us denote:

F(X) L)<t}
P(A;)

the conditional density of x given that the i—th threshold has been reached. The goal of the
algorithms displayed in the following is to sample according to this objective distribution. As the
denominator is an unknown quantity, indirect sampling of the objective distribution is needed, which
is practically made using Monte Carlo Markov Chains (MCMC).

Fx|A) = (1.35)
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1.2.3.2 Algorithm

A so-called modified Metropolis algorithm is presented in the Au and Beck’s [4] original article. The
modification is operated to allow the practitioner to deal with high-dimensional densities. Let us
first recall the Metropolis algorithm.

Metropolis algorithm Let us denote a proposal density p*(e|x), a joint d—dimensional density,
centred in x with a symmetry property p*(e|x) = p*(x|e). We are interested in the production of
the sample x(+1 lying in the subset Ag. It is generated starting from the initial sample x() e A,
as follows:

e Sampling of the candidate sample X: € is simulated according to p*(e[x(®). Ratio r =
f(e)/f(x®) is computed. The candidate sample is X = e with probability min(1,r) and
stays x = x(?) with probability 1 — min(1,7).

o Acceptance/rejection of the candidate X: one checks that X lies within the interest zone Ay.
If G(x) < s, then x0+D = %, Else, x(+1) = x(®),

According to the authors, this algorithm is not robust to the large dimension, given a high rejection
rate. This rejection rate implies a high correlation within the produced samples, thus reducing the
efficiency of the simulation process. The authors then propose a modified Metropolis algorithm to
cope with the simulation of random vectors of high dimension.

Modified Metropolis algorithm For all dimensions j = 1,...,d let us denote p;f(e|xj), a
1—dimensional proposal density, centred in x; with a symmetry property p;(e[z;) = pj(zjle). The
sample x0T lying in the subset Aj, is generated starting from the initial sample x¥ € A as
follows:

e Sampling of the candidate sample x: for each component j, let us sample €; according to
p;(e]azy)). Ratio r; = fj(e)/fj(a:y)) is computed. Candidate’s j—th component is thus @; = ¢;
(@)

with probability min(1,7;) and is @ = z;” with probability 1 — min(1,7;).

e Acceptance/rejection of the candidate X: one checks that X lies within the interest zone Ay.
If G(x) < sp, then x0+D = %, Else, x(+1) = x(®),

The authors show that the Markov chain generated through this algorithm has stationary distri-
bution f(x|Ax). The choice of proposal density is important, the authors state that the method is
more sensible to the spread of the proposal densities than to their structural form (e.g., Gaussian,
gamma, etc.). Based on this observation, the authors recommend to use uniform densities.

On the threshold choice The authors acknowledge that the choice of the threshold is essential
in the simulation process. Thus, their advice is to choose an adaptive choice of the threshold so that
the conditional probabilities P(Ag|Ax_1) are fixed.

1.2.3.3 Theoretical results and strategies

Cérou et al. 23] present, from a theoretical point of view, two strategies to estimate small failure
probabilities. The difference between these two methods lies in the adaptive selection of the threshold
for the second.
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Fixed levels algorithm The authors consider a transition Markov kernel K on R? which is
f-symmetric (thus f-invariant):

flda)K (z,dy) = f(dy) K (y, dz).
A Metropolis-Hasting kernel is proposed (as in Au and Beck [4]). The authors then consider a
Markov chain (Xj)g>o such that the initial density is f. The generation algorithm is as follows: a

particle cloud of size N is sampled, one has Xéj) ~ f,3=1,...,N. For each level Kk =1,..., M,
let us denote Ixy1 the indices of the particles that reach the level of interest:

Iy = {.7'|X;§J) € Ap}
conditional probability P(Ag11|Ag) is estimated by pry1 = Hk—]\f' For the j of Iy 1, Xéﬁzl = Xlij)
is proposed. For the j that are not in Iy, X 19421 is randomly chosen (uniformly) as a copy of one

of the particle in I 1. Thus each particle of (Xk+1) lies in Ag41. Then for each particle indexed

by j = 1,..., N, transition is twofold. First step is to mutate (or shake) the particle by applying
(potentially several times) kernel K, producing the candidate particle Z:

7~ KX )

The second step is a post-mutation selection Xlizzl =ZitZ € Ay, Xlizzl = Xéﬁzl else. The particle

cloud is then distributed according to f(x|Aj41). Failure probability Py is then estimated by the
product of the estimators of the conditional probabilities:

M
P=T] (1.36)
k=1
The authors show the asymptotic normality of P.

P-P
VN I £ 5 N(0,02) (1.37)
Pf N—oo

where 02 has a complex expression, given in section 2.3 of Cérou et al. [23].

Adaptive levels algorithm The estimator produced by the fixed levels algorithm reaches minimal
variance when the levels are evenly spaced (in probability), see Lagnoux [56]. The authors then
propose another algorithm fixing the levels on the fly (adaptively). Let us consider a number
a € [0, 1], success rate between two levels. At each step, the threshold set is the a-quantile (or the
aN particles which G(.) values are the smallest) of the current sample. The algorithm stops when
the a-quantile of the sample is lower than 0. One notices that the number of steps is a random
variable. However, for a cloud size N large enough, the number of steps is:

log P
nsztog !

The authors also show the asymptotic normality of P.

oge (1.38)

~ L
VN (P - Pf) —— N(0,0%) (1.39)

where 02 = P? <n51?TO‘ + %) with 79 = Pa~"™s. The estimator P is biased. This bias is positive
and decreases with a % rate. However, the adaptive algorithm is more efficient than the fixed levels

algorithm, in terms of mean square error (MSE).
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Sensitivity analysis (SA)

On the tuning of parameters In the following, the adaptive algorithm presented in Cérou et
al. |23| will be used. Several parameters are yet to be tuned: NN, o and the Markov kernel (or
proposal density) choice. Balesdent et al. [7]| also recommend to tune the number of application of
the kernel.

e For the «, authors of Cérou et al. [23| recommend to take « of order 0.75. On the other hand,
authors of Au and Beck [4] propose to take a of order 0.1. Unless otherwise mentioned, we
have chosen to take a = 0.75.

e The choice of NV depends on the studied problem and on the complexity of the studied numerical
model. Unless otherwise mentioned, we have chosen to take N = 10%.

e The choice of the Markov kernel (or proposal density) is the most crucial point. Both articles
[4] and [23] let the practitioner choose the parameter according to the problem. The chosen
density will be given for each example.

1.3 Sensitivity analysis (SA)

In this section, the main methods of SA will be developed. The motivations have been presented
in page 22. Additionally, a deeper discussion of these motivations, that proposes new guidelines for
conducting SA for failure probabilities is provided in section 1.7.

1.3.1 Global sensitivity analysis

Global SA methods are used to identify the inputs contributing to the output variability, considering
the whole input support. The methods presented in this subsection, which is inspired by Iooss [49],
are divided into four main classes. The first will be the screening methods, designed to deal with
a large number of inputs. The second class is composed of the methods based on the analysis of
linear models, where a linear model is fitted and its by-products are used to perform SA. The third
class contains methods based on a variance decomposition of the output. Finally, some moment-
independent methods will be presented in the fourth class.

1.3.1.1 Screening methods

Screening methods are based on a discretisation of the inputs in levels, allowing a quick exploration
of the code behaviour. These methods are adapted to a fair number of inputs; practice has often
shown that only a small number of inputs are influential. The choice has been made to present
Morris method [71]. The aim of this type of method is to identify the non-influential inputs in a
small number of model calls. The model is therefore simplified before using other SA methods, more
subtle but more costly.

The method of Morris allows to classify the inputs in three groups: inputs having negligible
effects; inputs having linear effects without interactions and inputs having non-linear effects and/or
with interactions. The method consists of discretising the input space for each variable, then per-
forming a given number of OAT designs (one-at-a-time design of experiments, in which only one
input varies). Such designs of experiments are randomly chosen in the input space, and the variation
direction is also random. The repetition of these steps allows the estimation of elementary effects
for each input. From these effects are derived sensitivity indices.

Let us denote r the number of OAT designs (Saltelli et al. [89] propose to set parameter r
between 4 and 10). Let us discretise the input space in a d—dimensional grid with n levels per
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input. Let us denote E](i)

defined as:

the elementary effect of the j—th variable obtained at the ¢—th repetition,

G(XD 4 Aej) — G(XD)
A

@ _
E} = (1.40)

where A is a predetermined multiple of (nil) and e; a vector of the canonical base. Indices are
obtained as follows:

1 .
o i = . Z | E§Z)| (mean of the absolute value of the elementary effects),

r r J

T T 2
1 o 1 i _
° 0 — E (E]( )= g B! )> (standard deviation of the elementary effects).
i—1 i=1

The interpretation of the indices is the following:

e 1 is a measure of influence of the j—th input on the output. The larger x] is, the more the
j—th input contributes to the dispersion of the output.

e 0, is a measure of non-linear and/or interaction effects of the j—th input. If o; is small,
elementary effects have low variations on the support of the input. Thus the effect of a
perturbation is the same all along the support, suggesting a linear relationship between the
studied input and the output. On the other hand, the larger o; is, the less likely the linearity
hypothesis is. Thus a variable with a large o; will be considered having non-linear effects, or
being implied in an interaction with at least one other variable.

Then, a graph linking 417 and o; allows to distinguish the 3 groups.

1.3.1.2 Methods based on the analysis of linear models

If a sample of inputs and outputs large enough is available, it is possible to fit a linear model
explaining the behaviour of Y given the values of the random vector X. Global sensitivity measures
defined through the study of the fitted model are available and presented in the following. Statistical
techniques allow to confirm the linear hypothesis. If the hypothesis is rejected, but that the monotony
of the model is confirmed, one can use the same measures using a rank transformation. Main indices
are:

e Pearson correlation coefficient:

N (x@) _ WY —
3, y) = ZE0 BOGIEEw) oy

fj(X“ E(X)) || 3 (¥~ E())?

=1 =1

It can be seen as a linearity measure between variable X; and output Y. It equals 1 or —1 if the
tested input variable has a linear relationship with the output. If X; and Y are independent,
the index equals 0.
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e Standard Regression Coefficient (SRC):

Var(Xj)

SRC; =5\ | V@)

(1.42)

where 3; is the linear regression coefficient associated to Xj. SRC? represents a share of vari-
ance if the linearity hypothesis is confirmed.

e Partial Correlation Coefficient (PCC):

—_

PCC; = p(X; - X_;,Y —Y_)) (1.43)

where )?_\J is the prediction of the linear model, expressing X; with respect to the other inputs

and Y_; is the prediction of the linear model where X; is absent. PCC measures the sensitivity
of Y to X; when the effects of the other inputs have been cancelled.

1.3.1.3 Functional decomposition of variance : Sobol’ indices

When the model is non-linear and non-monotonic, the decomposition of the output variance is still
defined and can be used for SA. Let us have f(.) a square-integrable function, defined on the unit
hypercube [0, 1]%. It is possible to represent this function as a sum of elementary functions (Hoeffding

[46]):

d d
G(X) =Go + Z Gi(X;) + Z Gij(Xi, Xj) + -+ Gra.a(X) (1.44)
=1 i<

This expansion is unique under condition (Sobol’ [92]):

1
/ Gil...is(fﬂil,---7$i5)dxik =0 ,1 S k § S, {’il,...,’is} g {1,...,(1} .
0

This implies that Gg is a constant.

In the SA framework, let us have X = (X ..., Xy), a random vector where the variables are
mutually independent and Y = G(X), output of a deterministic code G(). Thus a functional
decomposition of the variance is available, often referred as functional ANOVA:

d d
Var[Y] = 3" Di(Y) + 3 Dy(Y) + -+ Dia.alY) (1.45)
i=1 1<J

where D;(Y) = Var[E(Y'|X;)], Di;(Y) = Var[E(Y|X;, X;)] — Di(Y) — D;(Y) and so on for higher
order interactions. The so-called “Sobol’ indices” or “sensitivity indices” (Sobol’ [92]) are obtained
as follows:

D;(Y)
Var[Y]’

_ Dy(Y)
Var[Y]’
These indices express the share of variance of Y that is due to a given input or input combination.

The number of indices growths in an exponential way with the number d of dimension: there are
2¢ — 1 indices. For computational time and interpretation reasons, the practitioner should not
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estimate indices of order higher than two. Homma and Saltelli [47] introduced the so-called “total
indices” or “total effects” that writes as follows:

St, = Si + Z Sij + Z Sijk + - Z Sy (1.46)
i<j Gk, <k le#i
where #i are all the subsets of (1...d) including . In practice, when d is large, only the main effects
and the total effects are computed, thus giving a good information on the model sensitivities. Main
methods for the estimation of such indices are presented in section 1.4. These indices will be tested
in the reliability framework.

1.3.1.4 Moment independent importance measure

In this part, 4 indices that have a moment independence property are presented. Most of them are
based on the idea that the importance measure is a distance or a divergence between the distribution
of the output (denoted fy,) and the distribution of the output given a condition on one or several
inputs. Such measures are moment independent, meaning they do not require any computation of
the moments of the output. Furthermore, such indices might be suited when the variance poorly
represents the variability of the distribution (for instance for multimodal distributions)

Kullback-Leibler divergence index (Park and Ahn) In order to assess the importance of
a variable, Park and Ahn [78] proposed to use the Kullback-Leibler (KL) divergence between the
distribution of the output, and another distribution fy,. Recall that between two pdf p and ¢ the
KL divergence is defined as:

KL(p,q) = /_+OO p(y)log %

The proposed sensitivity index reads as follows:

I(i;0) /fy 14}{22 ;]d (1.48)

and can be interpreted as “the mean information for discrimination in favor of fy, against fy,”. It
is clear that the larger the index, the more important the variable. The authors then propose some
input distributional changes.

dy if log P(y) e LY (p(y)dy). (1.47)

a(y)

Entropy index (Krzykacz-Hausmann) Krzykacz-Hausmann [55] proposes a sensitivity index
based on entropy arguments that is defined as follows. First recall the entropy of an output:

H(Y) = - /R Fro () 108 Fro(y)dy (1.49)

that can be interpreted as “the measure of the total uncertainty of Y”. Then, one can define the
expectation of the conditional entropy of Y given X;:

H(Y|X;) = Ex, [H(Y]X;)] (1.50)
Given these two quantities, the author defines the following sensitivity index:

_HY)-HY|X:) . HY|X:)
"TTTHY) T THOY)

(1.51)
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which is “a representation of the information learnt on'Y based on the knowledge of X;” (Auder and
Iooss [6]).

Relative entropy index (Liu et al.) Liu et al. [65] introduce an index representing how much
the output varies in distribution when an input is fixed to its mean. Recall that the distribution of
the output Y is denoted fy,. Then, one can fix one input X; to its mean, namely ;. The pdf of
Y after such a change is denoted fy,;. The sensitivity index can then be defined as follows, using a
modified version of KL divergence:

. _ ‘ fr,(y(z, .o Ty ooy 2))
KL(filfo) = [ Poful@r. ... ) flog PELEstistng gy (15

The larger the index is, the more influential the input is. The authors present their index as a total
effect of X;. Another measure of importance is obtained by setting all the input but X; to their
mean, but will not be presented here. It is worth noticing that the authors derived their index in
the reliability case, where the quantity of interest is a failure probability. Denoting P the original
failure probability and Pf the failure probability when X is fixed at z;, the index becomes:

_ - P _ 1-P
KLi(Pf|Pf) = Pflog F; + (1= Py)log 1— P; (1.53)

A moment free importance measure (Borgonovo) The objective of the work of Borgonovo
[13]| was to propose an importance measure without reference to any particular moment of the output.
Recall that the distribution of the output Y is denoted fy, and denote fy,x, the conditional density
of the output given that one of the inputs (X;) is fixed to a given value, say ], one can define the
density shift between these two densities:

S(X)) = / o) — iy, ()l d. (1.54)

This quantity can be seen as the area between the two pdfs. In order to take the whole range of
variation of X;, one defines the expected shift as follows:

B ls(X0)] = [ (o) [ [ 150 = fypa] (155)

Thus the moment independent measure is defined as:
1
5i = gEXi [S(XZ)] (156)

and it represents the normalised expected shift in the distribution of Y due to X;. It is worth
noticing that the author extends the definition of the sensitivity index to any group of inputs. Such
an index is denoted d;, . ;.. The sense of J; proposed by the author is to determine “the model
wnput that, if determined, would lead to the greatest expected modification in the distribution of Y.
Additionally, one can present the sensitivity measure of ¥ to X; conditionally to X; as follows:

by =5 [ Fuant )| [ i) = by, Wldy| ded

which represents the sensitivity of Y to X; when X; is determined.
The properties of J; are presented:
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e 0<4; <1

If Y does not depend on X;, then §; = 0.

e dy,.q=1

If Y depends on X; but independent of X, then 6;; = d;.
e Any bidimensional index is bounded: ¢; < 6;; < 9; + 5j|,~.
e The indices are invariant to any monotonic transformation of the output (scale invariant).

This index, having useful properties, will be tested in 1.5. The importance measure defined in
Borgonovo [13]| has been extended in Borgonovo et al. [14], where a new computation procedure
is proposed. Additionally, Caniou [21] proposes an index estimation procedure, based on kernel
smoothing estimation of the conditional pdfs then on a quadrature estimation of the shift. Another
procedure based on kernel smoothing of the cdfs is tested as well. This index will be tested in the
reliability context in section 1.5.

1.3.2 Reliability based sensivity analysis

The reliability community produced specific methods to estimate a failure probability, as seen for
instance in section 1.2.2. The question of the sensitivity of the failure probability to the input pa-
rameters arose in this context. Specific SA methods have been produced to meet these expectations.
In this subsection methods based on partial derivatives are presented, as well as methods based on
the search of a design point in the standard space. The reference here is chapter 6 of Lemaire [60].

1.3.2.1 Sensitivity measure based on partial derivatives

The main idea of this measure is to estimate the sensitivity of the probability of failure to a parameter.
From the formulation of the Hasofer-Lind index (see section 1.2.2.1), one has:

Py ~1—¢(Bur)

Denoting by p; the parameter (mean, standard deviation, ...) of an input distribution, then the
index is:

0Py _ 0Py 0BHL 0BuL
Opi  OBur Op; Op;

Such an index cannot be used to compare parameters. Indeed, the value of the derivative depends
on the way to express the parameter p; (it depends for instance of its unit), leading to some scale
effect. To allow a comparison between parameters, one introduces the elasticity Lemaire [60], which
is a dimensionless quantity:

= —9(BuL)

” (1.57)

_ pi 0P
v~ Pr op,
f ODi

(1.58)

However, this quantity is non-informative when dealing with parameters of value 0. Moreover both
of the presented methods are very dependent on the quality of the founded design point. Since they
consider the impact of a variation in the vicinity of the design point, these can be qualified as local
SA methods.
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1.3.2.2 Global sensitivity measures

The importance factors are by-products of the FORM/SORM methods. These sensitivity measures
aim at quantifying the importance of a variable on the failure probability. Since they quantify the
impact of a variable on the failure probability, they can be qualified as global SA methods, but since
they strongly depend on the approximation of the design point, they can also be qualified as local
SA methods.

From the design point u* one writes:
u* = Byra* (1.59)

where B is the distance between the origin of the standard space and «*; and o is the normalised
vector of direction. Then for each variable U;, one can obtain

e the importance factor: o 2, which sums to one and are therefore sometimes plotted as a pie
chart.
e the direction cosine: ;. One gets o = agg? u*, this formula justifies the use of o as a

sensitivity index.

However, these measures depend on the founded design point in the standard space, therefore they
are not related to the variables in the physical space. Consequently their interpretation in the
physical space might be complicated. Furthermore, they do not take the shape of the limit-state
surface into account.

1.4 Functional decomposition of variance for reliability

In the context of global SA, a widespread technique is based upon the functional decomposition of
variance, as presented in section 1.3.1.3. This section presents some works on the application of
such a method for reliability problems. At first, really simple toy models will be used in 1.4.1 to
provide an intuition about the meaning of Sobol’ indices applied to reliability. Then in 1.4.2, some
estimation techniques for the Sobol” indices are presented and their properties are discussed. The
application on the presented test cases (Appendix B) is done in 1.4.3. Two techniques of variance-
reduction are tested in 1.4.4 and in 1.4.5, respectively Quasi Monte-Carlo techniques (QMC) and
Importance Sampling (IS). An original work on the first-order indices within the failure domain is
proposed in 1.4.6. Finally, a conclusion about the use of Sobol’ indices in the reliability context is
proposed in 1.4.7.

1.4.1 First applications

Let us recall that:
Pf = E[lG(x)go]

This failure probability depends on the distribution of X. We will then consider the function from
R? to R, so that X maps to lg(x)<o as the studied function f(.) defined in section 1.3.1.3. Therefore
the functional decomposition of variance can be applied, provided that the components of X are
independent. In the following, a toy example where the indices can easily be computed is studied.
The aim is to verify if the indices are adapted to the objective.
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Failure rectangle For this first toy example, the failure function has expression:

Llax)<k = 1{0,1<x1<0,2}{0< x2<0,8} (X)

where X = (X3, X2) with X7,Xe ~ U[0,1], the two inputs being independent. The failure
probability is Py = E[lgx)<;] = 8 X 1072 and the variance is Var[lgx)<x] = Pr(1—Pf) =
3.6 x 1073, The conditional expectation of the output given the input is plotted on figure 1.4.

— E(Y/¥y)
— E(Y/X)

0.8
1

0.6

conditionnal expectation
0.4

0.2

0.0
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0.0 0.2 0.4 0.6 0.8 1.0

x

Figure 1.4: Conditional expectations for 2 variables

This figure provides information on the local features of the considered quantity. The (exact)
Sobol’ indices appear in table 1.1.

Variable or group ‘ X1 ‘ X5 ‘ X1 and Xs ‘ Total eff. of Xy ‘ Total eff. of X9
Sobol indice [ S1 =0.783 [ S =0.022 | S15=0.196 | Sp; =0.979 | Spp=0.218

Table 1.1: Sobol indices for the first failure rectangle

The values of the index reads as follows: X; explains on its own 78% of the output variance,
while X5 explains only 2%. The total effects confirm that X is of first importance (98% of the
output variance explained), and show that X, has a medium impact (22% of the output variance
explained).

These values appear to be consistent with figure 1.4 and with the expression of the failure func-
tion. Indeed, the first order indices are the variance of the conditional expectations. The black curve
associated to variable X varies on its support with more amplitude than the blue curve associated
to variable Xs. It seems consistent to have an index S7 superior to S3. Similarly, when looking at
the expression of the failure function, one sees that variable X; impacts the failure probability on
a small fraction of its support. On the opposite, variable Xo impacts the failure probability on a
broader fraction of its support. The information gained by the knowledge of the first variable value
is then larger than the one gained by the knowledge of the second variable value. This toy example
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draws attention to the relatively high value of the index associated to the interaction between the
two variables (around 20%). This interaction is important: to get a failure event, both variables
need to have a critical value jointly.

For the second example, the failure function has expression:

lax)<k = L{0,15<X; <0,2}{0,4<X»<0,8} (X)

where X = (X1, X3) with X1,Xo~ U[0,1]. The failure probability is Py = 0.02. Sobol’ indices
appear in table 1.2.

Variable or group ‘ X3 ‘ X ‘ X7 and Xy ‘ Total eff. of X3 ‘ Total eff. of X5
Sobol indice [ S1 =0.388 [ S =0.031 | S15=0.582 | Sp; =0970 | Spp=0.613

Table 1.2: Sobol indices for the second failure rectangle

It can be seen that the impact of the interaction is much larger (58% of the share of variance),
despite the similarity of the failure function. The total effects show that both variables are important.

On the failure hypercubes More generally, one can show that for a d-dimensional failure hy-
percube where the inputs are independent uniforms that:

e Sobol’ indices associated to a variable decays with the width of its associated failure indicator.
e The indices corresponding to interactions grow as the failure probability diminishes.

e A variable has interaction effect with all the others, unless its associated failure indicator is as
wide as the support of the variable. In this last case, the first order index associated with this
variable is null.

This basic example shows how Sobol’ indices can be used to rank the impact on the failure probability,
using the total effects rather than the first order effects. Based on this conclusion, we will pursue
the study of Sobol’ indices applied to a failure indicator.

1.4.2 Computational methods

The following sections are dedicated to several estimation techniques of the Sobol’ indices. To do
S0, consistent estimators of the following quantities are required:

e Var(Y),
o Dy;(Y) = Var[E(Y|X;, X;)] — Di(Y) — D;(Y),
e and so on.

The organization is the following: first we will present the techniques based upon MC sampling,
namely Sobol’; Saltelli, Mauntz, Jansen and Janon-Monod. Secondly, the techniques based upon
Fourier transformation -namely FAST, E-FAST, RBD- will be presented.
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1.4.2.1 MC based estimation techniques

Sobol’ - Presentation of the method This method is presented in the founder article by Sobol’
[92]. Let us denote G the d-dimensional model. Sobol’ method principle is the following: consider
two independent matrices of N realisations of the vector of d inputs; representing two sets of inputs.
In those matrices, a realisation of the d inputs is figured linewise. Those matrices are the following:

T W
xi0 o x o x x?) x X
T I IR b 2 | (10)
: : . : 3 3 . 3
Xy Xip o Xih Xy Xiy o Xy
In Sobol’ method, the mean of the output Y is estimated by:
A 1 < 1 1
Do =+ S e, x) (1.61)
k=1
Conversely, the variance of the output is computed as follows:
~ 1 N 1 A 2
D= NZG(X,&{,...,X,&Q)?—DO (1.62)

k=1

To compute the D; quantities, the two data sets are considered, yet one column (i.e. i-th input) in
the second data-set is replaced by the corresponding values of the first data-set. This writes:

N
. 1 A 2
Di= 5 Y GX(] - X)) x GG, XL X0 X X)) - Do (1.63)
k=1

(2

In the same order of ideas, the quantities D;; are estimated by "fixing" two columns of the second
matrix to the corresponding values of the first matrix. This writes:

N

~ 1 1 1 2 2 1 2 2 A 52

Dyj = Sexxiyxax L xg) X X X P LX)~ Di— Dy - Dy
k=1

(1.64)

Thus an estimation of the first, second,... order Sobol’ indices can be made:
o Di 4 Dy
Si=—=,8;="2 (1.65)

D

and so on. Thus the total indices S7, can be estimated by summing all the indices containing
1. However, this technique has a prohibitive cost: to get all the first order sensitivity indices, one
must perform N x (d+ 1) function calls. To get all the indices (thus estimate the total indices) one
must perform N x (2%) function calls. Additionally, this method is known for needing a fair N to
get precise estimations, of order 10000 to get a 10% error on the indices, much more for low value
indices.
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Saltelli - Presentation of the method Saltelli [87] proposed an efficient method to compute the
sensitivity indices. This method is popular within the engineering fields since it allows estimation
for each input the first and total order indices, for a smaller cost than the Sobol’” method.

The estimation of the quantities D;, D;j,... arerealised in the same way as in the Sobol’ method.
The total indices are estimated as follows: consider the quantity D.; defined as the total share of
variance that does not come from variable X;. Then the total indices rewrite:

D.;
Sp.=1-— 1.66
T Var(Y) (1.66)
Thus total sensitivity indices are computed by estimating:
A 1 1 1 1 1 1 1 5 2
D=5 Gy, x xax, L x L xE x LX) - Do (1.67)
k=1

To minimize the number of function calls, the estimation of D; is made as in Sobol” method, but
switching the samples:

N
~ 1 2 2 1 1 1 1 X
Di=%> ax, . xPy < e xg L x B x L x ) - Do (1.68)
k=1

(2
The number of function calls to estimate the first-order and totals sensitivity indices is N x (d+2)

Mauntz - Presentation of the method In order to improve the estimation of indices S; with
small values, Mauntz (Sobol’ et al. [94]) proposed an estimator of D; that writes:

- 1 2 1 1 2 1 1 1 1
D= DG, XD x [l XX X xl) - el X))
k=1

and the numerator of St, writes:

10

N
~ 1 1 1 1 1 1
Var(Y) = Do = = D G, X x (Gl x) - el x@ L xl)]
k=1

(1.70)

For the indices close to 0, one or two decades are gained on the indices’ uncertainty. The number
of function calls for the method of Mauntz (first-order and totals sensitivity indices) is N x (d + 2).

Jansen - Presentation of the method Jansen [54| proposed alternative estimators for S; and

St,.
; RS (2) &) (1) (2) ONE
Dy = Var(v) — 5= > |G, xE) - G X X)) (1.71)
k=1
and the numerator of St, writes:
: RS (1) (1) (1) (2) ONE

Var(Y) = Do = o= S [6(x o X —aoal o x@ x| (1.72)

k=1

The number of function calls for the Jansen’s method (first-order and totals sensitivity indices)
is N x (d+2).
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Janon-Monod - Presentation of the method In order to improve the estimation of the first-
order indices in Sobol’ method, Monod et al. |70] have proposed new estimators for the sensitivity
indices. Janon et al. [53] proved the asymptotic efficiency of these estimators.

N
- 1
Di= < Y GXG o X)) x G X X))
k=1
2
P Lo xthrex . Lxl) L xD)
-5 Z 5 (1.73)
k=1
The estimator of the variance of Y (D) reads:
1 2 2 2)\12
ot ol ] et
N 2
k=1
2
1 1 2 2
1 LG, x e, x x5
NESS 4 (1.74)
k=1

Reliability case The estimation methods based upon the principles of MC estimation will present
the drawbacks of such methods. Practically, the small failure probability implies that the simulation
sets will include few failure points. The estimation of the indices will be imprecise at best, impossible
in the worst case (no failure point in the data set). Tests provided in section 1.4.3 (where a large
data set is needed) will confirm these reflections.

1.4.2.2 Fourier analysis based techniques

Presentation of the methods The Fourier Amplitude Sensivity Test (FAST) method was first
presented by Cukier et al. [27]; and is based upon a Fourier transformation. It allows an estimation
of the indices at a smaller cost than the Sobol’ method. Saltelli et al. [90] extended this method for
the estimation of total indices, thus giving the Extended-FAST (E-FAST) method.

Classical FAST method is based on a selection of N points (i.e. sampling) on a specific curve
constructed in such a way that it explores each dimension (associated to an input variable) with
a preset frequency (different for each input). Let us assume that the input domain is the unit
hypercube. The curve is then defined by:

zi(s) = G;(sin w;s),Vi=1,...,d

where s is a scalar such that —oo < s < co. G is a function from [—1 : 1] to [0,1] and defines the
search-curve - it is not related to the numerical model G. w; the frequency associated to the i-th
input.

Based on the approximation of Weyl’s theorem (|101]); one has, for any d-dimensional function
f and for the z;(s) defined as previously:

1
/[O’Hd Gla)dz ~ o / Gla(s))ds (1.75)
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where x(s) = (z1(8),...,24(s)). Equation (1.75) is only true when the frequencies are linearly
independent. This cannot be the case in practice. Therefore the algorithm requires that the prac-
titioner sets a maximal interaction order M and selects the frequencies free of interferences up to
M.

The function is then computed on each of the N points, then a Fourier decomposition is performed
on the sample to estimate its spectrum. Decomposing the spectrum with respect to the frequencies
allows to estimate the estimators of the parts of variance. Indeed, denoting A; and B; the following
Fourier coefficients: .

Aj = L G(x(s)) cos(js)ds
s

2m J_
Bj = % /_7; G(z(s))sin(js)ds

Main results from Cuckier et al. |27] is that

—+00
Var[Y]~ 2) (A7 + BY) (1.76)
k=1
—+00
D; = Var[E(Y/X;)] ~ 2 (A}, + Bi,) (1.77)
k=1

The complexity of such an algorithm comes from the way to generate the sampling curve, that needs
to explore each dimension with preset frequencies avoiding interactions.

Random Balance Design (RBD) method, proposed by Tarantola et al. [96] is a modification of
the FAST technique. The algorithm starts exploring the input space via a search curve, but unlike
in FAST, each dimension is explored with the same frequency. Then a random permutation of the
coordinates of the sample points is performed. The function is called on each point of the new
sample, then the Fourier decomposition is carried out for the sampling frequency and its harmonics,
up to order M of supposed maximal interaction order. This allows an estimation of the indices
associated to each input. Tissot et al. [97] proposed a way to correct the biais produced in such
estimates.

Reliability case It can be expected that the FAST /E-FAST /RBD methods will not perform well
in the reliability case. Indeed, the indices cannot be computed easily on a discontinuous function,
especially on the indicator of a small set. Numerical tests have shown that a correct estimation of
the indices for a discontinuous function is possible, provided a high maximal interaction order M is
selected. Unfortunately, increasing this order leads to frequency selection problems. Therefore the
FAST and derived methods will not be tested in the following.

1.4.3 Reliability test cases
This applicative subsection have the following objectives:

e The first objective is to check the consistency of the estimators, to verify that the estimator
of the indices converges to the true value as the sample size growths. This will be performed
on test cases for which one can easily compute or approximate closely the indices.

e Another objective is to perform the sensitivity analysis on the numerical examples defined in
Appendix B.
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1.4.3.1 Numerical results: convergence to the true value

In this part, we will focus on the hyperplane test case, described in Appendix B.1. Let us first
remind the formulation of the first order Sobol’ indices:
" Var(Y)  Var(Y)’

In the reliability case, the expression of Var(Y') is straightforward:

Var(Y) = E(Y?) — E(Y)?

= E(lé(X)go) - IE3(1G(X)§0)2

= Pr(1 = Fy).

d
In the hyperplane case, the failure probability is known: it equals P = ¢ | —k/ Za% . This
i=1
allows an exact computation of the variance. Let us denote Tx,(z) = E[Y|X; = z], the function
depending solely on X; that explains best the output Y. In the hyperplane case with Gaussian
inputs, one has:

d
Tx,(z) =EY|X;=a]=P| Y a;X;<k—aw|=¢
J=1357

(1.78)

Then by definition:

D; = E[T%,] - E[Tx,]?

with:

BTy = [ Tx,(o)fx.(o)ds = Py

and fx,(z) is the pdf of a standard Gaussian. In the same way,

BT%) = [ T8 @) fx (o)

The last mono-dimensional integral does not have a simple expression, but one can estimate it using
the quadrature method. This, associated with the exact knowledge of Var(Y') allows to get precise
estimations of first order Sobol’ indices. This estimation will be used to control the quality of the
estimations.

Let us verify for the hyperplane 6410 case (described in Appendix B.1), where a = (1, —6,4,0))
that the estimations of the indices converge to the “real” values of the indices. First, we estimate
the “real” indices with the procedure described above, and the results are displayed in table 1.3.
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Variable ‘ X1 ‘ X2 ‘ X3 ‘ X4
Indice S; | 0.002 | 0.259 [ 0.055 | 0

Table 1.3: First order Sobol” indices for the hyperplane 6410 case
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Figure 1.5: Boxplots of the estimated first order Sobol’ indices with the Sobol’ method

We repeat the following operation 500 times: generating two samples of size N, with N varying
from 10* to 10°, and estimating the indices on all these samples. The results of the estimation of
the first order Sobol’ indices are shown in figure 1.5 for the Sobol’ method and in figure 1.6 for the
Saltelli method.

The graphics show that the estimator converges to the true value when the sample size increases.
Additionally, it shows that the estimations of a null index (S4) with the Sobol” method can provide
results with a wider spread than the ones provided with the Saltelli method. For this reason, we will
use the Saltelli method in the following. Concerning the good sample size to correctly estimate the
Sobol” indices, the results show that obviously the larger the sample is, the better the estimation is.
For our test cases, we will use samples of size 10°, since our toy-models are not costly. However it
should be noticed that this number of function calls might be unrealistic for real models.

1.4.3.2 Hyperplane 6410 case

We present on table 1.4 the estimated Sobol’ indices with 2 samples of size 10°, using the Saltelli
method. The total number of function evaluations is 6 x 106.

The total indices assess that Xo is extremely influential, and that X3 is highly influential. X;
has a moderate influence and X4 has a null influence. This last point is interesting: it shows that
this SA method can detect the non-influential variables.

23



1. STATE OF THE ARI FOR RELIABILITY AND SENSITIVITY ANALYSIS

2
& - ° S ] °
o
o o
<"_—
o g ©
g 4 —
=] 0 )
- —_— o M 4 '
@ ' n o '
ks S ' 5 o
s o _ S g— -1
i) . 2 .
© ' Q. © ' +
£ s r - € Q8 Ft===d -
£~ — = —
> — —o— I — g
8 o ' 1 3 o '
' —6— - i
- ‘ g | ‘
= i ! '
2 =]
9 .
© i
! el L
T T T T T T
10* 10° 10° 10 10° 10°
] 3 °
- ©
S ° O
[} '
o ' < \
<] H Q
@ <
» [ S
5 2 5 ®
o
5 i 5§ ©
= © = o
T S o — —o 5 9 4
E o | - E g
73 < . -] 73
° 3 | ® o
o ' —— < 4
' [}
[aY] ' -
S .
o ' o
' 3 ——
— 2 - _m=====_ ———
jol
T T T 3 T T T
10* 10° 10° 10* 10° 10°

Figure 1.6: Boxplots of the estimated first order Sobol’ indices with the Saltelli method

Index ‘ Sl ‘ SQ ‘ 53 ‘ 54 H STl ‘ STQ ‘ ST3 ‘ ST4
Estimation [ 0.002 | 0.254 | 0.054 | 0 [ 0.200 [ 0.940 [ 0.720 | 0

Table 1.4: Estimated Sobol’ indices for the hyperplane 6410 case

1.4.3.3 Hyperplane 11111 case

This numerical example has been described in Appendix B.1. We present on table 1.5 the estimated
Sobol’ indices with 2 samples of size 10, using the Saltelli method. The total number of function
evaluations is 7 x 106,

Index | S1 | S | 83 | Sa | S5 | Sru | Sro | Srs | Sta | Srs
Estimation | 0.015 [ 0.013 | 0.014 | 0.009 | 0.015 || 0.677 | 0.673 | 0.695 | 0.674 | 0.685

Table 1.5: Estimated Sobol” indices for the hyperplane 11111 case

The weak first order indices (less than 2% of the variance explained) and the high total indices
assess that all the variables are influential in interaction with the others. All the total indices are
approximatively the same showing that this SA method can give the same importance to each equally
contributing input.

1.4.3.4 Hyperplane 15 variables case

This numerical example has been described in Appendix B.1. We present on table 1.6 the estimated
Sobol’ indices with 2 samples of size 10, using the Saltelli method. The total number of function
evaluations is 17 x 106,
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Index ‘ S| to Ss ‘ Sg to St ‘ S11 to S5
Estimation | 0.014 to 0.018 | 0.001 to 0.002 | 0
Total Index ‘ ST1 to S5 ‘ St¢ to ST10 ‘ ST11 to ST15
Estimation | 0.655 to 0.673 | 0.141 to 0.150 | 0

Table 1.6: Estimated Sobol’ indices for the hyperplane 15 variables case

The first order indices are all weak, yet separated in three groups. The total indices give a
good separation between the influential, weakly influential and non influential variables. The Sobol’
indices SA method is able to deal with problems of medium dimension; however it has an heavy
computational cost in this case.

1.4.3.5 Hyperplane with same importance and different spreads

This numerical example has been described in Appendix B.1. We present on table 1.7 the estimated
Sobol’ with 2 samples of size 10°, using the Saltelli method. The total number of function evaluations
is 7 x 106.

Index [ S | S | Ss | Sa | S5 | Sou | Sra | Srs | Sra | Srs
Estimation | 0.027 | 0.028 [ 0.025 [ 0.025 | 0.028 || 0.611 | 0.622 [ 0.618 | 0.618 | 0.624

Table 1.7: Estimated Sobol” indices for the hyperplane “different spreads” case

The weak first order indices (less than 3% of the variance explained) and the high total indices
assess that all variables are influential in interaction with the others, and that no variable is influential
on its own. All the total indices are approximatively equal showing that this SA gives to each equally
contributing variable the same importance, despite their different spread.

1.4.3.6 Thresholded Ishigami function

We use the example defined in Appendix B.2, the thresholded Ishigami function. The estimated
Sobol’ with 2 samples of size 10°, using the Saltelli method, are given in table 1.8. The total number
of function evaluations is 5 x 106.

Index S So S3 St1 St2 St3
Estimation | 0.018 | 0.007 | 0.072 || 0.831 | 0.670 | 0.919

Table 1.8: Sobol’ indices estimation for the thresholded Ishigami function

The first order indices are close to 0. The variable with the most influence on its own is Xs,
explaining 7% of the output variance. Total indices state that all the variable are of high influence.
A variable ranking can be made using the total indices, ranking X3 with the highest influence, then
X7 and then X,. Figure B.1 allows to understand the meaning of the total indices. Each variable
“causes” the failure event on a restricted portion of its support. On the other hand, the knowledge
of a single variable does not allow to explain the variance of the indicator, thus the weak first-order
indices. The fact that the failure points are grouped in narrow strips can only be explained by the
3 variables together, thus the high 3-order index.
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1.4.3.7 Flood case

This test case has been described in Appendix B.3. The estimated Sobol’ with 2 samples of size
109, using the Saltelli method, are given in table 1.9. The total number of function evaluations is
6 x 10°.

Index ‘ Sq ‘ Sk, ‘SZU Sz, H St ‘STKS Stz, | St2.,
Estimation | 0.019 [ 0251 [ 0 | 0 [ 0.746 [ 0.976 | 0.248 | 0.115

Table 1.9: Estimated Sobol’ indices for the flood case

Most first order indices are small, except the one associated to K, that explains 25% of the
variance on its own. The total indices state that K and Q are extremely influential, 7, is influential
and Z,, is little influential. One can see that Sz, and Stz differ from 0, meaning these variables
have an impact on the failure probability when interacting with other variables.

1.4.3.8 Conclusion

In most tested cases, Sobol’ indices allow distinguishing the influential and the non-influential vari-
ables. However, their evaluation is costly. The objective of the two next subsections is to study
methods that allow a reduction of function calls.

1.4.4 Reducing the number of function calls: use of QMC methods

This subsection focuses on the use of Quasi Monte-Carlo methods (presented in section 1.2.1.2) to
estimate Sobol” indices. This technique is presented in Sobol’ [93].

1.4.4.1 Estimation of Sobol’ indices through QMC

The main idea when using pseudo-random sequences is to use the estimators presented in section
1.4.2.1, replacing the random samples by samples coming from a low-discrepancy sequence. In the
following, Sobol’ sequence is used (see Niederreiter |75]).

When estimating the indices with the Sobol’ method, 2 samples of size N and of dimension d
ii.d. to X are generated. These samples are then separated in complementary sets. A generation of
two samples from the pseudo-random sequence is meaningless, since it is a deterministic sequence.
The trick is to generate a sample of size N and of dimension 2d, then to split this sample. Such a
separation allows to get two samples of dimension d. Sobol’ sequence produces orthogonal columns,
these pseudo-random samples can be considered as independent. As an example on the pseudo-
random sample generation, table 1.10 displays the 8 first points generated by Sobol’ sequence in
dimension 4.

1.4.4.2 Illustration on the hyperplane test case

In this part, the focus will be set on the hyperplane 6410 test case, described in Appendix B.1. The
aim of this part is to assess the capability of QMC sampling to get a good estimation of Sobol’
indices at a smaller computational cost.

First, two QMC samples of size 10* and of dimension 4 are generated (using the trick given
above). The same is done for size 10°. Let us notice that the sample of size 10? is included in the
one of size 10°, due to the determinism of the Sobol’ sequence. Then the Sobol’ indices are estimated
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(v T v [ % [
0,5 0,5 0,5 0,5
0,75 0,25 0,75 0,25
0,25 0,75 0,25 0,75

0,375 0,375 | 0,625 0,125
0,875 0,875 0,125 | 0,6250
0,625 0,125 0,375 | 0,375
0,125 0,625 0,875 0,875

0,1875 | 0,3125 | 0,3125 | 0,6875

Table 1.10: 4 dimensional points generated through Sobol’ sequence

on the samples, using resp. 6 x 10° and 6 x 10% function calls. The results are displayed in table
1.11 and compared to a large sample size MC.

Index ‘ 51 ‘ 52 ‘ Sg ‘ 54 H STl ‘ STQ ‘ ST3 ‘ ST4
MC, size 10° | 0.002 | 0.254 | 0.054 | 0 [ 0.200 | 0.940 | 0.720 | 0
QMC, size 10* | 0.007 | 0.270 [ 0.051 | 0 | 0.175 | 0.934 | 0.730 | 0
QMC, size 10° | 0.002 | 0.266 | 0.059 | 0 | 0.195 | 0.944 | 0.720 | 0

Table 1.11: Estimation of Sobol indices using QMC for the 6410 hyperplane test case

From these results, we conclude that the use of QMC for sampling allows to gain a factor 10
in the number of function calls. Indeed, one can see that the estimation with 10* QMC points is
less accurate than the estimation with 10> QMC points, assuming the “true” values are the ones
obtained with a MC sample of size 105. Despite this loss of precision, the variable ranking is not
changed when using a “small” QMC sample.

1.4.4.3 Conclusion on using QMC sampling to estimate Sobol’ indices

This method as presented here does not provide an estimation of the error made, due to the de-
terminism of the sampling. However, scrambling techniques have been developed (Jakubowicz et
al. [52]) to add randomness in the sampling, thus allowing the computation of confidence intervals.
This might be an avenue for future researches. As a conclusion on the use of QMC sampling to

estimate Sobol” indices, this method might be used to identify the non influential variables at a
smaller computational cost.

1.4.5 Reducing the number of function calls : use of importance sampling
methods

The main idea in this part is to use importance sampling methods to estimate the Sobol” indices. This
is the same as to run the simulations with a modified sampling density, then weight the estimations
to take this density into account. Importance sampling is not used when estimating Sobol’ indices
for a continuous variable, there is no sense in fostering sampling in a particular zone. But it makes
some sense in the reliability case: we want to obtain more failure samples. The numerical simulations
presented in this section shows that this technique is effective if the sampling density is well chosen.
To the best of our knowledge, this is an original contribution.
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1.4.5.1 Rewriting the estimators with an importance density

The estimators of the Sobol” method (presented in section 1.4.2.1) are used. The aim is to estimate
the index associated to variables Xj,,...,X;,. The set of inputs Xy, .., Xy is separated, like in the
Sobol” method, into two data sets, of respective sizes s and d — s. Let us denote these data sets v
and ¢, where v includes the inputs of interest X;, , ..., X;, . Inputs are independent, therefore we can
rewrite the input density as a product of two margins:

fx(x) = fu(v) f(t).

Two sets of N points are sampled with density f¢, chosen by the practitioner. Each is separated
into two data sets, (271,?1) (52,?2). The estimators in the reliability case writes:

_— 1)
Gorr = X(”lijd 1.79
0TI = Z G(Ulj ,tlj f (’Ul],tlj) ( )
Drr = Gory — GOTI (1.80)
N o~ ~

o ~ o fx (0, tey) fe(tay)
Dut Gorr = N Z Lo(e1; 71 <0"g(61,.127)<0 fx (015, t25) frlty;) (80

— fx (25, t15) fo(Wr))
D2 + GOTI - Z v1]7t1j <0 g(v237t13)<0 fx(62],Z1]) f,ﬁ(,l")’lj) (182)

1.4.5.2 Numerical applications

As a numerical test case, the hyperplane 6410 defined in Appendix B.1 is used. Let us first notice
that the design point of such a failure surface has coordinates u* = (0.302, —1.811,1.207,0). The
sampling density will thus consist in an independent Gaussian vector centred in the design point.

Let us then estimate, with samples size 10* the first order and total indices, with MC and with
importance sampling. We repeat this estimation 100 times, the results are boxploted in figure 1.7.
The dashed lines represent the “theoretical” values obtained with a MC sample of size 106,

One can see that the dispersion of the indices estimated with importance sampling is much
smaller than the one associated with the indices estimated by MC.

The same procedure is applied with only 10 points and the results are displayed in figure 1.8.

The MC estimators are too dispersed to conclude anything, whereas the indices estimated with
importance sampling are centred around the theoretical value.

1.4.5.3 Conclusion on using importance sampling to estimate Sobol’ indices

Results are very good provided that the practitioner sets an adapted importance density. This might
be much more complicated than in the example. For instance an adapted importance density might
be hard to find for the thresholded Ishigami function.

1.4.6 Local polynomial estimation for first-order Sobol’ indices in a reliability
context

In the context of reliability analysis, we study the technique proposed by Da Veiga et al. [28] to
deal with Sobol’ indices estimation when inputs are correlated. The variance of the failure function
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Figure 1.7: Comparison of first order and total indices, MC (left) and importance sampling (right),
with 10% points for the hyperplane 6410 test case

within the failure domain is of interest here. The presented method is used to find out the first-order
contribution of each variable to this variance. The question asked in this subsection is “How each
variable contributes to the variance of the failure function G within the failure domain?”.

1.4.6.1 Sobol’ indices estimation by local polynomial smoothing

Let us recall that for a mathematical model denoted G : R* — R with random inputs X ~ f and
random output Y, first order Sobol’ indices are given by:

g _ Var (E (Y/X*))
P Var (Y)

In the case of independent inputs, one can quote Sobol” and FAST estimation techniques, as presented

in section 1.4.2. These methods cannot be applied when the inputs are no longer independent.

Nevertheless there is a need for sensitivity analysis methods when inputs are non-independently
distributed. Several recent works deal with this kind of problems.

 VE=1,....d. (1.83)
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Figure 1.8: Comparison of first order and total indices, MC (left) and importance sampling (right),
with 103 points for the hyperplane 6410 test case

The original technique proposed by Da Veiga et al. [28] to estimate Sy is based on local poly-
nomial approximation of the conditional moments. More precisely the authors use a first sample
(X i’Yi)izL..., n to fit d local polynomial response surface to explain the following relationship for
each given input k:

Yi = my(XF) + o(XF)ef (1.84)

where mg(z) = E (Y/X* = z) and o3(z) = Var (Y/X* = z)(z € R). ¥ Vi =1,..., N are indepen-
dent errors satisfying E (¥ /X*) = 0 and Var (¢f/X*) = 1. The local polynomial (LP) smoothing
provides estimators for mg(.) and o2(.). Two formulations for Sobol’ first order indices are given in
the article, we choose to focus on the one involving mg(.). Given another sample of i.i.d. inputs

(X' ,) N with same distribution as X, one can use a plug-in estimation as follow. Denoting
i=1,...,N’

m(.) the LP estimator of the conditional expectation, fitted on the first sample; denoting as well
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= 4 Z]\fl m(XF), one has:
!

Ty = N,l_ - ; (m(Xi’f) - ﬁz)z. (1.85)

Ty is an empirical estimator of the variance of the expectation of Y given X*. Dividing Ty, by the
estimated variance of Y, one has an estimator of Sy.

1.4.6.2 Reliability context

When dealing with the reliability context, the event G(X) < 0 (system failure) and the complemen-
tary event G(X) > 0 (system safe mode) are of interest. To quantify the impact of each input X*
on the failure probability P = [ 1a(x)<of(x)dx, we propose to study the first order Sobol’ indices
in the failure domain (FOSIFD).

It is obvious that given the failure event, the inputs in the failure domain are no longer inde-
pendent. Thus the methodology proposed in Da Veiga et al. |28| is of interest here. It will be
studied in the following part. One should be cautious with one point: sampling from the conditional
joint distribution has a strong computational cost, since the second sample must be distributed as
the first one; that is to say according to fg(x)<0(a:) = 1G(x)+f)f(x). This sampling operation can be
performed by running new calls of the model G. Da Veiga et al. [28] propose two options in this
case : splitting the original sample or performing a leave one out procedure. As our models are toy
functions, our sample sizes can be large.

1.4.6.3 Hyperplane 6410 case

This numerical example has been described in Appendix B.1. We perform 100 runs of the
following experiment: through simulation and function calls, we obtain two samples of size

N = N’ =10°. Only one out of a hundred of these points are of interest, since we study the FOSI
in the failure domain. From the first sample failure points, we build a LP response surface and its
mean is predicted through the second sample failure points. The variance of the expectation of the
LP response surface is estimated and divided by the variance of the first sample failure points; as
describe in section 1.4.6.1. The results are boxploted in figure 1.9.

According to the first order sensitivity indices, the second variable contributes for 20% of the
failure domain variance whereas the third variable contributes for 5% of the failure domain variance.
The two other variables provide a negligible effect on their own. Since the inputs are no longer
independent in the failure domain, one cannot assess that the sum of all the Sobol’ indices is one.
However in this case, we strongly suspect that most of the variance in the failure domain is caused
by a higher-level interaction between variables.

1.4.6.4 Hyperplane 11111 case

This numerical example has been described in Appendix B.1. The aim of this example is to assess or
infirm the capability of the FOSIEFD to give to each equally contributing input the same importance.
The results of the experiment with the same global parameters (100 runs, two samples of size 109)
are boxploted in figure 1.10.

The indices assess the same importance value for all the variables. However, one can see that
each variable is said to contribute approximatively for 2% of the failure domain variance on its own.
Therefore, as in the previous case, we suspect that there is a higher-order interaction that causes
most of the variance in the failure domain.
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Figure 1.9: Boxplot of the estimated FOSIFD for the 6410 hyperplane case
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Figure 1.10: Boxplot of the estimated FOSIFD for the 11111 hyperplane case

62



Functional decomposition of variance for reliability

1.4.6.5 Hyperplane 15 variables case

This numerical example has been described in Appendix B.1. The results of the experiment with
the same global parameters (100 runs, two samples of size 10°) are boxploted in figure 1.11.
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Figure 1.11: Boxplot of the estimated FOSIFD for the 15 variables hyperplane case

As one can see two groups of importance variables, one can conclude that the FOSIFD fails
to separate variables with a low contribution and variables with a null contribution. However,
the influential variables are detected and contribute for approximatively 2% of the failure domain
variance.

1.4.6.6 Hyperplane with same importance and different spreads

This numerical example has been described in Appendix B.1. The aim of this test is to assess or infirm
the capability of the FOSIFD to give to each equally contributing variable the same importance,
despite their different spread. The results of the experiment with the same global parameters (100
runs, two samples of size 10°) are boxploted in figure 1.12.

One can see that the values of the FOSIFD are approximatively equal for each variable. Thus,
each variable explain on its own 2% of the failure domain variance. These results are the same as in
section 1.4.6.4. Thus one can think that the spread of the variable has no impact, at least on this
test case.

1.4.6.7 Tresholded Ishigami function

This numerical example has been described in Appendix B.2. The results of the experiment with
the same global parameters (100 runs, two samples of size 10%) are boxploted in figure 1.13.

One can see from the boxplot that the FOSIFD is around 10% for variable 1, 8% for variable 2
and 25% for variable 3. The conclusion of such a result is that fixing variable 3 would provide the
greatest variance reduction in the failure domain.
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Figure 1.12: Boxplot of the estimated FOSIFD for the same importance different spread hyperplane
case
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Figure 1.13: Boxplot of the estimated FOSIFD for thresholded Ishigami case
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Figure 1.14: Boxplot of the estimated FOSIFD for the flood case

1.4.6.8 Flood case

This numerical example has been described in Appendix B.3. The results of the experiment with
the same global parameters (100 runs, two samples of size 10%) are boxploted in figure 1.14.

The FOSIFD assess that the variable K is of first importance to explain the variations of the
failure function within the failure domain, with almost 50% of the variance explained. All the other
variables have a weak influence, and the ranking is as follows: @ then Z, and finally Z,,.

1.4.6.9 Conclusion on FOSIFD

The FOSIFD method can be considered as a by-product of MC technique, since the computational
cost of the FOSIFD is negligible compared with the time needed to obtain the samples/responses.
This method has shown a capacity to assess which variable needs to be fixed to get a reduction of
variance within the failure domain, see for instance section 1.4.6.7.

However, this method focuses on how does the failure domain behaves, and not on what causes
the failure. One could possibly imagine an example in which the variables that cause the most
variation within the failure domain are not the ones leading to failure.

This example might be the following:

G(X) =1x,<5+ 0.2 x sin(10X3) (1.86)

where X7,Xs ~ U[0,1] and the failure event is when G(x) < 0. The surface picturing such a
function is displayed in Figure 1.15 .

It can be seen that the failure event is only caused by variable X; whereas the variation within
the failure domain is only caused by variable Xs. The Sobol’ indices of the indicator function are

65



1. STATE OF THE ARI FOR RELIABILITY AND SENSITIVITY ANALYSIS

77
';i";;"'i;;;;;;:\\
< II ’II, “
Vl Tl ""l'l"’
IIIZ g "l',f‘“\\ 1ol

Il \\0,,'

l'm..

Il,

"y
I‘Z”II“,Z: ;.\\‘
'4""': 'lll"

l

ll,"
'I

x1

Figure 1.15: Example surface

S1 =1 and So = 0 whereas the FOSIFD worth respectively 0 and 0.91 for variables X1 and Xo.
Consequently, if the objective is the variance reduction within the failure domain, one should focus
on variable Xs but if the objective is to understand what causes the failure event, one should focus
on variable X7.

As in our study we are more interested in the failure event, we will not pursue the testing of the
FOSIFD method.

1.4.7 Conclusion on Sobol’ indices for reliability

Sobol” indices applied directly on the indicator function have shown a capacity to separate the
influential and non-influential variables. Based on this observation, it seems an adapted method for
sensitivity analysis in the reliability context. However, in most tested cases, Sobol” indices behave
as follows: weak first order indices, strong total indices. This assesses that no variable is influential
on its own, and that most variables contribute to the failure probability when interacting with the
others. Unfortunately in most structural reliability cases, this is an already known information: it
is when all the variable takes extreme values at the same time that the equipment fails. However,
Sobol’ total indices convey a strong information if the objective is the discrimination of the influential
and non-influential variables.

One can observe that this useful information is obtained at a strong computational cost. As
a rule of thumb we suggest to use samples of size 108 for failure probabilities of order 1073: with
smaller sample sizes the estimations might be too noisy. Variance reduction technique have been
studied, QMC and importance sampling. QMC allows a reduction of function calls of order 10.
Importance sampling might be used if the goal of the SA is to rank the variable (i.e. obtain a
qualitative information) and can lead to a reduction of function calls of order 100. However, such a
reduction is possible only if a good importance density is available.

If the model is not costly we would recommend the use of such indices, using the Saltelli [87]
method that allows an estimation of the first order and total indices. Other methods can be quoted
and are compared in Saltelli et al. [88]. However if the model is costly, other methods than the
Sobol’ indices need to be found.
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1.5 Moment independent measures for reliability

Let us study, in the reliability case, the indices defined in Borgonovo [13] that have been presented
in section 1.3.1.4.
1.5.1 Application in the reliability case

For the reliability case, one has:

fyr~ B(Pf) with Py = /1g(x)gofx(x)dx (1.87)

th

where B(p) denotes the Bernoulli distribution of parameter p. When fixing the i*** output to a given

value z;, one denotes:

Fy1x,s, ~ B(Py,) with Py, = / 6o nom <o X (X_1)dx_; (1.88)

Then, the shift defined in Equation (1.54) rewrites as follows:
1
s(xi) = Yy ®) = frixeme, ) = (1= Py) = (1= Po))| + [P — Py,
y=0

—2|P; — P,|. (1.89)
Thus the sensitivity index defined in Equation (1.56) rewrites:

6 = 5B, [5(0%)) = [ £ (@lPy ~ Pudas (1.90)

If the quantities Py and P, are known, this is a one-dimensional integral.

1.5.2 Crude MC estimation of §;

Let us explicit here the methodology to use in order to estimate the indices d; by crude MC. First
of all, an estimation of P is made with N7 points:

Ny

- 1
P= N D Lo <o (1.91)
j=1
where xU) | j =1,..., N; are i.i.d. realisations of fx. Then, for a given z; that lies in the support
of fx,, let us estimate P,, with a crude MC:
1 &
P:ci = E Z 1G(x£j$,xi)<0‘fx*i(x_i) (1.92)
j=1

where fx_.(x_;) is the joint pdf of X bereft of its ;th component and (x(_jg, x;) is a realisation of fx

where the i'" component is fixed at the value x;. The cost for estimating P,, is Ny function calls.
Denoting §(x;) = 2|P — P,,|, one can estimate the first order index d; by:

N3
1 (k)\ /. (R)
0 = 9Ns ;sz(xz )S(xz ) (1.93)
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Therefore, for d inputs the total estimation cost of all the first order indices is d (N3.N2) + Ny. This
cost is prohibitive in our cases where at least 10° function calls are needed to get a correct estimation
of the quantities.

1.5.3 Use of quadrature techniques

This technique is inspired by Caniou [21], who proposes to reduce the number of function calls by
using a quadrature method, namely the Gauss-Legendre integration rule. Rewriting the equations
for our problem, one has:

M
5= 37 2o v el (199

for M quadrature points, and where the w(k) are the weights associated to each point. The com-
putational cost of the first order indices becomes d (M.N3) + Ny, where M < Nj3. According to
Caniou |21], 30 quadrature points are sufficient to reach a good precision.

1.5.4 Use of subset sampling techniques

One can remark that the computational cost of the indices comes from the estimation of the condi-
tional and unconditional failure probabilities, namely 1—:’:,;Z and P. To reduce the number of function
calls, we can use subset sampling methods to estimate these probabilities, as presented in section
1.2.3. Assuming that we use the adaptive-levels algorithm, the number of function calls becomes a
random variable, which is expected to take a value around N.ng = N. Llffgif |, as described in Equa-
tion (1.38). One can expect that N.ns < No and N.ns < Nj. Accordingly, the number of function
calls to estimate all the first order indices should be around d (M + 1) .N.ns which is expected to

be much smaller than d (N3.Ny) + Nj.

1.5.5 Hyperplane 6410 test case

Let us focus on the hyperplane 6410 test case (Appendix B.1). One can rewrite an analytical
expression of s(.), as presented in Equation (1.89). One has, for input X; set at value z;:

si(z;) = 2|Pf — Py g, (1.95)
where P, = P(G(X < 0)|X; = z;). This rewrites:

| (1.96)

Consequently, one can estimate in a very precise way these quantities and thus ;. This goes the
same for indices ¢;; and the higher order terms. These “true” values are displayed in table 1.12.

One can see that all the first order indices are rather small. According to Borgonovo [13], this
result suggests that the effects of the variable on the failure event are non separable. This means
that following the indices §, interactions play a large role in the failure event. Indeed, one can see
that most, if not all, shift in distribution is determined by an interaction between the three first
variables. Unfortunately, that information is already known. Additionally, the first order indices
can provide a variable ranking of the influence.
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Variable X1 X X3 Xy
0 0.0039 0.0228 0.0154 0
Group X1 Xo X1X3 XXy XoX3 XoX, X3X4
0ij 0.0230 0.0159 0.0039 0.0271 0.0228 0.0154
Group X1XoX3 X1Xo0X, XoX3Xy
ik 1 0.0230 0.0271

Table 1.12: True values of §; for the hyperplane 6410 case

1.5.6 Conclusion

According to Table 1.12 and to complementary numerical tests, one can conclude the following on
these moment-independent sensitivity measures. At first glance, the theoretical values shows that
they are adapted for the discrimination of influential and non influential variables. On the other
hand, the first order indices are all small and the estimation suffers from a positive bias. This
drawback means that those indices are poorly adapted for sensitivity analysis in the reliability case,
despite their sound properties.

1.6 Synthesis

This chapter has presented an overview of existing strategies for estimating failure probabilities and
of sensitivity analysis methods.

First, the mathematical context for estimating failure probabilities has been set. We presented
three classes of methods; yet it has been seen that theses classes are not partitioned. Approaches
based on numerical approximation of the failure (limit state) surface have not been considered in this
chapter. Dubourg [33] focuses on replacing in an adaptive way the failure surface by a meta-model.
Li [64] focuses on the estimation of failure probabilities using sequential design of experiments and
surrogate models.

Then, the main existing sensitivity analysis (SA) methods have been presented. Two of these
methods (Sobol” indices and Borgonovo indices) have been tested on reliability toy examples. We
conclude the following: the moment independent techniques are not adapted for the reliability case,
due to a positive bias in the estimations. On the contrary, Sobol’ indices applied to a failure indicator
have highlighted a capacity to distinguish the non-influential from the influential variables. However,
tests have shown that the following configuration -low first-order indices, high total order indices- is
often present. Therefore the information provided by such indices is limited and may only confirm
that all the variables interact to cause the failure event.

Table 1.13 is a short synthesis on the presented SA methods. In particular are itemized the
available evaluation methods altogether with the pros and cons of the methods.
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‘ Indice

‘ Sensitivity type

Evaluation method

Pros/Cons

Importance factors
and direction cosine
(1.3.2.2)

2
* *
QG5 Oy

Global/local

First order indices

eEvery design point finding

algorithm

+ Potentially a very small
number of function calls

— Measure depending on
the foudned design point

— complicated interpretation

in the physical space

Sobol’ indices

applied on the

indicator (1.4)
Si;9T,

Global
Every order indices,

use of total indices.

e Sobol’ (with QMC and/
or Importance Sampling)
e Saltelli, Mauntz, Jansen,
Janon-Monod

e FAST/E-FAST/RBD

e Use of meta-models

(not treated here)

+ Every order indices
allowing to quantify

the influence of interactions
— Total indices make

more sense and their
computation is costly

— Limited

information provided

Borgonovo indices
(1.5)
(51'; (52‘3' e

Global
Every order indices

eCrude Monte-Carlo
eQQuadrature techniques

eSubset sampling techniques

+ Good properties
— Limited

information provided

— Positive bias

in the estimation

Table 1.13: Synthesis on the tested SA methods

In the next section, we extend our thoughts on SA for failure probabilities.

1.7 Sensivity analysis for failure probabilities (FPs)

A common point of view on SA is that it is the art of determining the model inputs the most influential
on the output. But what does exactly "influential" mean, especially in the reliability field where an
input can be "influential" on the model output but can have a small "influence" on P¢? The present
paragraph focuses on the meaning of SA for FPs. This is motivated by a practitioner-friendly point
of view.

Let us ask the question: what are the reliability engineer’s motivations when he/she performs
a SA on his/her black-box model that produces a binary response? In the global introduction,
we provided an overview of the "general objectives" of SA: variable ranking, model simplification,
model understanding. But from our discussions with EDF practitioners, we have identified three
"Reliability Engineer Motivations" (REM):

e REMI1: the practitioner wants to determine which are the inputs that impact the most the
failure event - the inputs distributions being set and supposed to be perfectly known. This
amounts to an absolute ranking objective.

e REM2: P; will be impacted by the choice of the input distributions; the reliability engineer
wants to assess the influence of this choice on P;. Therefore the objective here is to quantify
the sensitivity of the model output to the family or shape of the inputs, making the assumption
that the parameters of the underlying distribution are perfectly known ( thus set to fixed given
values).
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e REMS3: in practice, input distributions are estimated from data, thus leading to uncertainty
on the values of the distribution parameters. The practitioner wants to assess the influence
of the distribution parameters on Pr. Therefore the objective here is to test the sensitivity of
the model to the parameters of the inputs

Conversely, we present here what we meant by "general use" of SA.

e Variable ranking (objective 1) is to assess which input "most needs better determination"
(Saltelli et al. [89]). This means that after the SA, a variable ranking is wanted in order to
know how the uncertainty relative to each input (often assimilated to the inputs’ variance)
is reverberated on the output uncertainty (variance). The effects of such an analysis is then
research prioritization, to collect new data allowing to reduce the uncertainty on the selected
inputs thus on the output. A typical tool for such a need is Sobol’ indices. But what exactly
is the uncertainty of the output in the reliability case? The output is a Bernoulli random
variable with parameter Py, but does its variance (Pf(1— Py)) reflects well the uncertainty on
the quantity of interest Pr?

e Model simplification (objective 2) would rather be determining which inputs can be set to
a reference value or to any value of its support without affecting the model precision. This
amounts to determine non-influential inputs. The use of such a result can be model dimension
reduction. In the case of reliability, it is known (Pastel [79]) that not all Py estimation methods
resist well to a large dimensional problem. The aim of SA in this case is then allowing the use
of sharper Py estimation methods.

e Model understanding (objective 3) includes all information gained after the SA, for instance
which particular values of some inputs leads to some behaviour of the output. In the reliability
case, this amounts to determining which inputs/groups of inputs/specific zones of the support
of specific inputs lead to the failure event. After such an analysis, the practitioner might take
actions to avoid this specific input behaviour (by replacing an equipment, warming injection
water, raising a dam among others corrective actions).

e Let us add a new item: calibration sensitivity (objective 4). In practice the inputs of the
model are not fully determined and are calibrated with the following procedure: the family of
the input is given by the physic laws (for instance the Weibull distribution which historically
comes from the field of fracture mechanics) whereas the parameters of the distribution are
data-driven. But given the lack of data/knowledge, the modelled input can be far from the
"real" (physical) input. In this case and in the reliability context, the practitioner might want
to know how this distributions/parameters errors impact Py.

Let us explicit in Table 1.14 the correspondence between the general objectives and the engineers’
motivations.

Objective 1 | Objective 2 | Objective 3 | Objective 4
REM1 X X X
REM?2 X
REM3 X

Table 1.14: Correspondence between the general SA objectives and the engineers’ motivations
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As noticed in Section 1.4, the direct application of Sobol’ indices on the failure indicator provides
the following pattern: very small first order indices, very large and similarly equal total indices. The
interpretation of this pattern is that all/most of the variables play an active role in the failure event
(objective 3) and we can use the total indices to provide a variable ranking (objective 1). However
the answer to both these questions is in practice already known (the practitioner knows that the
equipment fails when all variables take extreme values at the same time). Accordingly, this method
can in some cases detects non-influential inputs (objective 2). But from the practitioner point of
view, Sobol” indices only fulfills REM1.

In the following of this thesis, we propose 3 specific methods allowing to answer the different
objectives.

The two first methods are itemized in Chapter 2 and provide a variable ranking (objective 1,
REM1). Specifically, the first method makes use of sensitivity indices produced by a classification
method (random forests). The second method measures the departure, at each step of a subset
method, between each input original density and the density given the subset reached.

The method presented in Chapter 3 will be referred to as Density Modification Based Reliability
Sensitivity Indices (DMBSRI). These indices altogether with their estimation methods have been
initially presented in Lemaitre and Arnaud [62] then in Lemaitre et al. [63]. They are based upon
an input pdf modification, and quantify the impact of such a modification on the FP. We argue that
with an adapted perturbation, this method can fulfill the four presented general uses (objective 1 to
4), altogether with the three engineers’ motivations (REM1 to 3). This will be developed further in
section 3.3.3.
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Chapter 2

Variable ranking in the reliability context

2.1 Introduction

As stated in Section 1.7, there is a need in SA for techniques producing a variable ranking (REM1,
objective 1). This chapter presents two methods allowing to rank the random inputs by their
influence on the output. Furthermore, these methods are thoughts as by-products of the estimation
of the failure probability Py. Indeed the first technique (Section 2.2) proposes to make use of
classification trees and random forests built on a MC sample. The second technique (Section 2.3)
measures the departure, at each step of a subset method, between each input original density and
the density given the subset reached. Thus both of these methods are by-products of two sampling
techniques. Section 2.4 summarises the chapter and proposes a conclusion.

2.2 Using classification trees and random forests in SA

Classification trees and random forests are two well-known classification techniques. Additionally,
sensitivity measures can be derived. This section aims at introducing these techniques. A state of
the art on classification trees is proposed in 2.2.1. A subsection introducing the main stabilisation
methods (such as random forests) is then studied in 2.2.2. Variable ranking techniques are derived in
2.2.3. The variable ranking is then tested on the usual cases in 2.2.4. A discussion is then proposed
in 2.2.5, where the main theme is the improvement of models.

2.2.1 State of the art for classification trees

This section is widely inspired by Besse [11]; parts 3 and 4 of Briand [19]; but also parts 1 and
2 of Genuer [39] (in French). All those contributions are inspired by the founding monograph by
Breiman et al. [17]. An introduction on statistical learning and the growing of classification tree
can also be found in Hastie et al. [44].

Sample Let us assume that we have an input sample of j = 1,..., N observations from d explana-
tory variables (or inputs) considered as quantitative, denoted by X7, i = 1,...,d. A quantitative
variable Y7 with two modalities is associated with these realisations of the inputs. Let us assume
that the values taken by Y are in {0,1}. In the considered framework, this sample might be the
result of a Monte-Carlo experiment for a computer model where the quantity of interest is a prob-
ability of exceeding a given threshold (the events are failure/non-failure of the system). A sample
aggregating the inputs and output of a subset simulation might also be used - this case is discussed
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in Section 2.2.5. The sample is divided in two parts: a training set and a test set. The training set
is used to fit the model (in the next section, the classification tree). The test set is used to assess
the generalization error of the model (Hastie et al. [44]).

Growing a binary tree A classification tree is built by recursive partitioning of the input space.
Focus will be set on the CART (Classification And Regression Tree) method, Breiman et al. [17].
Moreover, the regression case will not be treated here.

The growth (or fitting) of a classification tree is done in selecting a sequence of nodes (binary
partition of the input space) then in determining a subsequence (pruning) that will be optimal
according to a given criterion A node is defined by an input variable (splitting variable) and a
division, allowing the separation of the sample in two subsamples. A division is defined by a value
(split point). At the first node (also referred to as root of the tree) corresponds the whole sample;
then iterations are made on the produced subsamples.

The algorithm requires :

e the definition of a criterion allowing to select the best node (variable+division);
e a rule to end the algorithm and decide that a node is terminal (also referred to as leaf);

e a rule to assign a terminal node to a class.

Division criterion Each variable (1,...,d) produces N —1 allowed splits (that is to say creating
a non-empty node). There are d x (m — 1) allowed splits in which the optimal division must be
chosen. The division criterion is related to a node impurity measure: the aim is to obtain nodes as
homogeneous as possible with respect to the output Y. The impurity measure considers the mixture
of Y’s modality in a node. It is null if and only if all the individuals of the same node share the
same value of Y. It is maximal when the modalities of Y are equally present in the node.

The deviance (or heterogeneity) of a node k is denoted Djy. The reduction of deviance (or
impurity reduction) from splitting this node into descending nodes ¢ and s would then be:

AD = Dy, — D, — Dy

The tree is built by taking the maximum reduction in deviance over the allowed splits:

max Dy — (D + D)
allowed splits ¢

Stopping rule The algorithm stops for a given node when it is homogeneous (it contains a single
class and therefore cannot be divided no more). The algorithm can also be calibrated to avoid
useless splits: the division process is stopped when the number of values in the node is less than a
fixed size (for instance 5 individuals).

Affectation rule If the terminal node (leaf) is homogeneous, it is affected to the represented
class. If not, a majority rule is applied. If wrong-classification costs are given, the less costly class
is chosen.
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Heterogeneity criteria Let us propose two heterogeneity measures: the entropy criterion and
Gini index (in practice this choice is less influential than the pruning criterion, Besse [11]).

Define py;; the probability that an element of node k belongs to class [ (I = {0,1} in our case).
This quantity is estimated by %}f) where nj(k) represents the number of individuals in node k
presenting class [ and nj the number of individuals in node k.

The impurity of node k in the entropy sense is defined by:

1

Dy = =2 mpulog(pu-)
1=0

The impurity of node k in the Gini index sense is:

1

D= pir(1 = pu)-

=0

Pruning A maximal tree might overfit the data (the training set) while a small tree might not
explain the structure of the data. The pruning step is a model selection step. Breiman et al. [17]
propose to select an optimal tree in a sequence of sub-trees.

Let us define the discrimination quality of a tree A: D(A) as the sum of misclassified individuals.
Let us define as well a cost-complexity measure C'(A) = D(A) + v x K where K is the number of
leaves in the tree. The pruning algorithm starts with v = 0 then increases the value of v, allowing the
building of a sequence of nested trees. It is straightforward that D(A) will rise as K decreases. The
selection of the final tree is done through cross-validation; or with a validation sample (or pruning
sample) if the data size N is sufficient.

Example We propose in this paragraph a simple example of binary classification tree, coming
from Mishra et al. [68]. The data set is presented in Table 2.1. There are two inputs and one binary
output, taking the values "Safe" and "Failure".

X1 4 3 1 5 9 11 2 6 9 8 6 7
Xo 5 1 3 4 2 6 7 8 9 10 11 12

‘ Y ‘ Safe ‘ Safe ‘ Safe ‘ Failure ‘ Failure ‘ Failure ‘ Safe ‘ Safe ‘ Safe ‘ Safe ‘ Safe ‘ Safe ‘

Table 2.1: Data set

The following tree can be constructed (Figure 2.1), where it can be noticed that all the leaves
are pure (containing only one category). On the R environment, library rpart was used to build
this tree.

2.2.2 Stabilisation methods

A classification method is said to be unstable if a small perturbation in the training set generates
a large perturbation in the final predictor. Tree-based methods (such as CART method) have been
identified as unstable. A review of classification tree stabilisation methods is proposed.
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x1>=4.5

Failure @

Figure 2.1: Binary tree

2.2.2.1 Principals overall strategies (Genuer [39], Section 1.1.3)

The principle of this family of methods is to build a collection of predictors then aggregate their
predictions. These overall strategies might be applied with CART as predictors. In the classification
case, the aggregation is done with a majority vote. The aim of this class of methods is to avoid
overfit.

Bagging  Proposed by Breiman [15] with CART as predictors, bagging is the contraction of
bootstrap aggregating. The main idea is to build, from the training sample, a number of bootstrap
samples, then to aggregate the predictions. The generic bagging algorithm is presented in Algorithm
1. In our particular case, the chosen predictor is the classification tree of CART.

Let X° be a set of inputs for which a forecast is wanted and Z = (Xj, Yj)jzl,m,N a training sample.
For b=1,...,B do:

e Sample a bootstrap sample Z
e Estimate the predictor hyz, on this sample

End for
Compute the mean prediction hp(X?) = argmax; # {b|hz, (X°) = j}.

loa 1: Bagging

Boosting Proposed by Freund et Shapire [36], this type of algorithm is widely used with CART
as predictors.

The principle is the sequential construction of models in which important weights are affected to
misclassified individuals. The founding algorithm Adaboost (Adaptive boosting) is described in the
case of a discrimination problem with two classes {—1,1}. An initial bootstrap sample is sampled,
where each individual has the same probability to appear. A classifier (predictor) is estimated,
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altogether with its classification error. A second bootstrap sample is generated, where misclassified
individuals are more likely to appear. Another predictor is fitted and the algorithm continues.
Each sample is generated according to the performance of the previous classifier. At the end, all
the classifiers are aggregated in function of their respective weights. A summary is presented in
Algorithm 2.

Let X° be a set of inputs for which a forecast is wanted and Z = (Xj, Yj)jzl,m,N a training sample.
Initialize the weights w; =1/N;i=1,...,N
For m=1,...,M do:

e Lstimate classifier hz,, on the bootstrap sample weighted by w

e Compute the error rate:
N
2= Wiling,, (x)£v9)
N
Zj:l Wy

err =

e Compute the logit [,,, = log (M)

err
e Compute the new weights w; := w; exp [—lml{hzm(xj)7gyj}:| i=1,....N

End for
Compute the mean estimation hp(X°) = sign [Z%Zl lml{hzm(xo)#yg‘}} :

loa 2: Boosting

2.2.2.2 Random forests

The presented algorithm is RF-RI (Random Forest - Random Input) described by Breiman [16]. The
main idea is to improve CART bagging with a step of random selection of inputs in the model. More
specifically, a large number of trees are grown, each tree on a different bootstrap sample. At each
node, m inputs among d are randomly selected, then the split is done. Section 1.3 of Genuer [39]
presents a complete review for several versions of random forests. Algorithm 3 sums up the ideas.
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Let X° be a set of inputs for which a forecast is wanted and Z = (Xj, Yj)jzl,m,N a training sample.
For b=1,...,B do:

e Obtain a bootstrap sample 7,
e Estimate a CART on this sample with variable randomisation:

— at each node, randomly (uniform without replacement) pick m of the d inputs;

— for each of the m variables, find the best split among the possible splits for the k-th
variable;

— among the m proposed splits, select the best one;
— split the data using the selected best split;

— repeat the previous steps until a maximal tree is growth.
e The final predictor is denoted hz,.

End for
Compute the mean prediction hp(X°) = arg max; # {blhz, (X") = j}.

loa 3: Random Forests

The default value for m in the classification context is m = v/d. Notice that each tree is maximal
and is not pruned. Some theoretical results on pure random forests (PRF) are available in Biau [12].

2.2.2.3 Structure stabilisation methods (Briand [19], section 4.4)

The presented stabilisation methods such as Bagging and Random Forests consist in the construction
of a large number of classifiers on a randomized sample. These techniques improve the capacity of
the predictors but the singular tree structure is lost. This singularity might be a requirement when
the aim of the classification is the proposal of a decision tree. The techniques proposed hereafter
aims at keeping the structure of the tree by stabilizing the nodes.

The method proposed by Ruey-Hsia [86] consists in including, for each node, logical structures.
For instance, a division criterion might be "2 < X; and Xj > 5". The notion used to reach such a
result is the existence of a division "almost as good" as the optimal. Briand [19] remarks that the
existence of a large number of logical expressions might complicate the interpretation of the tree.

Choice is then set to use a method allowing a stabilisation of the nodes (division and variable
associated) of the tree. The inspiration comes from Dannegger [29|. The main idea is to re-sample in
a bootstrap fashion for each node. For each sample, the optimal division is searched. The variables
most frequently selected are then used as a division variable for the treated node.

Briand proposed Dannegger’s algorithm to build a maximal tree, then to prune the tree with
a reduced error pruning method, Quinlan [81]. The couple tree growing/pruning is denoted REN
method. An article by Briand et al. [20] proposes a similarity measure between trees - that might
be of different structures. This similarity measure is used in Briand [19] to compare trees built with
CART method or with REN method. It allows to assess the stability of the REN method to build
classification trees.

78



Using classification trees and random forests in SA

2.2.3 Variable importance - Sensitivity analysis
2.2.3.1 Criteria definition

Tree-based classification methods are mostly used in the genomic domain, where the number of
variables is much higher than the number of observations (N < d). Thereby, different importance
measures have been considered by several authors. These measures are presented here, reminding
that their aim is the selection of a few inputs among a large number of explanatory variables.

CART case A naive idea of variable ranking is that the variables most involved in the partition
(and especially those which nodes are close from the root) are the most influential. A more refined
idea has been proposed by Breiman et al. [17]. It is defined as the sum on the nodes of the
heterogeneity reduction (for substitution divisions). An introduction on this index is presented in
Ghattas [40]. It is also used altogether with the REN stabilisation method of Briand.

RFRI case When building a large number of trees, and randomizing each construction step, the
unique structure described in the CART case is lost. Thereby, new sensitivity measures are proposed
by Breiman [16].

e A first naive estimator of a variable’s influence is the frequency of its apparition in the forest.

e A second estimator is said to be "local", it is based on the sum of the heterogeneity reduction
(in the Gini index sense) on nodes where the variable is used. This criterion will be denoted
GI in the following. The importance criterion Vi is the sum of the heterogeneity decrease
due to variable X;, divided by the number of trees in the forest Ny ees-

e Third measure is said to be "global" and is named MDA index (Mean Decrease Accuracy).
It is based on a random permutation of the values of the considered variable. In a simplified
way, if the variable is influential then the prediction error on the perturbed sample will be
high. This prediction error will be smaller /null if the perturbation is done on a non-influential
variable. More precisely, let us denote err,., the "Out-of-Bag" error, the prediction error on
the part of the sample (OOB) that has not been used to estimate the tree (the whole sample
bereft of the bootstrap sample). The values or the " variable are permuted in the OOB
sample; then the prediction error is computed on this sample. This error is denoted errgop,;.
The MDA index might be negative, and is defined as follow:

Nt'rees

(€7750b,i = €To0)
t=1

1
Ntrees

MDA(X;)

2.2.3.2 Review of works on SA with CART/RFRI

In this part, a historical (from the oldest to the newest) review of the use of CART /RFRI for SA is
presented. We tried to focus on the case N > d or N ~ d.

e Mishra et al. [69]. The topic of this article is SA. Four methods are presented, including
one based upon CART classification. CART is used by classifying "extreme" events (10 and
90 percentiles of the output). This paper quotes the following one for the methodology and
presents the same results.
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e Mishra et al. [68]. This paper’s topic is SA on a binary output (10 and 90 percentiles of a scalar

continuous output). The studied model (nuclear waste repository field) presents 300 inputs.
The authors use 60 datas. The sensitivity measure used is the most simple (" The earliest splits
contribute most to the reduction in deviance and are considered to be most important in the
classification process"). On the application case, it turns out that 5 variables are used to build
the CART that classifies the output as "high" and "low". To the best of our knowledge, it is
the first paper to perform SA on binary output.

Frey et al. |37|. In this research report, the authors list SA methods then apply them on
several cases where the output is a scalar continuous value (CART is used in a regression
context). The used index is the reduction of deviance (sum of square of the mean departure)
due to each node.

Frey et al. [38|. This research report is a review on SA. With respect to CART, the recom-
mended use is regression. For SA the authors’ point of view is to consider the variables selected
in the tree as influential; then to rank them by their proximity to the root. The previous report
is quoted, advising to use the deviance reduction index.

Pappenberger et al. [77]. To the best of our knowledge, this article is the first dealing with
Random Forests (RF) to produce SA in the sense of the present work (it is noticeable that this
paper quotes Sobol’” and Saltelli). However, the use of RFRI is for regression, therefore the
sensitivity measures are not the same as presented in Section 2.2.3. Two indices are presented,
one based upon an information gain and another based upon permutation of input values
(somehow close to the MDA index). An extension of this last measure is proposed for several
variables, yet this measure is to be used with care due to an additive assumption. The point of
view of the authors is that their method can be combined with Regional Sensitivity analysis,
(Saltelli et al. [89], Hornberger et al. [48]). The first applicative example might be interpreted
as a failure function exceeding a threshold, thus presenting an interest for the present research.
The SA part on RFRI consists in fitting a large number of regression trees and boxplotting the
results. The authors show the interest of their method (SARS-RT) in comparison with rank
regression SA. The ranking of the variables is the same for influential variables when using the
two proposed indices. However, the ranking differs for the weakly influential variables.

Strobl et al. [95]. This article deals with comparison of three sensitivity measures (Selection
Frequency/GI/MDA, see Section 2.2.3) for RFRI. The framework is the one of N < d; and
where the output is binary {0, 1}. The trees used are then classifiers. The main contribution of
this article is to show the instability of variables ranking indices. These indices tend to show
that multi-modal inputs are influential when they actually are not. The strong bias of GI
measure is shown. The authors propose a tree building procedure called subsampling, building
a tree on a sub sample without replacement of size 0.632N where N is the sample size. They
show the good behaviour of their procedure in most test cases.

Archer et al. [3]. This paper deals with variable ranking ("variable importance") in the
genomic framework (N < d, classifier trees, a large number of correlated input variables).
The authors show on simulations the similarity of the two tested sensitivity indices (GI/MDA)
and their usefulness to identify influential variable (even in the correlated case).

Pappenberger et al. [76]. This article is a review then an application of 5 SA methods on a
flood model. There are no use of CART or RFRI, but the paper by Frey et al. [37] is quoted
for the introduction of CART in SA.
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e Briand [19]. The main idea of this PhD is the use of CART for SA. The main contribution is
a procedure of tree stabilisation, presented in 2.2.2.3. An article by Briand et al. [20] dealing
with a similarity measure between trees has also been produced. This measure can be used in
a random forest to express a "median tree". A SA can then be performed on this tree.

e Genuer [39]. This PhD proposes a complete state of the art on the construction of random
forests. It also studies the properties of the MDA sensitivity indices for automatic variable
selection in the N < d case. The aim is to select a few inputs to build a parsimonious model.

e Sauve et al. [91]. The aim of this theoretical article is more to select variables rather than to
rank them by influence. Theoretical results on model selection are presented, in the regression
and classification cases.

Conclusion This bibliography shows that sensitivity analysis can be performed on a binary output
using CART /RFRI as classifiers. Further investigation will be done in 2.2.4. From the bibliography,
Gini importance measures and MDA sensitivity indices seems promising. Additionally, the paper
from Strobl et al. [95] brought up an important point: there is a possible bias with the Gini
importance measure when dealing with inputs that vary in their spread. This behaviour will be
tested in the experiments to come.

2.2.4 Applications

On the R environment, library rpart is used to build CART models. Library randomForest, based
on Breiman’s Fortran code, is used to deal with RFRI along this report.

2.2.4.1 Hyperplane 6410 Case

This numerical example is described in Appendix B.1. The following experiment is performed 100
times. A 10° points sample is generated; on which a forest of 500 trees is built. At each step of the
tree construction, m = v/d = 2 variables are randomly chosen. Results obtained with MDA and GI
are boxplotted in Figure 2.2 respectively left and right.

Both indices give the same variable ranking, identifying a strong influence for variable X5 and
X3. Variable X7 is identified as weakly influential whereas variable X4 is considered of very weak
influence for GI indices and of null influence for MDA indices. This ranking is relevant given the
coefficients of the variables.

2.2.4.2 Hyperplane 11111 Case

This numerical example is described in Appendix B.1. In term of SA, all the variables share the
same influence. The following experiment is performed 100 times. A 10° points sample is generated;
on which a forest of 500 trees is built. At each step of the tree construction, m = 2 variables are
randomly chosen. Results obtained with MDA and GI are boxplotted in Figure 2.3 respectively left
and right.

Both importance measures assess the same influence for all the variables. This was expected.

2.2.4.3 Hyperplane 15 variables test case

This numerical example is described in Appendix B.1. The following experiment is performed 100
times. A 10° points sample is generated; on which a forest of 500 trees is built. At each step of the
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Figure 2.2: Boxplots of MDA indices (left) and GI indices (right) for the hyperplane 6410 test case
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Figure 2.3: Boxplots of MDA indices (left) and GI indices (right) for the hyperplane 11111 test case

tree construction, m = 3 variables are randomly chosen among the 15. Results obtained with MDA
and GI are boxplotted respectively in Figures 2.4 and 2.5.

Both importance measures separate the influential variables (first 5), the weakly influential (6-
10) and the non-influential (11-15). Once again, it is noticed that the GI measure does not allow
to assess that a variable is "non-influential" but rather that a variable is less influential than the
others, due to a non-null score. The explication of such a phenomenon might be the following. At
a node construction step, if the randomly chosen variables are only the non-influential ones, then
the split will be done on one of these, thus reducing somehow the heterogeneity. This might explain
the non-null GI measures for non-influential variables. However, MDA has a mean null score for
non-influential variables, thus assessing their null impact on the failure probability.
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Figure 2.4: Boxplots of MDA indices for the hyperplane 15 variables test case

2.2.4.4 Hyperplane with same importance and different spreads test case

This numerical example is described in Appendix B.1. The aim of such an example is to test the
ability of both measures (MDA and GI) to give to each equally contributing variable the same
importance despite their different spread. This test case is inspired by Strobl et al. [95] who have
shown a strong bias for GI measure in case of multi modal or spread variables. The following
experiment is performed 100 times. A 10° points sample is generated; on which a forest of 500
trees is built. At each step of the tree construction, m = 2 variables are randomly chosen. Results
obtained with MDA and GI are boxplotted in Figure 2.6 respectively left and right.

It is noticeable that both measures show the same influence to all the variables, despite their
different spreads. The boxplots do not present the bias of Strobl et al. [95]. Genuer [39] uses the
MDA as a variable importance index over GI, due to the bias stressed by Strobl et al. [95]. However
this "lack" of bias in our figures might come from the fact that these figures show an averaging of
experience, thus an eventual bias might be neglected.

2.2.4.5 Tresholded Ishigami function

This numerical example is described in Appendix B.2. The parameters of the experiment are the
following: 500 trees built on 10° points with m = 2 variables selected at each node construction
step. Each experiment is reproduced 100 times. Results obtained with MDA and GI are boxplotted
in Figure 2.7 respectively left and right.

According to the measures, there is no non-influential variable. The importance ranking differs
with the measures. We recall that the problem raised with the GI measure is that one cannot assess
that the less influential variable is non-influential. Our hypothesis on the different ranking is that
binary trees do not fit efficiently separated failure surfaces. Figure B.1 is a plot of the shape of the

83



2. VARIABLE RANKING IN THE RELIABILITY CONTEXT

Gini importance

o
8«89 e . -~ _ -
=1 BEEEE
g
° e
g 84
£ o
o
Q
£
T o9
©
o
o - 2 2 -
< i - ' fﬁ&
=== - - -
LR L T
T T T T T T T T T T T T T T T
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X12 X14

Figure 2.5: Boxplots of GI indices for the hyperplane 15 variables test case
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Figure 2.6: Boxplots of MDA indices (left) and GI indices (right) for the hyperplane different spreads
test case

failure surface for the Ishigami function: it seems difficult to fit a binary partition of the space for
variables X9 and Xs.

2.2.4.6 Flood Case

This example is described in Appendix B.3. The parameters of the experiment are the following:
500 trees built on 10° points with m = 2 variables selected at each node construction step. Each
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Figure 2.7: Boxplots of MDA indices (left) and GI indices (right) for the thresholded Ishigami test
case

experiment is reproduced 100 times. Results obtained with MDA and GI are boxplotted in Figure
2.8 respectively left and right.
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Figure 2.8: Boxplots of MDA indices (left) and GI indices (right) for the flood test case

Variable ranking is the same on this test case. Kj is selected as the most influential variable, then
comes ). Z, has a negligible influence while Z,, has a null influence (according to MDA indices).
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2.2.5 Discussion
2.2.5.1 On the results of SA

Numerical experiments have shown the capacity for the proposed indices to rank the variables. This
ranking is reproducible (boxplots with few covering on 100 repetitions). Except a complex case
(thresholded Ishigami function), this ranking was the same for both studied measures.

However, GI measure can affect a non-null importance to a non-influential variable (as seen
in Section 2.2.4.3). Even if on average, the same weight will be affected to all the non-influential
variables, this numerical noise prevents to assess that a variable has a null influence. This drives
us to prefer the MDA measure over the GI measure, since it allows the detection of non-influential
variables.

2.2.5.2 On the model’s quality

Problem noticing The study of fitted models (RFRI) shows that their quality is not satisfying.
This might be a problem when drawing conclusions on SA with these models. More precisely, on a
MC sample, the variable to be predicted presents two modalities in uneven quantities. For instance
on the flood case, for a sample of 10° points there are 81 failure points whereas there are 99919 safe
points. From this imbalance there is a tendency in getting "weak" predictors that make much more
prediction error on the minority class. The confusion matrix (on the out-of-bag samples) of a forest
of 500 trees is presented in Table 2.2.

O(l;serve(i Class prediction error
_ 099912 | 7 7.0l x10°°
Predicted 1T 27 154 3.33 x 107"

Table 2.2: Confusion matrix of the forest with default parameters

It is noticeable that the prediction error is around 5000 times higher for class 1 (failure) than
for class 0 (safe mode). Given that the sensitivity measure chosen is an error averaging, it seems
essential to improve the model’s quality. The MDA ranking for this model is presented in Table 2.3.

KS Q Zv Zm
| MDA [ 628 x107% [9.79 x 10 [ 5.22 x 107 | —1.96 x 10~°

Table 2.3: MDA indices of the forest with default parameters

Class penalty A first idea to improve the models is to put a penalisation on the class so that the
failure event is best predicted. This approach presents two drawbacks:

e making that choice turns the problem into the choice of the penalty;

e the model obtained might be a pessimistic one, predicting individuals of class 0 (safe mode)
as being of class 1 (failure point).

A test affecting at each class weight proportionals to their frequency shows a weak improvement.
The confusion matrix is presented in Table 2.4.
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O(l))servecll Class prediction error
_ 0199913 | 6 6.00 x 107°
Predicted T o5 56 3.09 x 1071

Table 2.4: Confusion matrix of the forest with different weights

The MDA ranking for this model is presented in Table 2.5.

K Q Zy Zm
| MDA [ 6.17 x107% [ 9.74 x 10~ | 5.37 x 1077 [ 3.64 x 10°°

Table 2.5: MDA indices of the forest with different weights

The small modifications on the ranking and on the confusion matrix makes this solution incon-
clusive.

Increasing the number of trees Another solution is to increase the number of trees in the
forest. A test is done on the same sample with 2000 trees (this value comes from Genuer [39]). The
computing time is increased by a factor 10 on our machine. The confusion matrix and the MDA
ranking are presented respectively in Tables 2.6 and 2.7.

O(l))servecll Class prediction error
_ 99914 | 5 5.00 x 107
Predicted 1 26 55 3.21 x 1071

Table 2.6: Confusion matrix of the forest with 2000 trees

K Q Zy Zm
| MDA [ 6.09 x 107% [ 9.71 x 10~ | 4.61 x 107 [ 4.49 x 10°°

Table 2.7: MDA indices of the forest with 2000 trees

The confusion matrix does not present any improvement, despite the substantial increase of the
computing time.

Increasing the sample size Another solution might be to increase the sample size. A test has
been performed on a sample of size 5 x 10° for a forest of 500 trees. The computation failed due to
the size of the sample. The solution is then inconclusive.

2.2.5.3 Importance sampling

To bypass the problem of the sample size, the use of importance sampling (see Section 1.2.1.3) is
proposed. Therefore, the minority class will be artificially over-represented. For the flood case, the
importance densities are the following:

87



2. VARIABLE RANKING IN THE RELIABILITY CONTEXT

o K follows a truncated Gumbel distribution with parameters 3000, 558 and a minimum O;
e () follow a truncated Gaussian distribution with parameters 10, 7.5 and a minimum 1;
e Densities of Z, and Z,, are not modified.

Sampling 10 points according to these densities gives 49505 failure points (almost half of the
sample). A forest of 500 trees is fitted on this sample. The confusion matrix is presented in Table
2.8.

g)bserve(i Class prediction error
_ 50001 | 494 9.98 x 1073
Predicted |[54—5e—15097 1.00 x 10~2

Table 2.8: Confusion matrix of the forest built on an IS sample

Prediction error increases for class 0 (safe mode) with respect to Table 2.2. However prediction
error decreases for class 1 (failure), this was wanted. Furthermore, the prediction errors for the two
classes are of the same order of magnitude. The out-of-bag error on the whole model is around 1%.

MDA ranking on this model is presented in Table 2.9.

Ke | Q@ | 2 | Zm
| MDA | 0.119 | 0.429 | 0.066 | 0.011

Table 2.9: MDA indices of the forest built on an IS sample

The ranking of the variables is the same, but the obtained values have a different order of
magnitude. However, one cannot assess anymore that variable Z,, has a null influence.
To confirm these results, a forest of 1000 trees have been fitted. Results are similar and are not
presented here.
However a question arises: do MDA indices computed on a sample that is not i.i.d. to the
original densities have sense?

2.2.5.4 Using subset simulation

Another idea to solve the problem of unevenly represented classes without using importance sampling
(that needs hypotheses on the importance densities) might be to use the results of a subset simulation.
The sample would then have more failing points.

However, the MDA indices based on a coordinate permutation would not have sense anymore.
Indeed, the individuals would not be i.i.d. with respect to the original densities, but block-wise i.i.d.
to f/p, where Dy are the subsets. One could then define an adapted measure of sensitivity:

Ntrees

t t
(erroob,i,S - eTToob)
t=1

1

MDAs(X;) = 5

where the S stands for subset. The only difference here is in the way to compute erryop; s.
We propose the following: as the OOB sample is composed of individuals from different subsets
(D1,Ds,. .. ,Dg), perform the permutation of the i*? variable by subset (so that individuals coming
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from subset Dy are switched with individuals from the same subset). This error would be denoted
ETTo0b,i,S -
These indices will be developed and tested on further works.

2.2.5.5 SA from the model selection point of view

Importance measures tested in this section have variable selection as primary objective. Their second
objective is to fit parsimonious models (that do not use no more variables than necessary). The
framework of such a procedure is generally the case N < d. Our studies is rather the case of
discrimination of two classes unevenly present in a sample with N > d.

Nevertheless, this section has brought an interesting idea. This idea is to get a model collection
built on the bagging principle, then to compute a sensitivity measure for each variable and to
aggregate these measures to insure stability. It is definitely of interest and has to be explored in
further works.

2.3 Using input cumulative distribution function departure as a
measure of importance

In this section, a novel sensitivity measure is proposed. It is thought as a by-product of the subset
sampling estimation technique (Section 1.2.3). The basic idea is to propose a sensitivity index
for each variable at each step of the subset. The index is obtained as a departure in cumulative
distribution function (c.d.f.) from the original. Subsection 2.3.1 introduces the idea and proposes
some reminders. Subsection 2.3.2 makes a summary of all the distances analysed. The usual test
cases are processed in Subsection 2.3.3. Finally, Subsection 2.3.4 sums up the ideas and concludes.

2.3.1 Introduction and reminders

As previously stated in the introduction, a sensitivity index for each variable at each step of the
subset is proposed. The aim of such a proposition is to quantify step after step the influence of
each variable on the failure probability. Let us give the informal definition: the sensitivity index is
defined for the variable ¢ and the subset step k£ as a departure between the empirical c.d.f. and the
theoretical marginal c.d.f of the variable.

Counsidering M subset steps with k = 1... M; denoting:

Ff, = Fi(z|Ap), (2.1)

the empirical c.d.f. of the :*® variable given that the subset Aj has been reached. Thus the proposed
index writes:

595 (Ay) = d(EF

n,io

), (2.2)

where F; is the theoretical c.d.f. of the i*" variable, and d is a distance (defined further in Section
2.3.2).

Informally, an influential variable will have a strong departure in c.d.f. whereas a non-influential
variable will have a weak departure in c.d.f., thus a weak index. Such a strategy is inspired by
Monte-Carlo Filtering or Regionalised Sensitivity Analysis (RSA). However, it should be noted that
several blocking points are identified:
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e Information is neglected when working on the marginals. Moreover, when working with a
particles cloud, the components are generally no longer independent. Thus the c.d.f. of the
cloud is different from the product of the c.d.f. of the marginals. We decide to gloss over such
problems for now.

e The choice of the distance measure will determine the importance ranking of the variables. It
is therefore crucial to choose a distance adapted to the problem. The meaning of "influential"
must then be set in advance (difference in the central tendency, difference in extremes...).

Choice has been set to work with empirical c.d.f. rather than with empirical densities for two
reasons:

e Denoting F), ; an empirical c.d.f., Glivenko-Cantelli’s theorem states that sup |F,, ;(z) — F;(x)|
€T

converges almost surely to 0.

e More pragmatically, working with empirical densities (with a kernel smoothing) add an un-
necessary processing.

2.3.2 Distances

We propose 3 distances coming from non-parametric statistics. These distances are used to define
statistics of usual goodness-of-fit tests (Govindarajulu, [42]). Let us denote F), ; the empirical c.d.f.
and F; the c.d.f. to which it is compared (in our case, the theoretical original marginal c.d.f. of each
variable).

2.3.2.1 Kolmogorov distance (L., distance)

D,, = sup |F,,i(z) — Fi(z)|
X

The implementation of D, is direct. D,, is the supremum of the departure between F), ; and F;,
it is thus the "worst case" distance.

2.3.2.2 Cramer-Von Mises distance (L, distance)

The implementation of C,, can be done in two ways:

e (), can be estimated using a numerical quadrature rule (such as Simpson’s one);

e or denoting U; = F;(Xj),j =1,...,n and arranging this sample in order U; then:

1|/, 2/—-1\* 1
Cu=1 Z<Uj‘ 7 > + Ton

J=1
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2.3.2.3 Anderson-Darling distance

[ (Bale) - @)
= [ ST ROy R

As C,, A, can be implemented in two ways:
e by quadrature ;

e or considering the U7 then:

1 1~ * ; .
An:; _n+£§;(2]—1—2n)ln(1—Uj)_(2]_1)ln(Uj)
j=

Anderson-Darling distance is derived from the Cramer-Von Mises one but grants more weight to
the extreme values.

2.3.3 Applications
2.3.3.1 Hyperplane 6410 test case

This numerical example is described in Appendix B.1.

Subset estimation First of all, the failure probability Py is estimated using the adaptive subset
simulation method (see Section 1.2.3). Recall that the true failure probability is Py = 0.014. Note
that in this case, the subset simulation method might not be the best adapted to estimate a "not
so weak" failure probability. The parameters of the algorithm are the following:

e the proposal density is a Gaussian centred on the particle, with variance 1,
o N =10% a=.75.

The result with 15 x N function calls is the exact result:

P =0.014

Plot of the c.d.f. For this first example, the c.d.f given that the third, the seventh and the
fifteenth subset have been reached are plotted in Figure 2.9. One can see that whatever the distance
used, the c.d.f. corresponding to the fifteenth subset is farther from the original one that the c.d.f.
corresponding to the third subset (on this example).
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Q
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Figure 2.9: Several c.d.f.

Distance estimation The distance are estimated with the formulas given in 2.3.2. They are
plotted in function of the threshold in Figures 2.10, 2.11 and 2.12. Variable X; is plotted in black,
Xy in blue, X3 in green and X4 in red.
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Figure 2.10: Hyperplane 6410 test case, Kolmogorov distance
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Figure 2.12: Hyperplane 6410 test case, Anderson-Darling distance

All the distances allow the following variable ranking: Xo,X3,X; then X,. Notice that this is
the same ranking tan the one provided by the importance factors (see Table 3.3). All the distances
tend to separate the variables in two groups. The Anderson-Darling distance seems to minimise the
influence of the first variable (black).

2.3.3.2 Hyperplane 11111 test case
This numerical example is described in Appendix B.1. Recall that the aim of this test case is to

assess the capability of the SA method to give the same importance to each input.

Subset estimation The failure probability Py is estimated using the adaptive subset simulation
method (see Section 1.2.3). Recall that the true failure probability is Py = 0.0036. The algorithm’s
parameters are the following:

e the proposal density is a Gaussian centred on the particle, with variance 1,
e N =10% a=.75.

The result with 20 x N function calls is the exact result:

A

P =0.0036

Distance estimation The distances are estimated with the formulas given in 2.3.2. They are
plotted in function of the threshold in Figures 2.13, 2.14 and 2.15. A different color is used for each
variable.
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Figure 2.13: Hyperplane 11111 test case, Kolmogorov distance
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Figure 2.14: Hyperplane 11111 test case, Cramer-Von Mises distance
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Figure 2.15: Hyperplane 11111 test case, Anderson-Darling distance

Every distance gives to the 5 variables the same importance. The distances growth with the
threshold. So far, this SA method has proven that it can give the same influence to equally influential
variables.

2.3.3.3 Hyperplane 15 variables test case

This numerical example is described in Appendix B.1. Recall that the aim of this test case is to
class the inputs in 3 groups: influential, weakly-influential and non-influential.

Subset estimation The failure probability Py is estimated using the adaptive subset simulation
method (see Section 1.2.3). Recall that the true failure probability is Py = 0.00425. The algorithm’s
parameters are the following:

e the proposal density is a Gaussian centred on the particle, with variance 1,
o N =104 o =.75.

The result with 19 x N function calls is close from the exact result:

P = 0.00454

Distance estimation The distances are estimated with the formulas given in 2.3.2. They are
plotted in function of the threshold in Figures 2.16, 2.17 and 2.18. A different color is used for each
variable. A different symbol (respectively a dot, a triangle and a square) is used for each group
(respectively influential, weakly-influential and non-influential).
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Figure 2.16: Hyperplane 15 variables test case, Kolmogorov distance
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Figure 2.17: Hyperplane 15 variables test case, Cramer-Von Mises distance
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Figure 2.18: Hyperplane 15 variables test case, Anderson-Darling distance

All the distances growth with the threshold. Kolmogorov distance allows a separation of the
inputs in 3 groups. On the other hand, both Cramer-Von Mises distance and Anderson-Darling

Threshold

separate the inputs in two groups: influential and non-influential.

2.3.3.4 Hyperplane different spread test case

This numerical example is described in Appendix B.1. Recall that the aim of this test is to assess
the capability of the SA method to give to each equally contributing variable the same importance,

despite their different spread.

Subset estimation The failure probability

parameters are the following:

e the proposal density is a Gaussian centred on the particle, with the same variance as the

considered input,

e N =10% a=.75.

Py is estimated using the adaptive subset simulation
method (see Section 1.2.3). Recall that the true failure probability is Py = 0.0036. The algorithm’s

The result with 20 x N function calls is close from the exact result:

A

P =0.0036

Distance estimation The distances are estimated with the formulas given in 2.3.2. They are
2.19, 2.20 and 2.21. A different color is used for every

plotted in function of the threshold in Figures
variable.
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Figure 2.19: Hyperplane different spread test case, Kolmogorov distance
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Figure 2.20: Hyperplane different spread test case, Cramer-Von Mises distance
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Figure 2.21: Hyperplane different spread test case, Anderson-Darling distance

Every distance growth with the threshold. All the distances pack the inputs variable together.
So far, we can conclude that this SA method succeeds in giving to each equally contributing variable
the same importance, despite their different spread.

2.3.3.5 Thresholded Ishigami test case

This more complex numerical example is described in Appendix B.2.

Subset estimation The failure probability Py is estimated using the adaptive subset simulation
method (see Section 1.2.3). Recall that the failure probability is roughly Py = 5.89 x 1073, The
algorithm’s parameters are the following:

e the proposal density is a truncated Gaussian centred on the particle, with variance 1, minimum
and maximum respectively —m and T,

o N =10% a=.75.
The result with 18 x N function calls is close from the exact result:

P=581x10"3

Distance estimation The distances are estimated with the formulas given in 2.3.2. They are
plotted in function of the threshold in Figures 2.22, 2.23 and 2.24. A different color is used for every
variable: X is plotted in black, X5 in blue and X3 in red.
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Figure 2.22: Thresholded Ishigami test case, Kolmogorov distance
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Figure 2.23: Thresholded Ishigami test case, Cramer-Von Mises distance
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Figure 2.24: Thresholded Ishigami test case, Anderson-Darling distance

One can first comment that there is a non linearity in the growth of the distance for X, for
the three considered distances. Specifically, there is a raise in the growth between the threshold
8.5 and 6.7. For the three distances, there is a crossing of the values of the indices of X9 and X3.
Counsidering the Anderson-Darling distance, there is also a crossing between X and X;.

On this test case, the 3 distances do not give equivalent results. Precisely, Kolmogorov and
Cramer-Von Mises distances give the same final ranking (X7, X3, X2); although the gap between
variables X; and X3 is larger with Kolmogorov distance. However, Anderson-Darling gives the
ranking (X3, X, X2). We propose the following explanation: Anderson-Darling distance (being
a re-weighting of Cramer-Von Mises distance) is said to grant more weight to the extremes. But
in the final step of the subset, the third marginal of the sample of failure points consists in points
distributed on the extrema (close of —7 and m). Notice that all the distances give variable Xy as
the less influential variables.

2.3.3.6 Flood test case

This numerical example emulating a real code is described in Appendix B.3.

Subset estimation The failure probability Py is estimated using the adaptive subset simulation
method (see Section 1.2.3). Recall that the failure probability is roughly Py = 7.88 x 10™*. The
algorithm’s parameters are the following:

e the proposal density is always centred on the actual particle, and the densities are:
— a truncated Gaussian with minimum 0 and standard deviation 10 for variable Q;

— a truncated Gaussian with minimum 1 and standard deviation 5 for variable Kg;

— a truncated Gaussian with minimum 49, maximum 51 and standard deviation 1 for vari-

able Z,;
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— a truncated Gaussian with minimum 54, maximum 56 and standard deviation 1 for vari-

able Z,,;

e N =10% a=.75.

The result with 26 x N function calls is close from the exact result:

P=707%x10"3

Distance estimation The distances are estimated with the formulas given in 2.3.2. They are
plotted in function of the threshold in Figures 2.25, 2.26 and 2.27. A different color is used for every
variable: @ is plotted in black, K in blue, Z, in green and Z,, in red.
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Figure 2.25: Flood test case, Kolmogorov distance
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Figure 2.26: Flood test case, Cramer-Von Mises distance
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Figure 2.27: Flood test case, Anderson-Darling distance

On this test case, the 3 distances give equivalent results. The behaviour of variable @) is the same
with the 3 distances: the distance between the original c.d.f. and the empirical one rises from the
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beginning until the threshold reaches 2. Then the distance diminishes slowly. The behaviour is the
same for variable Z, although with much less amplitude. The distance for variable K, growths with
the subset. For variable Z,,, the distance stagnates around the minimal value. The final ranking is
K, Q, Z,, Zy, for the 3 distances, which is the one provided by the importance factors (see Table
3.16).

2.3.4 Conclusion

e The proposed SA technique allows an use of the subset simulation methods. In particular, we
used adaptive levels algorithms.

e The computational time is negligible with respect to the computational time needed to obtain
the failure sample.

e The three proposed distances bring complementary informations on the failure sample.

— Kolmogorov distance is an Lo, one. It expresses the maximal gap between the empirical
c.d.f. of the failure sample and the original distribution. As far as we have noticed on
the examples, it seems the more discriminant distance (see Figure 2.16 for instance).

— Cramer-Von Mises distance is an Lo one. The indices produced using this distance answer
the question "what is the input which distribution varies most in central tendency when
restricted to the failure domain?". The use of such a distance is then recommended if the
aim of the SA is to fix the non-influential input variables to their central value.

— Anderson-Darling distance grants more weight to the extreme values. The indices pro-
duced using this distance answer the question "what is the input which distribution varies
most in the extremes when restricted to the failure domain?". The use of such a distance
is recommended when the aim of the SA is to determine the relative influence of the
boundaries or extremes of input distributions.

e So far, this SA method is recommended to get a similar information as the one provided by the
Sobol” indices on the failure indicator (that is to say the detection of variables less influential
than others).

e However, this method provides an interesting additional information: it shows how the thresh-
old impacts each variable. This is interesting in the sense that, in some real cases, the threshold
might not be fixed by the physics but by the regulation. A threshold given for a safety study
might not be the same for another study. This method has shown (on the Ishigami test case)
that the ranking might be different for several threshold (crossing of the curves between Xo
and X3 for instance).

2.4 Synthesis

This chapter has presented two SA methods provide a variable ranking (objective 1, REM1, see
Section 1.7). A first part was devoted to classification methods for SA, with a special attention paid
to random forests. A second part was devoted to measuring the departure between the original and
the empirical c.d.f. at several steps of a subset simulation method.

Table 2.10 is a short synthesis on the SA methods presented throughout this chapter.
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‘ Indice

Sensitivity type

Evaluation method

Pros/Cons

Gini indices

Global

e Random forests on a

MC sample

+ By-product of the MC method
— Can affect a non-null importance

to a non-influential variable

the cdf departure
575 (A)

simulation technique

MDA indices Global e Random forests on a | + By-product of the MC method
MC sample
Indices using Global ® Subset +By-product of a subset

simulation technique
—Information is neglected

when working on the marginals.

Table 2.10: Synthesis on the presented SA methods

However this chapter provides some avenues for future research:

e An adapted reflection must be conducted on the pertinence of the random forests’ sensitivity

measures when using importance sampling.

e Still in the context of random forests, the MDA indices when using subset simulation must be

implemented.

e The idea that consist in getting a model collection and aggregating their sensitivity measures

to insure stability seems promising and is to be explored.

e When dealing with the second method proposed, a work including the copula theory might be
conducted. In particular, the aim of this work could be to quantify the total departure of the
particle cloud, and to assess which variable or interaction of variables contribute most to the

failure event.




Chapter 3

Density Modification Based Reliability
Sensitivity Indices

3.1 Introduction and overview

In most studies, sensitivity indices for failure probabilities are defined in strong correspondence with
a given method of estimation (e.g. Lemaire [61], Munoz Zuniga et al. |73]). Their interpretation
is consequently limited. In this chapter, it is proposed to define new generic sensitivity reliability
indices. Our sensitivity index is based upon input density modification, and is adapted to failure
probabilities. A methodology to estimate such indices is derived.

The proposed indices reflect the impact of the input density modification on the failure prob-
ability Py. The indices are independent of the perturbation in the sense that the practitioner can
set the perturbation adapted to his/her problem. Different modifications/perturbations will answer
different problems.

For simplicity reasons, a classical Monte Carlo framework is considered in the following, although
the estimation process will be extended to the use of subset and importance sampling methods. The
sensitivity index can be computed using the sole set of simulations that has already been used to
estimate the failure probability Py, thus limiting the number of calls to the numerical model, as
specified in the constraints of the CWNR case (page 24)

The outline of this chapter is the following: first, the indices and their theoretical properties are
presented in Section 3.2, altogether with the estimation methodology. Second, Section 3.3 deals with
several perturbation methodologies. These perturbations can be classified into two main families:
Kullback-Leibler minimization methods and parameter perturbations methods. The behaviour of
the indices is examined in Section 3.4 through numerical simulations in various complexity settings
(see Appendix B). Comparisons with two reference sensitivity analysis methods (FORM’s impor-
tance factors and Sobol’ indices, see Section 1.3) highlight the relevance of the new indices in most
situations. In Section 3.5, it is proposed to improve the DMBRSI estimation with importance sam-
pling and with subset simulation. The main advantages and remaining issues are finally discussed
in the last section of the chapter, that introduces avenues for future research.

This chapter is the extended version of the paper [63].

107



3. DENSITY MODIFICATION BASED RELIABILITY SENSITIVITY INDICES

3.2 The indices: definition, properties and estimation

3.2.1 Definition

Given a unidimensional input variable X; with pdf f;, let us call X;s ~ f;s the corresponding
perturbed random input. This perturbed input takes the place of the real random input X;, in
a sense of modelling error : what if the correct input were X;5 instead of X;7 More about this
replacement is proposed thereafter, see Section 3.3.1.1. Recall that we consider that (X1,...,Xy)
are mutually independent.
The perturbed failure probability becomes:
fis(s)

P = [Liaoen 22 flxix (3.1)
where x; is the i*® component of the vector x. Independently of the mechanism chosen for the
perturbation (see next section for proposals), a good sensitivity index S;s5 should have intuitive
features that make it appealing to reliability engineers and decision-makers. We argue that the
following definition can fulfill these requirements.

Definition 3.2.1 Define the Density Modification Based Reliability Sensitivity Indices (DMBRSI)
as the quantity S;s:

Pis

Py Pis — Py
Sis = [Ff o 1:| 1{Pi62Pf} + [1 - P_ch:| 1{Pi6<Pf} =

Pr-Lpszrpy + Pis - Lps<ryy

3.2.2 Properties

e Firstly, Sis = 0 if Pjs = Py, as expected if X; is a non-influential variable or if § expresses a
negligible perturbation.

e Secondly, the sign of S;s indicates how the perturbation impacts the failure probability qualita-
tively. It highlights the situations when P;; > Py i.e. if the remaining (epistemic) uncertainty
on the modelling X; ~ f; can increase the failure risk. In this case, the uncertainty on the
concerned variable should be more accurately analysed. Conversely, if P;; < Py, Py can be
interpreted as a conservative assessment of the failure probability, with respect to variations
of X;. In such a case, deeper modelling studies on X; appear less essential.

e Thirdly, given its sign, the absolute value of S;5 has simple interpretation and provides a level
of the conservatism or non-conservatism induced by the perturbation. A value of a > 0 for
the index means that Ps = (1 + o) Py. If S;5 = —a < 0 then P;s = (1/(1 + |af)) Py.

3.2.3 Estimation

The postulated ability of S;5 to enlighten the sensitivity of P to input perturbations must be tested
in concrete cases (see Section 3.4), when an estimator Py of Py can be computed using an already
available design of N numerical experiments. In the following, N is assumed to be large enough such
that statistical estimation stands within the framework of asymptotic theory. Besides, a standard
Monte Carlo design of experiments is assumed for simplicity (see Section 1.2.1). This allows to write:

1 N
Py = N Z 1{G(x”)<0}
n=1
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where the x!, .-, xV are independent realisations of X. The strong Law of Large Numbers (LLN)

and the Central Limit Theorem (CLT) ensure that for almost all realisations Py o Py and
—00

N

m(PN — Py ﬁ N(0,1). (3.2)

The Monte Carlo framework allows P;5 to be consistently estimated without new calls to G, through
a "reverse" importance sampling mechanism:

- 1 & fis(a})
Pisn = ;::1 1{G(x")<0}m' (3.3)

This property holds in the more general case when P is originally estimated by importance sampling
rather than simple Monte Carlo, which is more appealing when G is time-consuming, Beckman and
McKey, Hesterberg [8, 45]. This generalization is discussed further in the text (Section 3.5). The
following lemma ensures the asymptotic behaviour of such an estimator.

Lemma 3.2.1 Assume the usual conditions

(i) Supp(fis) C Supp(fi),

2
(ii) fis(®) dr < o0,
Supp(f) fi(x)

then ]32-5]\; — Pis and \/Na%]lv <I:)i5N — PZ-(;) L) N(0,1). The exact expression of 0:511\, 18
N—o0 v N—oo v

given in Appendiz D.1, equation (D.1). It can be consistently estimated by

1 & fis(z)\?
~2 _ i\ Ly 2
OisN  — NZ1{G(xn)<0}<f,(xn)> — Pisn-
n=1 L\

The proof of this Lemma is given in Appendiz D.1.

We stress that Equation 3.3 is valid as long as the assumptions of Lemma 3.2.1 are respected.
This means that whatever the perturbation chosen, the estimation of Pisn does not require new
function calls.

The asymptotic properties of any estimator of S;s5 will depend on the correlation between Py
and Py . The next proposition summarizes the features of the joint asymptotic distribution of both
estimators.

Proposition 3.2.1 Under assumptions (i) and (ii) of Lemma 3.2.1,

\/NK Py >_< Py )} L N (0, D)

Pi&N H N—oo

where Y5 is given in Appendiz D.1, Equation (D.2) and can be consistently estimated by

S = (PN(l—P{V) Pi&N(l_pN)>
‘ Pisn(1 — Py) 65N

The proof of this Proposition is given in Appendiz D.1.

109
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Given (Py, Psn), the plugging estimator for Sjs is:

o | Pan Py
Sisn = PN — 1] I{PiJNZpN} + [1— % 1{pi6N<pN}. (3.4)

In corollary of Proposition 3.2.1, applying the continuous-mapping theorem to the function s(z,y) =

T

Theorem 3.1 in Van der Vaart [98].

[E - 1] 1iy>a)+ [1 - 5] Liy<ays ﬁi(;N converges almost surely to S;5. The following CLT results from

Proposition 3.2.2 Assume that assumptions (i) and (it) of Lemma 3.2.1 hold and further that
P # P;s, we have

VN [S}(;N - 51-5} —£ 4 N (0,d75d,) (3.5)
N—oo
) 0s 0s T

with dg = <%(Pf,PZ-5), 8—y(Pf, PZ-(;)) for x # vy, and
0s 1
%(‘%y) = _yl{yZ:c}/x2 - ;1{y<x},
Js 1
8_y(x’y) = EI{yZ:c} +x1{y<x}/y2-

3.2.4 Framework

Figure 3.1 summarises the use of DMBRSI.
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Get a MC sample
Lo xN~ f

Define a specific
perturbation
(see Section 3.3)

Set perturbation
parameter ¢ within a

given variation range

Estimate the
quantities:
Pisn (see Ea. (3.3))

Sisn (see Eq. (3.4))

~

Y5 (see Prop. 3.2.1)

]1fi<d,i=z’+1

While in the variation

range, change §

Plot S;sx in function of &
Plot confidence intervals
around S;sny from ddeS

Figure 3.1: General DMBRSI framework
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The notion of perturbation is discussed in the next section. Which perturbation to choose
according to the objective is also discussed as well as recommendations on the variation range of J.

3.3 Methodologies of input perturbation

This section proposes several perturbation methodologies. However the DMBRSI and its estimation
techniques remain valid for any perturbation, as long as the support constraints (Lemma 3.2.1) are
respected. Here, two main families of method are presented. The first one determines the perturbed
density minimizing the Kullback-Leibler divergence under some constraints given by the practitioner.
Several constraints are proposed, each one dealing with a different SA objective. The second method
is to be used when the practitioner wants to test the sensitivity of Py to the parameters of the
distributions. Both subsections will be introduced by toy-examples.

This section illustrates the DMBRSI’s capacity to deal with several SA objectives. The prac-
titioner is invited to propose new perturbation methodologies that would answer his questions.
Recommendations of perturbation regarding the objectives are itemized at the end of the section.

3.3.1 Kullback-Leibler minimization

The DMBRSI requires to define a perturbation for each input. In general, and especially in prelim-
inary reliability studies, there is no prior rule allowing to elicit a specialized perturbation for each
input variable. Thus a simple perturbation methodology is exposed -denoted KLM for Kullback-
Leibler minimization- allowing the practitioner to answer the questions itemized in Section 1.7 of
the present thesis.

3.3.1.1 First example

Let us assume we have an input X; distributed according to f;. This random input models for
instance a physical uncertain quantity. The distribution f; is known, altogether with its parameters.
This modelling was done by physic expert, engineers, practitioners, statistical analyst from field
data ... Moments of X; are also known given they exist.

We would like to fairly perturb this input to represent "the lack of certitude" on some quantity.
This quantity might be, as a simple example, the first moment. Let us assume the input X; is
distributed according to a Gaussian, AV/(0,1). What if the expectation of X; was badly modelled?
What if the data used to calibrate f; were wrong?

We will thus suppose the existence of another random variable X;s (distributed according to fis),
close from X; in some sense, and we will process it through the model, as if input X; was replaced
by the perturbed input X;s. § represents here the perturbation, its amplitude for instance.

Thus the example is an expectation perturbation. What if the mean of the perturbed input were
27 New data can lead to such a situation. So we want the new input to have:

E[Xi] = 2, (3.6)
obviously
[ fatwds =1 (37)
and X5 must be close in some sense to X;. Notice that Equation (3.6) rewrites

/xfi(;(a:)da; = 2. (3.8)
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Figure 3.2: The original density of mean 0 (full line) and several candidates densities of mean 2

Several candidates for f;5 exist. In Figure 3.2 are plotted some choices, altogether with the
original density. Some candidates are "closer" to f; than others in some sense not yet defined.
Let us now focus on the needs. We would like to take f;5 as the density, among all the densities
satisfying the constraints (in our example, constraint (3.6)), that is the minimum argument of a
departure D between densities.

fi(5 = argmin D(fm0d7 fz) (39)

fmod |constraints holds

Distance quantifying the departure between two densities are numerous (Cha [24]). Information-
theoretical arguments (Cover and Thomas [25]) led to choose the Kullback-Leibler divergence (KLD)
between f;5 and f; as a measure of the discrepancy to minimize under constraints (definition of KLD
is reminded in 3.10). This comes at "adding" as few information as possible on f;s other than the
constraints.

By simple calculus, it may be shown that the density minimizing the KLD from f; and satisfying
constraints 3.6 is a Gaussian, of mean 2 and of the same variance as f;. The computation of the
indices expressed in Section Section 3.2 can now be done as f;5 is provided.

Next subsection formalises this example.

3.3.1.2 Kullback-Leibler minimization

Here, a perturbed input density f;s is defined as the closest distribution to the original f; in the
entropic sense and under some constraints of perturbation.
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Later (see Sections 3.3.1.3, 3.3.1.4), specific perturbations corresponding to a mean shift, a
variance shift and a quantile shift will be presented.
Recall that between two pdf p and ¢ we have:

KL(p,q) = /_:O p(y)log %dy if log 2% € L'(p(y)dy). (3.10)
Let i =1,--- ,d, the constraints are expressed as follows in function of the modified density fioq4:
[ 905 fa(s = G (b =1+ 6). (3.11)
Here, for k =1,--- , K, g are given functions and dj; are given real. These quantities will lead
to a perturbation of the original density. The modified density f;s considered in our work is:
fis = argmin KL(fmod, fi) (3.12)

Fmodl(3.11) holds

and the result takes an explicit form (Csiszar, |26]) given in the following proposition.

Proposition 3.3.1 Let us define, for A= (A1, , g)" € RE,

K
Pi(A) = 10g/fi(l’) exp [Z )\kgk(x)] dz (3.13)
k=1

where the last integral can be finite or infinite (in this last case 1;(A) = +00). Further, set Dom ; =
{X € RE|9;(X) < +o00}. Assume that there ewists at least one pdf fmoq satisfying (3.11) and that
Dom 1; is an open set. Then, there erists a unique N* such that the solution of the minimisation
problem (3.12) is

K
fis(x:i) = fi(zs) exp [Z Aign () — zpi(x*)] : (3.14)

k=1

The theoretical technique to compute A is provided in Appendix D.2.

3.3.1.3 Moments shifting

Mean shifting The first moment is often used to parametrize a distribution. Thus the first
perturbation presented here is a mean shift, that is expressed with a single constraint:

/ﬂiz’fmod(ﬂii)dxi =0; . (3.15)

In terms of SA, this perturbation should be used when the user wants to understand the sensi-
tivity of the inputs to a mean shift - that is to say "what if the mean of input X; were §; instead
of E [X;]?". Notice that for most distributions, this amounts to testing the sensitivity to the central
tendency.

Proposition 3.3.2 Considering constraint (3.15), under the assumptions of Proposition 3.5.1, the
expression of the optimal perturbed density is

fisi(xi) = exp(N@; — ¥i(A")) fi(ws) (3.16)

where \* is such that Equation (3.15) holds.
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Notice that Equation (3.13) becomes

Bi(A) = log / Fil:) exp(zs)das = log (M. (V) (3.17)

where Mx, (u) is the moment generating function (m.g.f.) of the i—th input. With this notation, \*
is such that:

/$i exp (A*z; —log (Mx, (XY))) fi(zi)dz; = 0; ,
which leads to:

/$i exp (A*x;) fi(zi)dz = 0; Mx,(\*) .
This can be simplified to:
My, (A7)
0 = . 3.18
M, (V) 19
This equation is easy to solve when the expression of the mgf of the input X; and of its derivative
is known.

Variance shifting In some cases, the expectation of an input may not be the main source of
uncertainty. One might be interested in perturbing its second moment. This case may be treated
considering a couple of constraints. The perturbation presented is a variance shift, therefore the set
of constraints is:

{f T fmoa(®i)dr; = E[X;] | (3.19)

fx%fmod($i)dxi = Vper,i +E [Xz]z .
The perturbed distribution has the same expectation E[X;] as the original one and a perturbed

variance Vje,; = Var [X;] £ J;. In terms of SA, for most distributions, this amounts to testing the
sensitivity to the tails of the distribution, keeping the central tendency untouched.

Proposition 3.3.3 Under the assumptions of Proposition 3.3.1, for constraint (3.19), the expres-
ston of the optimal perturbed density is:

fis,(xi) = exp(A\jz + A3a® — (X)) fi(:)
where A} and X5 are so that equation (3.19) holds.

Perturbation of Natural Exponential Family In general, when perturbing the input densi-
ties with the KLM method, the shape is not conserved. However in the specific case of Natural
Exponential Family (NEF), the following proposition can be derived.

Proposition 3.3.4 Assume that the original random wvariable X; belongs to the NEF, i.e. its pdf
can be written as:

fio(wi) = b(xi) exp [i6 — 1(0)]

where 0 is a parameter from a parametric space ©, b(.) is a function that depends only of x; and

n(d) = log/b(m) exp [z;0] dz;

18 the cumulant distribution function. Considering the assumptions of Proposition 3.3.1, the optimal
pdfs proposed respectively in Proposition 3.3.2 and Proposition 3.5.8 are also distributed according
to a NEF.

The proof comes from Theorem 3.1 in Csiszar [26]. The details of computation are given for a
mean shift and a variance shift in Appendix D.3.
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Some shapes As an example, the two kinds of perturbations previously presented are provided
for two families of inputs (Gaussian and Uniform) in Figure 3.3. The perturbations are respectively
a mean and variance increasing. It is noticeable (as proven in Proposition 3.3.4) that the shape is
conserved for the Gaussian distribution when shifting the mean or the variance. On the other hand,
when increasing its mean, the Uniform distribution is packed down on the right-hand boundary of
its support. When increasing its variance, the density is packed down on both boundaries of its
support.

0.8

.
R T P s i

\
o8

2+ o | — -

T T g T T T T T T T T
00 0z 04 08 0.8 10 00 0z 04 08 0.8 10

Figure 3.3: Mean shifting (left) and variance shifting (right) for Gaussian (upper) and Uniform
(lower) distributions. The original distribution is plotted in solid line, the perturbed one is plotted
in dashed line.

Some limitations, notion of equivalent perturbation In this paragraph, we focus on a mean
shift but the same problems arise for a variance shift. What if two inputs do not have the same
mean and we want to assess the impact of their mean shift on P;? How to conduct an equivalent
perturbation on both inputs? Let us imagine an example in which an input has mean 0 and another
has mean 100. If a perturbation is conducted on each variable separately, the interpretation is
complicated as the ranges of variation will be separated. It is thus complicated or impossible to
assess the impact of an equivalent perturbation. Conversely, it is impossible in this case to make
a "relative mean shift" as one of the input has mean 0. The following solution is proposed for the
mean perturbation: shift the mean relatively to the standard deviation, hence including the spread
of the various inputs in their respective perturbation. So for any input, the original distribution
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is perturbed so that its mean is the original’s one plus d times its standard deviation and the
perturbation is conducted on § (for instance ranging from —1 to 1). This solution is applied in
the flood case (Section 3.4.7) where the inputs are not distributed according to the same density.
However this solution might not be effective in every case, for instance when inputs do not have
defined moments. This consideration led us to another kind of perturbation that we though is
more equivalent: quantile shifting (see Section 3.3.1.4). Moreover in the following of this thesis, the
perturbation will be conducted on the parameters of the input densities (see Section 3.3.2) but this
falls outside of the KLM framework.

3.3.1.4 Quantile shifting

Based on the practitioner’s experience, it has been noticed that the values of the input leading to the
failure event seldom lies around the central tendency, but more in the extreme quantiles. From this
point, another way to perturb the densities is proposed, keeping the KLM framework. Compared to
the first two moment perturbations previously presented, we argue that this one seems more suitable
to deal with inputs that are not identically distributed (see previous paragraph for a discussion on
equivalent perturbations).

First example Let us first recall the definition of a quantile.

Definition 3.3.1 For a given random variable X of probability density function f and of cumulative
distribution function F', the a-quantile is the value q, so that:

P(X<ga)=Fla) = [ f@)dr=a (3.20)

—00

Then consider a random variable, modelling for instance an unknown physical phenomena value,
defined as a standard Gaussian. Its 5% quantile or 5" percentile is g5, = —1.64.

As far as we noticed, in most cases, the values of the input leading to the failure event comes
from the tails of the input distributions. What if these tails were badly modelled? Therefore a
perturbation based on the quantiles is proposed.

In this first toy example, the aim is to increase the weight of the left tail. That is to say that
the value g5y is wished to become for the modified density, for instance the 7% quantile. This can
be written:

/1]—oo;q5%} ($)fmod($)d$ = 7% (321)

In Figure 3.4 are plotted the regular (black) and the perturbed (blue) densities. The shaded
areas worth respectively [*% f(z)dz = 0.05 in grey and [*% f5(x)dz = 0.07 in blue. One can
remark that there is no longer a conservation of the shape with such a perturbation, since fs is not
Gaussian. Additionally, the density is no longer continuous.

In a similar way, one could decide to perturb the densities in such a way that the tail is less
weighted, meaning that the extreme values become less frequent. For instance, it can be written:

/1]—oo;q5%} ($)fmod($)d$ = 3% (322)

meaning that the 5% quantile becomes the 3% quantile. The regular and the perturbed densities
are pictured in Figure 3.4. A discontinuity at g5y is present.
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Figure 3.4: Standard Gaussian and perturbed density: quantile increase (left) and quantile decrease
(right)

Methodology of input perturbation Let us denote by ¢, the reference quantile, e.g. the value
such that:

ar
fl)yde=7r, 0<r<1 (3.23)

The constraint is: .
fmoa(z)dz =6, (3.24)
o0

meaning that f.q is the density such that its §-quantile is g,.. Equivalently, the constraint can be
written in the general fashion defined in Section 3.3.1.2, Equation 3.11:

[ 1) @) i) = 5 (3.25)

Proposition 3.3.5 Under the assumptions of Proposition 3.53.1, and under the constraint 3.25, the
expression of the corresponding perturbed density is:

f5(x) = f(@) exp [N 1) _seyq,) (%) — (X)) (3.26)
with

V() = log ( / F(2) exp [N og (0)] dx> (3.27)

and \* is a real number such that (3.25) holds.

Some shapes In Figure 3.5 are displayed the original (solid black) and perturbed (dashed blue)
pdf for the following families: Uniform, Triangle and Truncated Gumbel. The parameters used for
these variables are the ones from the flood case (Appendix B.3.). In each case, the perturbation is:

q0.05
/ Fooa(@)dz = 0.07, (3.28)

—00

that is to say increasing the weight of the left-hand tail from 5% to 7%.
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Figure 3.5: Uniform, Triangle and Truncated Gumbel pdf: quantile increase

3.3.2 Parameters perturbation
3.3.2.1 First example

Problem Assume that we have an input distribution, characterized by its parameters which are
data-driven. The question of interest is "how does a parametrisation error affects the failure prob-
ability ?". To do so, the use of the DMBRSI is proposed - although the moments perturbations
might not answer the question. Specifically, a perturbation based on the parameters is proposed.
The indices are then plotted in function of the departure in a given divergence (Hellinger, Definition
3.3.3). Let us first illustrate the idea on a first example.

The input distributions and the model For the sake of clarity the Weibull distribution ex-
pression (Rinne [83]) is reminded here:

Definition 3.3.2 A random variable X has a three-parameters Weibull distribution if its pdf, defined

on RT is:
c—1 c
onna=5(52) o[ (5]

where parameter a, defined on R in the same unit as x, is called the origin. It is a location parameter.
The second parameter b is defined on R™ in the same unit as x and is called the scale parameter.
The third parameter ¢ bears no dimension, is defined on R™ and is called the shape parameter.
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The expectation of such a random variable writes:

1
E[Wape =a+ bl (1 + —> ,
C

Var [Wp.0 = b? (P <1 + %) - (1 " %>2> 7

where I' is the Gamma function. In the following it will be stated that ¢ = 0 and this location
parameter will be ommited.

and the variance is:

For this first example, an input is distributed according to a Weibull distribution and another
input is distributed according to a standard Gaussian. Assume that the failure model is:
1 1
G(X) = G(Xl,XQ) = §X1 + 1—0X2 +1.5
where X NA/\/'(,u, o) and Xo ~ W(b,c) with p=0,0 =1, b= 1.5 and ¢ = 7. The failure probability
is roughly P = 4.8 x 1073,

Use of DMBRSI for sensitivity to the parameters Let us assume that the practitioner is
interested in testing the sensitivity of its model to the parameters of the distributions. When dealing
with the Gaussian input, a perturbation of the 2 first centred moments is equivalent to a perturbation
of the parameters (see Section 3.3.1.3). On the other hand, perturbing the moments of a Weibull
distribution is far from perturbing its parameters, as proven by the expressions of such moments.
The interpretation of the indices (see the graphs in Section 3.4) might be hard for the practitioner.

Therefore a new representation of the indices is proposed, in which the parameters of the input
distributions are perturbed. For instance a parameter perturbation is presented in Figure 3.6, where
3 Weibull pdfs are plotted: the original pdf with parameters (1.5,7) and two modified pdf where
each parameter varies.
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— W(1.5.1)
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Figure 3.6: Original and perturbed Weibulls pdfs
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This graph shows that each parameter variation produces different effects on several parts of the
support. Precisely, increasing the scale parameter (dotted red curve) decreases the weight of the
right-hand tail whereas increasing the shape parameter (dashed blue curve) increases the weight of
the tail. The effect is reversed on the weight of the mode.

Given the input distributions, it can be inferred that increasing the mean g will diminish the
failure probability, increasing the variance o2 will increase the failure probability. It can also be
stated that increasing the scale parameter b will concentrate the samples in the mode, thus increasing
the failure probability whereas increasing the shape parameter ¢ will increase the weight of the tail,
thus diminish the failure probability. We are interested in the following: assuming that the true
value of the parameters might not be the ones given, which of those 4 parameters causes the most
uncertainty on the failure probability?

The use the DMBRSI is proposed, and it is suggested to plot them in function of the departure
in density caused by the perturbation of the parameter.

Measure of the departure caused by parameters perturbation Distance quantifying the
departure between two densities are numerous (Cha [24]), we propose the use the square of the
Hellinger distance, which is defined as follows.

Definition 3.3.3 The Hellinger Distance H(P, Q) between two probability measures is the Lo-distance
between the square roots of the corresponding pdfs (Pollard [80]).

#(P.Q) = [ (Vo) - V@) do =2 -2 [ Vplwha(o) de (3.20)
The Hellinger distance satisfies the inequality:
0< H(P,Q) <V2. (3.30)

The reasons for using the Hellinger distance over Kullback-Liebler divergence are:

e it is numerically practicable to estimate (the integral might be estimated by Simpson’s rule);
e it is bounded;

e it is a distance thus symmetrical.

As the practitioner might not be familiar with the use of the Hellinger distance, tables eliciting
the relationship between a parameter perturbation and the occasioned departure will be provided.
For instance, when referring to Figure 3.6, the Hellinger distance between the original density and
the one obtained when increasing the scale parameter (dotted red curve) is 0.0072. Conversely, the
Hellinger distance between the original density and the one obtained when increasing the shape
parameter (dashed blue curve) is 0.0422.

Dealing with the example When dealing with the example, the parameters are perturbed and
the indices are plotted in function of the departure caused by the perturbation in Figure 3.7. We
must stress that these are actually two graphs concatenated, in a sense that we plot the DMBSRI in
function of the (square of the) Hellinger distance - yet for each parameters there are two perturbations
that correspond to a given departure: the one corresponding to an increase, the other to a decrease.
On Figure 3.7, the indices corresponding to an increase of the parameters appear on the right side
of the graph, and the indices corresponding to a decrease of the parameters are plotted on the left
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side. Confidence intervals are available thanks to asymptotic formulae provided in Section 3.2.3; yet
they are not plotted here since it is an illustrative example.

—_—n
e ’ -=a

i «--= shape
-=- scale

028 02 018 01 0.08 o 0.05 01 015 02 025

Hellingsr Distance

Figure 3.7: DMBRSI with parameters perturbations

Altogether with the Figure, Table 3.1 is provided: it expresses the departure in terms of param-
eters variation. The aim of such a table is to help the practitioner with quantifying the departure in
terms of parameters perturbation. Note that Table 3.1 only focuses on parameters increasing (right-
hand part of Figure 3.7). In the numerical examples of Section 3.4, both parameters increasing and
decreasing will be dealt with.

X1 ~Np=0,0=1) | Xo~W((b=15,c=m)
plo =1 olp=0 ble=m clb=15
H?(X;, Xi5) =0 0 1 1.5 m
H*(X;, X;s5) = 0.05 | 0.450 1.378 2.102 7+ 1.104
H?*(X;,X;5) =0.1 | 0.641 1.585 2.440 7+ 1.691
H?(X;, Xi5) =0.15 | 0.790 1.773 2.753 7 +2.213
H?(X;, Xi5) =02 | 0918 1.958 3.064 7+ 2.715

Table 3.1: Hellinger distance in function of the parameter perturbation

The indices in Figure 3.7 show some central symmetry. This graph states that a variation in
o has the largest effect on the failure probability. Then comes u, then the scale parameter b and
finally the shape parameter c.

Conclusion, notion of equivalence This first example shows how the DMBRSI can be used to
assess the influence of each input distributions’ parameter on the failure probability.

We also argue that the perturbation is "equivalent" in the sense evoked in the last paragraph of
Section 3.3.1.3. Indeed, when perturbing two parameters for instance expressed in different units or
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different orders of magnitude, the Hellinger distance allows to quantify "equivalently" the amplitude
of the departure produced by the parameter shift.

3.3.2.2 Methodology of input perturbation

In this subsection, we formalize what has been done in the previous first example.

Let us suppose that the i-th variable X; of the input vector is distributed according to f;. The
i-th input has p; parameters: it is parametrized by the vector ©; = (6; 1, ..,0; p,). The perturbation
will be on the j-th parameter, and will be of the following form:

91',]'75 = em' + 52',]' (3.31)

where ¢; ; is a given real such that ©;5 = (6;1,..,0; j +; j, ., 6i p,) is still a parametrization vector
for the input f; (for instance a variance parameter cannot become negative). Vector ©;5 parametrizes
the modified pdf f;s. It must be noticed as well that the support of the perturbed pdf f;s must lie
within the support of f; (for estimation purposes, see conditions of Lemma 3.2.1).

The framework given in Figure 3.1 is modified in Figure 3.8 to consider the parameters pertur-
bations.
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Figure 3.8: Specific DMBRSI framework for parameters perturbations
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3.3.3 Choice of the perturbation given the objectives

3.3.3.1 Types of perturbations and variation ranges

The types of perturbations presented in this section are reminded and summarized here. Some
recommendations are given on the range of the perturbations.

Mean shifting (Eq. 3.15): if the inputs are identically distributed, then the perturbation is
straightforward (standard mean shift for all the variables). The range of the perturbation must
be chosen so that the confidence intervals of the indices are not too spread (and if possible
separated). If the inputs are not identically distributed, the perturbation proposed in the last
paragraph of Section 3.3.1.3 is the following: the original distribution is perturbed so that its
mean is the original’s one plus ¢ times its standard deviation and the perturbation is conducted
on d. For the moment, a range proposed for ¢ is from —1 to 1.

Variance shifting (Eq. 3.19): we argue that this perturbation is only to be used if the inputs
are identically distributed. The new variances must be chosen so that the confidence intervals
of the indices are not too spread.

Quantile shifting (Eq. 3.25): the following strategy is proposed. First, fix a reference quantile
(namely g..f), then perturb this quantile for all the inputs. For the beginning of the study, we
propose to perturb the 1%¢, 2°¢ and 3'¢ quartiles altogether with the 5®® and 95" percentiles.
Other quantiles might be perturbed in the following of the study if necessary.

Parameters shifting (Eq. 3.31): this perturbation allows to deal with inputs that are not
identically distributed. Here, the strategy is to perturb all the parameters of the input dis-
tributions. The range of the perturbation is driven by the square of the Hellinger distance
between the original and the perturbed distribution. A perturbation so that this distance is
H? = .1 seems enough to us (given our numerical tests).

3.3.3.2 Relationship between objectives and perturbations

In this paragraph are reminded the different objectives presented in Section 1.7. We propose the
adapted perturbations for any given objective.

REM1 (absolute ranking when the inputs are set): in this case we propose to perform the three
KLM perturbations (mean shift, variance shift and quantile shift). For each perturbation, an
input ranking can be produced.

REM2 (quantify the sensitivity to the family or shape): in this case, we propose to perform
only a quantile perturbation, as the quantiles allow to define a distribution.

REMS3 (assess the sensitivity to the parameters): in this specific case, we propose to use the
parameters perturbation. This meets perfectly the objective.

Objective 1 (variable ranking, assess which input "most needs better determination"). In this
case, we propose the three KLM perturbations.

Objective 2 (model simplification). This case is not treated in the manuscript but we can
propose the following solution. A specific perturbation can be created, in which the perturbed
input is a narrow distribution within the support of the original input (e.g. an input is set
to a reference value and this reference value is moved along the support). The impact on the
failure probability can be deduced from the indices thus meeting the objective.
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e Objective 3 (model understanding). As the objective is to determine which particular values
of some inputs leads to some behaviour of the output, we propose to perform the three KLM
perturbations. Each perturbation provides supplementary knowledge on which part of the
support of the input leads to the failure event.

e Objective 4 (calibration sensitivity). In this case we propose to perform the 4 perturbations

type. The perturbations respectively allows to test the sensitivity to the moments, the tails
and the parameters of the inputs.

Table 3.2 summarises the main ideas developed in this subsection.

| REM1 | REM2 | REM3 | Obj. 1 | Obj. 2 | Obj. 3 | Obj. 4

Mean shifting X X X X
Variance shifting X X X X
Quantile shifting X X X X X

Parameters shifting X X
Specific X

Table 3.2: Type of perturbation recommended given the objective or the motivation

In addition with Table 3.2, we stress that the reference methods (FORM’s Importance factors
and Sobol’ indices) only fulfill REM1 and Objective 1 (variable ranking).

3.4 Numerical experiments

3.4.1 Testing methodology

In this section, the proposed indices are tested on the numerical cases defined in Appendix B. A
comparison with two references method (FORM’s Importance factors and Sobol’ indices) is provided.
Importance factors and Sobol” indices are computed using the methodologies given in Lemaire [61]
and Saltelli [87], respectively. The R packages mistral and sensitivity have been used. The Sobol’
indices are computed using two initial samples of size 105, resulting into N = 10 x (d + 2) function
calls (Saltelli et al. [88]). The results of the Sobol’ indices analysis were already provided in Section
1.4.

3.4.2 Hyperplane 6410 test case

This first test case was defined in Appendix B.1. Remind that all variables are independent standard
Gaussian. Also recall that variable X5 is most influential, then comes variable X3. X7 has a small
influence and X, has no influence at all. Finally remind that the failure probability is Py = 0.014.

3.4.2.1 Importance factors

In this ideal hyperplane failure surface case, FORM provides an approximated value Proryv =
0.01398, which is as expected (Lemaire [61]) close to the exact value. 39 model calls have been
required. The importance factors, given in Table 3.3, provide an accurate variable ranking for the
failure function.
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Variable ‘ X1 ‘ X5 ‘ X3 ‘ X4
Importance factor | 0.018 [ 0.679 | 0.302 | 0

Table 3.3: Importance factors for hyperplane 6410 function

3.4.2.2 Sobol’ indices

We reproduce here table 1.4 and the resulting conclusions.

Index ‘ Sl ‘ SQ ‘ 53 ‘ 54 H STl ‘ STQ ‘ ST3 ‘ ST4
Estimation | 0.002 | 0.254 | 0.054 | 0 [ 0.200 [ 0.940 [ 0.720 | 0

Table 3.4: Estimated Sobol” indices for the hyperplane 6410 case

The total indices assess that Xa is extremely influential, and that X3 is highly influential. X;
has a moderate influence and X4 has a null influence. This last point is interesting: it shows that
this SA method can detect the non-influential variables.

3.4.2.3 DMBRSI

The method presented throughout this chapter is applied on the first hyperplane function. As
explained in section 3.3, several ways to perturb the input distributions exist. A mean shifting, a
variance shifting, a quantile shifting and a parameters perturbation will be performed. We follow
the methodology displayed in Figures 3.1 and 3.8. We stress that all the indices are estimated with
the same MC sample. The MC estimation gives P =0.01446 with 10° function calls.

Mean shifting For the mean shifting (see Eq. (3.15)), the domain variation for § ranges from
—1 to 1 with 40 points, reminding that 6 = 0 cannot be considered as a perturbation since it is the
expectation of the original density. The results of the estimation of the indices S;s5 are plotted in
Figure 3.9, altogether with 95% symmetrical confidence intervals (CI).

The indices §;; behave in a monotonic way given the importance of the perturbation. The
slope at the origin is directly related to the value of a;. For influential variables (X7 and X3), the
increasing or the decreasing is faster than linear, whereas the curve seems linear for the slightly
influential variable (X7). Modifying the mean with a positive amplitude slightly rises the failure
probability for X7, highly decreases it for Xy and increases it for X3. The effects are reversed with
similar amplitude for negative §. It can be seen that X4 has no impact on the failure probability
for any perturbation. Those results are consistent with the expression of the failure function. One
can see that the CI associated to all variables are fairly well separated, except for the small absolute
value of 9.

Variance shifting For the variance shifting (see Eq. (3.19)), the variation domain for V., ranges
from 1/20 to 3 with 28 points, where V,,., = 1 is not a perturbation. The estimated indices are
plotted in Figure 3.10. The 95% symmetrical CI are plotted around the indices, using the presented
asymptotic formulas in Section 3.2.

Increasing the variance of inputs Xy and X3 increases the failure probability, whereas it decreases
when decreasing the variance. Modifying the variance of X7 and X4 have no effect on the failure
probability. The increasing of the indices is linear for X5 and X3, and the decreasing of the indices
is faster than linear, especially for Xs. Considering the CI, one can see that they are well separated
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Figure 3.10: Estimated indices S/Z;f for hyperplane function with a variance shifting

for variables X5 and X3, assessing the relative importance of these variables. On the other hand,
the CI associated to X7 and X4 are not separated and contain 0. Influence of X7 and X4 cannot
thus be separated - but is estimated as null for both variables.

Quantile shifting

We first perturb the 5% percentile. The tail is perturbed in such ways that it weights between 1%
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and 10%. The results are displayed in Figure 3.11.
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Figure 3.11: 5*" percentile perturbation on the hyperplane 6410 test case

Concerning the left-hand tail, this figure shows the dominant role of variable Xo. Effects of
variables X7 and X3 are small whereas the indices associated to X, are null, assessing the non-
influence of the last variable - at least when perturbing the left-hand tail.

The first quartile or 25'® percentile is then perturbed. The weight of the tail under the 25
percentile (meaning the left-hand tail) of the input varies between 10% and 40%. The result of the
numerical experiments are displayed in Figure 3.12.

This plot shows that an increase of the 1%¢ quartile leads to an increase of the failure probability
for variable Xo whereas it leads to a decrease for variables X3 and X; in order of influence. A
quantile perturbation on variable X4 has no effect on the failure probability. On the other hand,
when decreasing the weight of the 1% quartile, the failure probability increases for variable X3 and
X1, and decreases for variable Xo.

We then perturb the second quartile or median. The density is perturbed so that the left-hand
tail weight varies between 25% and 75%. The results are displayed in Figure 3.13.

This last graph shows the relative importance of X3 and Xs. X; behaves as X3, only with a
smaller effect. This is relevant given the expression of the model.

Let us now perturb the third quartile or 75" percentile. The weight of the pdf under the 75"
percentile of the standard Gaussian varies between 60% and 90% - which is the same as perturbing
the weight of the right-hand tail between 10% and 40%. The result of the numerical experiments
are displayed in Figure 3.14.

This shows that the most influential variable when perturbing the 3' quartile is variable X3, then
comes variable Xs, then variable X;. Perturbing variable X4 has no effect on the failure probability,
as expected. We proceed as before and perturb a more extreme quantile, namely the 95" percentile.
It varies between 90% and 99%. The results are displayed in Figure 3.15.

This shows the main influence of variable X3 when dealing with perturbations of the right-hand
tail.
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Figure 3.12: 1%*quartile perturbation on the hyperplane 6410 test case
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Figure 3.13: Median perturbation on the hyperplane 6410 test case

As a conclusion on this monotonic test case, it can be say that the input values leading to the
failure event are mostly the extremes values of the left-hand tail for variable X, and the extremes
values of the right-hand tail for variable Xjs.

Parameters perturbation The methodology presented in subsection 3.3.2 is tested here. There
are 8 parameters governing this model: the means and standard deviations of each of 4 variables.
Based on the same 10> MC sample, Figure 3.16 can be plotted.

130



Numerical experiments

0

A
Sis

1.0

0.5

0.0

-0.5

-1.0

= X1
e X2
4 X3
¢ X4

e
_\tq—f—i—_k__. e e S,
~ah,
b

0.70 0.75 0.80 0.85 0.90
)

Figure 3.14: 3™ quartile perturbation on the hyperplane 6410 test case
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Figure 3.15: g5th percentile perturbation on the hyperplane 6410 test case

This figure has to be interpreted altogether with table 3.5. Recall that all the inputs follow
standard Gaussian.

Interpreting both Figure 3.16 and table 3.5 lead us to conclude the following. The most influential
parameter with respect to the failure probability is the standard deviation of X5. Increasing this
quantity so that the H? distance between the original and the perturbed density is 0.05 triples
the failure probability. On the other side of the graph, diminishing the variance of Xy strongly
diminishes the failure probability with respect to the other parameters. Then, the other influential
parameter is the mean of Xy. It is slightly less important than the standard deviation of X yet it
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Figure 3.16: Parameters perturbation on the hyperplane 6410 test case. Dots are for means, triangle
for the standard deviations. Green corresponds to X7, black to Xs, red to X3 and blue to Xj.

X; NN(,UZO,O': 1)
plo =1 olp=0
H?*(X;,Xi5) =0 0 1
H?(X;, X;5) = 0.01 | 0.200/—0.200 | 1.152/0.868
H?(X;, X;5) = 0.025 | 0.317/—0.317 | 1.252/0.798
H?(X;, X;5) = 0.05 | 0.450/—0.450 | 1.378/0.725
H?(X;, X;5) = 0.1 | 0.641/—0.641 | 1.585/0.631

Table 3.5: Hellinger distance in function of the parameter perturbation. The first value is an increase
of the parameter (right hand of the graph) whereas the second is a decrease of the parameter (left
hand of the graph). Both perturbation lead to the same H? departure.

is much more influential than others parameters. When increasing the standard deviation and (not
at the same time) the mean of X3, it affects positively the failure probability. The estimated indices
are confounded, but the CI are slightly larger for the standard deviations. When decreasing these
last two parameters, the failure probability decreases. Yet in this case, the mean is more influential

132



Numerical experiments

than the standard deviation. This is an interesting result. When dealing with the parameters of
X1, it must be noticed that the estimated indices for the standard deviations lie around 0 and are
confounded with the one for Xy. However the indices for the mean are slightly positive and increasing
when increasing this mean while they are slightly negative and decreasing when diminishing this
parameter. The indices associated to X4, both mean and standard deviation are null, thus assessing
the non-influence of this last variable.

Conclusion and discussion The DMBRSI has brought the following conclusions:

e When shifting the mean (that is to say the central tendency in this case), the most influential
variable is X3, followed by X3. X7 is slightly influential while X4 is not influential at all.

e When shifting the variance, variable X5 is more influential than variable X3. Variables X3
and X4 have no impact when shifting the variance that is to say when we are interesting in
the tails behaviour.

e The many graphs associated with several quantiles shifts lead to the conclusion that the influ-
ential regions leading to the failure event are the extreme left-hand tail values for variable Xs
and the extreme right-hand tail values for variable Xj.

e When shifting the parameters, it lead to the conclusion that the most influential parameters are
the standard deviation of Xs, the mean of X5, then the mean of X3 followed by the standard
deviation of X3. Others parameters have a small to null influence.

These results are consistent with each other. We argue that all these information are much
richer than the ones provided by importance factors and by Sobol’ indices. Indeed, the information
is provided about regions of the input space leading to failure event; or on parameters whose variation
will provide a broad change on the failure probability. This is, in our opinion, more of interest to
the practitioner than a "simple" variable ranking.

3.4.3 Hyperplane 11111 test case

This second test case was defined in Appendix B.1. Remind that all variables are independent
standard Gaussian. Also recall that all variables have the same influence. Finally remind that the
failure probability is Py = 0.0036.

3.4.3.1 Importance factors

In this ideal hyperplane failure surface case, FORM provides an approximated value PFORM =
0.0036, which is as expected (Lemaire [61]) close to the exact value. 33 model calls have been
required. The importance factors, given in Table 3.6, provide an exact variable ranking for the
failure function. They assess that all variables have the same importance. That was the sought after
result.

Variable ‘ X1 ‘ X2 ‘ X3 ‘ X4 ‘ X5
Importance factor ‘ 0.2 ‘ 0.2 ‘ 0.2 ‘ 0.2 ‘ 0.2

Table 3.6: Importance factors for hyperplane 11111 function
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3.4.3.2 Sobol’ indices

We reproduce here Table 1.5 and the resulting conclusions.
On Table 3.7 the estimated Sobol indices with 2 samples of size 10°, using the Saltelli 02 method.
The total number of function evaluations is 7 x 106,

Index | 81 | S | S35 | Sa | S5 | Sru | Sro | Srs | Sra | Srs
Estimation | 0.015 | 0.013 [ 0.014 | 0.009 | 0.015 || 0.677 | 0.673 | 0.695 | 0.674 | 0.685

Table 3.7: Estimated Sobol” indices for the hyperplane 11111 case

The weak first order indices (less than 2% of the variance explained) and the high total indices
assess that all the variables are influential in interaction with the others. All the total indices are
approximatively the same showing that this SA method can give the same importance to each equally
contributing input.

3.4.3.3 DMBRSI

As in the previous example, all the types of perturbations proposed in section 3.3 will be tested
on this second numerical case. The methodology displayed in Figures 3.1 and 3.8 is used. We
again stress that all the indices are estimated with the same MC sample. The MC estimation gives
P =0.00353 with 10° function calls, which is a good order of magnitude.

Mean shifting The mean of all the variables is shifted (one variable at a time), see Eq. (3.15).
The domain variation for § ranges from —1 to 1 with 40 points, reminding that § = 0 cannot be
considered as a perturbation since it is the expectation of the original density. The result is plotted
in Figure 3.17, with a different color and different sign for each variable. 95% confidence intervals
are plotted.

For small values (of absolute value smaller than 0.5) of new mean, the estimated indices are
similar for all the variables. When the values of the new mean get higher (in absolute value), some
numerical noise spreads the indices. However, the confidence intervals are not disconnected. We
conclude from this graph that, when dealing with the central tendency, all the variables involved in
the code have the same influence on the failure probability.

Variance shifting The variance of all the variables is now shifted (still one variable at a time),
see Eq. (3.19). The domain variation for Vy (the perturbed variance) ranges from 0.2 to 3 with 71
points, reminding that V; = 1 is not a perturbation. The result is plotted in Figure 3.18, with a
different color and different sign for each variable. 95% confidence intervals are plotted.

For small values of perturbation (variance ranging from 0.5 to 1.5), the indices are confounded.
When increasing the strength of the perturbation, one can see that the indices get disjointed. How-
ever the confidence intervals are not disconnected, thus one can infer that the values of the indices
are roughly the same (they are theoretically the same in this model). An interesting fact is that
all confidence intervals do not have the same width. A conclusion from this graph is that, when
dealing with the tails, all the variables involved in the code have the same influence on the failure
probability.

Quantile shifting As previously, we perturbed the 15¢, 284 and 3¢ quartiles altogether with the
5" and 95" percentiles. As all the graphs have a similar shape, only one (for the median) is displayed

in Figure 3.19.
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Figure 3.18: Estimated indices g;; for the 11111 hyperplane function with a variance shifting
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Figure 3.19: Median perturbation on the hyperplane 11111 test case

This graph shows that all the variables have an equivalent behaviour when their quantiles are
perturbed.

Parameters shifting 10 parameters drive the model: a variance and a standard deviation for
each Gaussian input. Each of these parameters is perturbed and the estimated indices are plotted
in function of the Hellinger distance in Figure 3.20, as explained in Figure 3.8. 95% confidence
intervals are provided as well.

This figure leads to several comments and needs to be interpreted with table 3.5. Increasing
any parameter leads to an increase of the failure probability whereas diminishing any parameter
leads to a reduction of the failure probability. When increasing the parameters, indices are badly
separated. A closer look shows that the indices associated to the means (dots) are packed down to
(slightly) lower values that the indices associated to the standard deviations (triangles), which are
more dispersed. The confidence intervals (solid lines for the means, dashed lines for the standard
deviations) are smaller for the means than for the standard deviations. On the other side of the
graph, when reducing the parameters, an "equivalent" (in the H? sense) reduction of the mean has
more impact (on the reduction of the failure probability) than a reduction of the standard deviations.
The confidence intervals are well separated. In all cases, there is no way to distinguish the effects of
several variables, which was expected in this model.

Conclusion and discussion When shifting the mean, for small perturbations, all the variables
are ranked with the same importance. This goes the same for a variance shift and a quantile shift.
Similarly, a parameter perturbation does not allow to say that a variable is more influential than
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Figure 3.20: Parameters perturbation on the hyperplane 11111 test case. Dots are for means, triangle
for the standard deviations. A different color is used for each variable.

another (however the parameters of a given variable does not have the same influence on the failure
probability).

If the objective was a pure variable ranking, then small variations of moments and quantile
are adapted - at least on this case it has shown the ability to affect roughly the same indices to
equivalently influential variables.

If the objective of the SA is to know which parameters impact the most the failure probability
(and a realistic objective would be "where to reduce the uncertainty in order to reduce the failure
probability"), we stress here that the parameters shift has allowed to conclude that for this case the
means of the variables have more influence than their standard deviations.

3.4.4 Hyperplane with 15 variables test case

This third test case was defined in Appendix B.1. Remind that all variables are independent standard
Gaussian. Also recall that the aim of this example is to test the ability of the proposed method
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Variable ‘ X1 to X5 ‘ X to Xqg ‘ X711 to Xq5
Importance factor ‘ 0.192 ‘ 7.69 x 1073 ‘ 0

Table 3.8: Importance factors for the hyperplane 15 variables

to discriminate the variables in three classes: influential, weakly-influential, non-influential. Finally
remind that the failure probability is Py = 0.00425.

3.4.4.1 Importance factors

In this ideal hyperplane failure surface case, FORM provides an exact value Prorm = 0.00425, as
expected. 31 model calls have been required. The importance factors, given in Table 3.8, provide
an exact variable ranking for the failure function. They give to each group of variable different
values of influence. The ranking is correct, namely the influential variables are detected as such, the
weakly-influential variables have a very small importance factor and the non-influential variables
have importance factors of 0. That was the sought after result.

3.4.4.2 Sobol’ indices

We reproduce here Table 1.6 and the resulting conclusions.
On Table 3.9 are presented the estimated Sobol’ indices with 2 samples of size 10°, using the
Saltelli [87] method. The total number of function evaluations is 17 x 106.

Index ‘ S| to Ss ‘ Se to S1o ‘ S11 to S5
Estimation | 0.014 to 0.018 | 0.001 to 0.002 | 0
Index ‘ S71 to S7s ‘ St6 to ST10 ‘ ST11 to St15
Estimation | 0.655 to 0.673 | 0.141 to 0.150 | 0

Table 3.9: Estimated Sobol’ indices for the hyperplane with 15 variables case

The first order indices are all weak, yet separated in three groups. The total indices give a
good separation between the influential, weakly influential and non influential variables. The Sobol’
indices SA method is able to deal with problems of medium dimension; however it has an heavy
computational cost in this case.

3.4.4.3 DMBRSI

As in the previous example, all the types of perturbations proposed in section 3.3 will be tested on
this third numerical case. The methodology displayed in Figures 3.1 and 3.8 is used. We stress again
that all the indices are estimated with the same MC sample. The MC estimation gives P =0.0042
with 10° function calls, which is close from the real result.

Mean shifting The mean of all the variables is shifted (one variable at a time), see Equation
(3.15). The domain variation for § ranges from —1 to 1 with 40 points, reminding that 6 = 0
cannot be considered as a perturbation since it is the expectation of the original density. The result
is plotted in Figure 3.21, with a different color for each variable and different sign for each group
variable. 95% confidence intervals are plotted.
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Figure 3.21: Estimated indices ,§;5 for the 15 variables hyperplane function with a mean shifting

For the influential variables (big dots), increasing the mean increases the failure probability
whereas decreasing this parameter decreases the failure probability. However distinguish the effects
of the weakly-influential variables (triangles) from the effects of the non-influential variables (small
dots) is not possible due to the covering of the confidence intervals. So far, DMBRSI does not allow
to separate the effects of the two last groups of variables. However, another test with a MC size of
10% draws (graphs non provided here) allows a good separation of the weakly and non-influential
variables.

Variance shifting The variance of all the variables is now shifted (still one variable at a time),
see Equation (3.19). The domain variation for V (the perturbed variance) ranges from 0.2 to 3 with
71 points, reminding that V; = 1 is not a perturbation. The result is plotted in Figure 3.22, with a
different color and different sign for each variable. 95% symmetrical confidence intervals are plotted.

The influential variables (big dots) are well separated from the others. As expected for these
variables, increasing (respectively decreasing) the variance increases (respectively decreases) the
failure probability. However, the effects for the weakly-influential (triangles) and non-influential
(small dots) variables, the effects are hardly separable (see the confidence intervals). As well as
previously, DMBRSI does not allow to separate the effects of the two last groups of variables (weakly
and non-influential).

However, increasing the sample size of a factor 10 (graph not provided here) still does not allow to
separate the effects of the last two groups of variable. This might be due to the relative null-influence
of a variance shift in the last 10 variables.
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Figure 3.22: Estimated indices §Z-\5 for the 15 variables hyperplane function with a variance shifting

Quantile shifting As in the previous numerical experiments, the 1°¢, 24 and the 3*¢ quartiles
altogether with the 5" and 95" percentiles were perturbed. All the graphs are similar, only the left
scale (the value of the sensitivity indices) varies, thus only one (relative to the median perturbation)
is displayed in Figure 3.23.

This graph somehow allows the ranking in influential, weakly-influential and non-influential
variables. This graph shows that the method allows a separation of the 15 variables into 3 groups
of influence: medium, small and null influence although the separation between the two last groups
is not straightforward.

The 10 first variables (2 first groups of 5 variables) have an equivalent behaviour when their
quantiles are perturbed: increasing the weight of the left-hand tail increases the failure probability
whereas it decreases this probability when increasing the weight of the right-hand tail. The indices
associated to the last 5 variables have confidence interval values that include 0.

Increasing the sample size by a factor 10 allows to obtain a graph that accurately separates the
diverse groups of variables (the graph is not provided here as it is the same as Figure 3.23).

With this type of perturbation, the DMBRSI allows to separate the variables by group of influ-
ence.

Parameters perturbation The model is driven by 30 parameters: a variance and a standard
deviation for each Gaussian input. Each of these parameters is perturbed and the estimated in-
dices are plotted in function of the Hellinger distance in Figure 3.24, as explained in Figure 3.8.
95% confidence intervals are provided as well. As the graph gets too complicated for an adequate
representation, only one variable per group is plotted.
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Figure 3.23: Median perturbation on the hyperplane with 15 variables test case

Table 3.5 is needed as well to interpret this graph. From the graph with all the indices plotted
(not showed here) and from Figure 3.24, one can infer the following. The parameters related to
the first variable - related to the first influence group - (black, dots for the mean, triangle for the
standard deviation) are the most influential, with a bigger influence from the mean when decreasing
the parameter. When increasing the parameters, the effects of the standard deviation and of the
mean are not discernible. The confidence interval for the standard deviations (dashed lines) is quite
wider than the one associated with the mean. However the indices associated with the means and
variance of the other groups of variables are too noisy and cannot be interpreted.

Conclusion and discussion DMBRSI is not adapted to this medium dimension case. Indeed,
only the quantile perturbation is able to distinguish the weakly from the non-influential variables.
The parameter perturbation method especially leads to representation problem, with 30 curves to
plot plus the confidence intervals. This leads to the conclusion that DMBRSI should not be used as
a screening method.

3.4.5 Hyperplane with same importance and different spreads test case

This fourth test case was defined in Appendix B.1. Remind that all variables are independent
Gaussian with mean 0 and increasing standard deviation. Also recall that the aim of this example is
to give to equivalently influential variables that are not distributed similarly the same importance.
Finally remind that the failure probability is Py = 0.0036.

3.4.5.1 Importance factors

In this ideal hyperplane failure surface case, FORM provides an approximated value Proryv =
0.0036, which is as expected (Lemaire [61]) close to the exact value. 33 model calls have been
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Figure 3.24: Parameters perturbation on the 15 variables hyperplane test case. Dots are for means,
triangle for the standard deviations. Black is for the first group of influence, red is for the second
and blue for the third.

required. The importance factors, given in Table 3.10, provide an exact variable ranking for the
failure function. They assess that all variables have the same importance. That was the expected
result.

Variable EIEAEEAES
Importance factor | 0.2 [ 02 [ 0.2 | 02 | 0.2

Table 3.10: Importance factors for hyperplane with different spreads function

3.4.5.2 Sobol’ indices

We reproduce here Table 1.7 and the resulting conclusions.
On Table 3.11 are presented the estimated Sobol’ Indices. The computation was done with 2
samples of size 109, using the Saltelli [87] method. The total number of function evaluations is
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7 x 109,

Index | 81 | S | 83 | Sa | S5 | Sru | Sro | Srs | Sra | Srs
Estimation | 0.027 [ 0.028 | 0.025 | 0.025 | 0.028 || 0.611 | 0.622 | 0.618 | 0.618 | 0.624

Table 3.11: Estimated Sobol’ indices for the hyperplane with different spreads case

The weak first order indices (less than 3% of the variance explained) and the high total indices
assess that all variables are influential in interaction with the others, and that no variable is influential
on its own. All the total indices are approximatively equal showing that this SA method gives to
each equally contributing variable the same importance, despite their different spread.

3.4.5.3 DMBRSI

One can notice that the different inputs follow various distributions (unlike the other examples), thus
the question of "equivalent" perturbation arises. Due to this non-similarity of the distributions, only
a (modified) mean shift, a quantile shift and a parameter shift will be applied on this test case. It
has been discussed further in Section 3.3.1.3.

Mean shifting As stressed in Section 3.3.1.3 the choice has been made to shift the mean relatively
to the standard deviation, hence including the spread of the various inputs in their respective
perturbation. So for any input, the original distribution is perturbed so that its mean is the original
one plus § times its standard deviation, § ranging from —1 to 1 with 40 points. The results of the
numerical experiment are displayed in Figure 3.25.

The indices have similar values for similar perturbations, thus assessing the equal impact of the
variables. However this information was obtained with a fine tuning of the perturbations.

Quantile shifting As in the previous numerical experiments, the 1°¢, 224 and the 3*¢ quartiles
altogether with the 5" and 95'" percentiles were perturbed. As the graphs behave in a similar way,
only one is displayed in Figure 3.26.

The perturbation of the 2°¢ quantile affects all the variables in the same way, despite their
different distributions. This shows that the quantile perturbation method gives to each equally
contributing variable the same importance.

Additionally, we can conclude the following on the application of the quantile perturbation on
monotonic cases (3.4.2 to 3.4.5):

e the graphs for the median perturbation are similar to the ones relative to a mean perturbation.

e when a left-hand quantile oy (if ay < 50%) is influent (meaning a perturbation of 6% of this
quantile produces an index superior to a threshold ¢) then as < ay has more influence. In the
case of a right-hand quantile (if ay > 50%) then ay > «; has more influence.

Parameters perturbation The model is driven by 10 parameters: a variance and a standard
deviation for each Gaussian input. Each of these parameters is perturbed and the estimated indices
are plotted in function of the Hellinger distance in Figure 3.27 as explained in Figure 3.8. 95%
confidence intervals are provided as well. As the graph gets too complicated for an adequate rep-
resentation, only three variables are plotted: X; (black), X3 (red) and X5 (blue). As usual, the
indices associated with the means are plotted as dots and the indices associated with the standard
deviations are plotted as triangles.
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Figure 3.25: Estimated indices 3’;; for the hyperplane with different spreads case with a mean shifting

X ~N(u=0,0=2) X; ~N(u=0,0 =6) X, ~N(u=0,0 =10)
wlo =2 olu=0 wulo =6 olp=0 wlo =10 olu=0
H*(X;,Xi5) =0 0 2 0 6 0 10
HZ(X;, X:3) = 0.01_ | 0.400/—0.400 | 1.736/2.299 | 1.103/—1.193 | 5.208/6.897 | 1.089/—1.980 | 8.679/11.521
H7(X;, X15) = 0.025 | 0.634/—0.634 | 1.597/2.400 | 1.898/—1.808 | 4.790/7.496 | 3.163/—3.163 | 7.985/12.526
H7(X:, Xs5) = 0.05 | 0.000/—0.900 | 1.451/2.748 | 2.695/—2.695 | 4.353/8.245 | 4.492/—4.402 | 7.255/13.784
(X, Xi5) = 0.1 | 1.281/—1.281 | 1.262/3.158 | 3.830/—3.839 | 3.785/9.475 | 6.308/—6.398 | 6.308/15.853

Table 3.12: Hellinger distance in function of the parameter perturbation

This figure leads to several comments and needs to be interpreted with table 3.12. Increasing any
parameter leads to an increase of the failure probability whereas diminishing any parameter leads to
a reduction of the failure probability. When increasing the parameters, indices are badly separated.
One can however see that the confidence intervals associated to the means are narrower than the ones
associated to the standard deviations. On the other side of the graph, when reducing the parameters,
an "equivalent" (in the H? sense) reduction of the mean has more impact (on the reduction of the
failure probability) than a reduction of the standard deviations. The confidence intervals (for the
means and for the standard deviations) are well separated. In all cases, the confidence intervals
prevent from concluding that any variable is more influential than another. However, the indices
for the first variable (black) seem a bit lower than the one associated to the other inputs in the
decreasing case.
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Figure 3.26: Estimated indices 3’;; for the hyperplane with different spreads case with a median
shifting

Conclusion and discussion When shifting the mean with small perturbations, all the variables
are ranked with the same importance. We must insist that this result is obtained in shifting the
mean including the spread of the various inputs in their respective perturbation. All the variables
seem to have the same influence when shifting their quantiles. Similarly, a parameter perturbation
does not allow to say that a variable is more influential than another - but this might be caused by
numerical noise. Supplementary numerical experiments must be conducted on this topic.

3.4.6 Tresholded Ishigami function

A modified (thresholded) version of the Ishigami function will be considered in this subsection, as
defined in Appendix B.2. Remind that all Avariables are independent Uniform with support [—m, 7.
Finally, the failure probability is roughly P = 5.89 x 1073.

3.4.6.1 Importance factors

The algorithm FORM converges to an incoherent design point (6.03,0.1,0) in 50 function calls,
giving an approximate probability of Prory = 0.54. The importance factors are displayed in Table
3.13. The bad performance of FORM is expected given that the failure domain consists in six
separate domains and that the function is highly non-linear, leading to optimization difficulties.
The design point is aberrant, therefore the importance factors results for SA are incorrect. Notice
that the user is not warned that the result is incorrect.
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Figure 3.27: Parameters perturbation on the hyperplane with different spreads case. Dots are for
means, triangle for the standard deviations. Black is for X7, red is for X3 and blue is for X5.

Variable | X1 | Xo | Xs

Importance factor ‘ 1le~ Y7 ‘ 1 ‘ 0

Table 3.13: Importance factors for Ishigami function

3.4.6.2 Sobol’ indices

The first-order and total indices are displayed in Table 3.14 which is a reproduction of Table 1.8.
The following commentary is also coming from Chapter 1.

Index S S9 S3 St1 STo St3
Estimation | 0.018 | 0.007 | 0.072 || 0.831 | 0.670 | 0.919

Table 3.14: Sobol’ indices estimation for the thresholded Ishigami function

The first order indices are close to 0. The variable with the most influence on its own is Xs,
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explaining 7% of the output variance. Total indices state that all the variables are of high influence.
A variable ranking can be made using the total indices, ranking X3 with the highest influence, then
X7 and then X5. Figure B.1 allows to understand the meaning of the total indices. Each variable
“causes” the failure event on a restricted portion of its support. On the other hand, the knowledge
of a single variable does not allow to explain the variance of the indicator, thus the weakness of first-
order indices. The fact that the failure points are grouped in narrow strips can only be explained
by the 3 variables together, thus the high third order index.

3.4.6.3 DMBRSI

The method presented throughout this chapter is applied on the thresholded Ishigami function. As
previously, a MC sample of size 10° is used to estimate both the failure probability and the indices
with all the perturbations. There are 574 failing points therefore the failure probability is estimated
by P =5.74 x 1073, The order of magnitude here is quite good. As for the hyperplane test case, a
mean shifting and a variance shifting are applied at first, followed by a quantile perturbation. The
parameters perturbation case is then discussed.

Mean shifting For the mean shifting (see Equation (3.15)), the variation domain for § ranges
from —3 to 3 with 60 points - numerical consideration forbidding to choose a shifted mean closer to
the endpoints. The results of the estimation of the indices S;s5 are plotted in Figure 3.28.
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Figure 3.28: Estimated indices 5;5 for the thresholded Ishigami function with a mean shifting

A perturbation of the mean for Xy and X3 will increase the failure probability, though the
impact for the same mean perturbation is stronger for X3 (S3_3 and S33 approximately equal
respectively 9.5 and 10, Figure 3.28). On the other hand, the indices concerning X; show that a
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mean shift between —1 and —2 increases the failure probability, whereas an increasing of the mean or
a large decreasing strongly diminishes the failure probability (S 3 approximatively equals —7.101h),
Therefore, Figure 3.28 leads to two conclusions. First, the failure probability can be strongly reduced
when increasing the mean of the first variable X; (this is also provided by Figure B.1 wherein all
failure points have a negative value of X7). Second, any change in the mean for X5 or X3 will lead to
an increase of the failure probability. The confidence intervals are well separated, except in the —1
to 1 zone. One can notice that the confidence interval associated to X5 contains 0 between values
of § from —1.5 to 1.5, thus the associated indices might be null in these case. This has to be taken
into account when assessing the relative importance of Xs.

Variance shifting For variance shifting, the variation domain for V., ranges from 1 to 5 with 40
points. Let us recall that the original variance is Var[X;] = 72/3 ~ 3.29. The modified pdf when
shifting the variance and keeping the same expectation is proportional to a truncated Gaussian when
decreasing the variance. When increasing the variance, the perturbed distribution is a symmetrical
distribution with 2 modes close to the endpoints of the support (see Figure 3.3). The results of the
estimation of the indices % are plotted in Figure 3.29. The upper figure is a zoom where the

m axis lies into [—0.5,0.5]. The lower figure shows almost the whole range variation for m
The curves cross for the value of Vj,, that corresponds to the original variance, namely 72 /2.

Figure 3.29 (upper part) shows that a change in the variance has little effect on Xy and Xj,
though the change is ﬁf\opposite effect on the failure probability. However, considering that the
indices S3 v;,,,; and S1 v, ; lie between —0.4 and 0.4, one can conclude that the variance of theses
variables are not of great influence on the failure probability. On the other hand, Figure 3.29 (lower
part) shows that any reduction of Var [X3] strongly decreases the failure probability, and that an
increase of the variance slightly increases the failure probability. This is relevant with the expression
of the failure surface, as X3 is fourth powered and multiplied by the sinus of X;. A variance
decreasing as formulated gives a distribution concentrated around 0. Decreasing Var [X3] shrinks
the concerned term in G(X). Therefore it reduces the failure probability. The confidence intervals
associated to X3 are broadly separated from the others.

Quantile shifting First, the 5th percentile is perturbed and the result is displayed in Figure 3.30.

This graph shows that for variable X7, an increase of the weight of the right-hand tail diminishes
the failure probability and a decrease of the weight affects positively the failure probability. It is the
opposite for variable X5 and X3: an increase of the weight of the left-hand tail increases the failure
probability and a decrease of the weight decreases the failure probability. The effect is stronger for
variable X3.

Then, the first quartile is perturbed. The results of the experiment are plotted in Figure 3.31.
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Figure 3.29: Estimated indices S;, for the thresholded Ishigami function with a variance shifting
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Figure 3.30: 5th percentile perturbation on the thresholded Ishigami test case

This graph shows that a 15t quartile perturbation of variable Xy has no effect on the failure
probability, for the considered range of variation. It also shows that variables X; and X3 behave
the same when the 15t quartile is perturbed: an increase of the weight of the left-hand tail increases
the failure probability and a decrease of the weight decreases the failure probability.

It is interesting to note that the impact of the 5%-quantile perturbation of X; produces a dif-
ferent effect than a perturbation on the 15t quartile. It means that the relationship established for
the monotonic case is not valid in this non-monotonic case.

The median is perturbed next and the results are shown in Figure 3.32.
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Figure 3.32: Median perturbation on the thresholded Ishigami test case
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As it comes to a median perturbation, only variable X; produces effects. A decrease (increase)
of the weight of the left-hand tail reduces (increases) the failure probability. 0 is included whithin
the confidence intervals for variables Xy and X3.

The third quartile is perturbed next and the results are displayed in Figure 3.33.
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Figure 3.33: 3rd quartile perturbation on the thresholded Ishigami test case

An increase of the weight of the right-hand tail of variable X increases the failure probability
whereas it reduces the failure probability for variable X3, with the same order of magnitude. The
effect is reversed when decreasing the weight. A perturbation of the third quartile of variable Xs
has no effect on the failure probability.

Finally, the 95" percentile is perturbed and the results are displayed in Figure 3.34.
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Figure 3.34: 95" percentile perturbation on the thresholded Ishigami test case

This last figure shows the higher influence of the right-hand quantile of X3 over the two other
variables. Precisely, increasing the weight of the 95%-quantile (which is equivalent to decreasing the
weight of the right-hand tail) reduces the failure probability for variables Xy and X3 whereas the
failure probability increases for X;. The effect is the opposite when decreasing the weight of the
95%-quantile.

This non-monotonic case shows that it is important to test several configurations of quantile
perturbation before assessing the importance or non-influence of a variable.

Parameters perturbation The methodology presented in subsection 3.3.2 is tested here. The
model is driven by 6 parameters: a minimum and maximum boundaries for each Uniform input.
Here, we must stress a limitation of the method. The parameters of the inputs define their support.
Yet, due to the conditions in Lemma 3.2.1, the support of the perturbed input cannot be broader
than the one of the initial input. On this test case, this amounts to saying that the parameters
perturbations can only lead to a support reduction, i.e. increasing the minimum and diminishing
the maximum. Specifically, the parameters are perturbed so that the minimum varies from —7 to 0
and the maximum varies from 7 to 0. The result of such perturbations is presented in Figure 3.35
and Figure 3.36. 95% confidence intervals are provided as well. The amplitude of the perturbation
given the Hellinger distance is given in Table 3.15.

At first in this figure we focus on small perturbations of the parameters, so that the deviation
is no broader than 0.1 in Hellinger distance (refer to Table 3.15 for the equivalent in terms of
parameters). On the right-hand of the graph are plotted (as triangles) the indices corresponding to
an increase of the minimum bound of the inputs. On the left-hand of the graph are plotted (as dots)
the indices corresponding to a decrease of the maximal bound of the inputs.

It can be seen that the indices are symmetrical. Increasing (diminishing) the minimum (max-
imum) for variable X slightly increases the failure probability. On the other hand, increasing
(diminishing) the minimum (maximum) for variable X5 slightly decreases the failure probability.
However shifting the parameters of variable X3 produce the following effects: increasing its mini-
mum until 2.771 (Hellinger distance 0.06) diminishes the failure probability (almost dividing it by
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Figure 3.35: Parameters perturbation on the thresholded Ishigami test cas. Triangles correspond to
a minimum bound, dots to a maximum bound. X is plotted in red, X5 in black and X3 in blue.

2). Then, an increasing of the minimum is reflected by a slightly lower diminution of the failure
probability. The effect is symmetrical when decreasing the minimum of variable X3.

Figure 3.36 focuses on large perturbations of the parameters (at most, the minimum and the
maximum worth 0). This figure essentially shows that an increase of the minimum of variable X;
strongly diminishes the failure probability. On the other hand, a decrease of the minimum of variable
X slightly increases the failure probability. When dealing with variable X5, the symmetry of the
effects can be seen. When increasing the minimum, it diminishes the failure probability at first
then it increases it. Finally, setting the minimum (or maximum) to 0 has no impact on the failure
probability. Concerning variable X3, the attenuation of the decrease in failure probability described
in Figure 3.35 goes on until the minimum (maximum) worth 0 - the impact on the failure probability
is then null.

From Figures 3.36,3.35 and Table 3.15, it can be concluded that the most influential parameters
when dealing with small perturbations are the ones related to X3. When dealing with large pertur-
bation of parameters, the minimum of X is the most influential parameter. This is confirmed by
Figure B.1.

Conclusion and discussion This non-linear case has shown that:

e When dealing with a mean perturbation, the failure probability can be strongly reduced when
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Figure 3.36: Parameters perturbation on the thresholded Ishigami test case. Triangles correspond
to a minimum bound, dots to a maximum bound. X is plotted in red, X5 in black and X3 in blue.

X; ~U(min = —7, max = )
min | max = 7 | max |min = —7

H?*(X;,X;5) =0 -7 T
H?(X;, X;s5) = 0.01 —3.079 3.079
H?(X;, X;s5) = 0.025 —2.985 2.985
H?(X;, X;s5) = 0.05 —2.832 2.832
H*(X;, X;5) =0.1 —2.529 2.529
H?*(X;,X;5)=0.3 —1.398 1.398

Table 3.15: Hellinger distance in function of the parameter perturbation

increasing the mean of X;. Any change in the mean for X5 or X3 will lead to an increase of
the failure probability.

e When dealing with a variance perturbation, any reduction of Var [X3] strongly decreases the
failure probability. The impact of the other variables is negligible in this case.

e When dealing with a quantile perturbation, it is important to test several configurations before
assessing the importance or non-influence of a variable. In particular, the influence of the
median of X7 can be noticed, altogether with the tails of X3. X5 has a smaller influence.

e When perturbing the parameters, a limitation of the method has been highlighted (constraint
on the support of the perturbed density). The various influences of the parameters have
been noticed, especially the broad influence of the minimum of X; when dealing with large
perturbations, and the parameters conducting X3 when dealing with small perturbations.
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Additionally, we argue that it is of prime importance to keep in mind the shape of the perturbed
density when interpreting the figures.

3.4.7 Flood test case

This test case has been described in Appendix B.3. As stressAed in the appendix, the inputs follows
different distributions and the failure probability is roughly P = 7.88 x 1074,

3.4.7.1 Importance factors

The algorithm FORM converges to a design point (1.72,—2.70,0.55, —0.18) in 52 function calls,
giving an approximate probability of Prograr = 5.8 x 1074, The importance factors are displayed in
Table 3.16.

Variable ‘ Q ‘ K, ‘ Ly ‘ Zm
Importance factor | 0.246 | 0.725 | 0.026 | 0.003

Table 3.16: Importance factors for the flood case

FORM assesses that Kj is of extremely high influence, followed by @ that is of medium influence.
Z, has a very weak influence and Z,, is negligible. It can be noticed that the estimated failure
probability is twice as small as the one estimated with crude MC, but remains in the same order of
magnitude.

3.4.7.2 Sobol’ indices

The first-order and total indices are displayed in Table 3.17 which is a reproduction of Table 1.9.
The Sobol’ indices are estimated with 2 samples of size 10%, using the Saltelli [87] method. The total
number of function evaluations is 6 x 10°.

Index ‘ So ‘ Sk, ‘SZU Sz, H St ‘STKS Stz, | St2.,
Estimation | 0.019 [ 0251 [ 0 | 0 [ 0.746 [ 0.976 | 0.248 | 0.115

Table 3.17: Estimated Sobol’” indices for the flood case

Considering the first order indices, Z, and Z,, are of null influence on their own. @ is considered
to have a minimal influence (2% of the variance of the indicator function) by itself, and K explains
25% of the variance on its own. When considering the total indices, it can be noticed that both Z,
and Z,, have a weak impact on the failure probability. On the other hand, @2 has a major influence
on the failure probability. K total index is close to one, therefore K explains (with or without any
interaction with other variables) almost all the variance of the failure function.

Let us compare the informations provided by the Sobol’ indices with the information provided by
the importance factors. One cannot conclude from the total Sobol’ indices that Z,, is not influential
whereas the importance factors assess that this variable is of negligible influence. Additionally, the
total Sobol’ index associated to K and () state that both these variables are of high influence
whereas the importance factors state that K is of high influence and @ is of medium influence.
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3.4.7.3 DMBRSI

Notice that the different inputs follow various distributions, thus the question of "equivalent" per-
turbation arises. Due to this non-similarity of the distributions, only a (modified) mean shift, a
quantile shift and a parameter shift will be applied on this test case. It has been discussed further
in 3.3.1.3. Additionally, a numerical trick is used to deal with truncated distributions, as stressed in
Appendix D 4.

Mean shifting The choice has been made to shift the mean relatively to the standard deviation,
hence including the spread of the various inputs in their respective perturbation. So for any input,
the original distribution is perturbed so that its mean is the original’s one plus § times its standard
deviation, ¢ ranging from —1 to 1 with 40 points.
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Figure 3.37: Estimated indices g;; for the flood case with a mean perturbation

Figure 3.37 assesses that an increasing of the mean of the inputs increases the failure probability
slightly for Z,, strongly for @, and diminishes it slightly for Z,, and strongly for K,. This goes
the opposite way when decreasing the mean. In terms of absolute modification, Kg and @ are of
same magnitude, even if K, has a slightly stronger impact. On the other hand, the effects of mean
perturbation on Z,, and Z, are negligible. The CI associated to @ and K, are well separated from
the others, except in a § = —.3 to .3 zone. The confidence intervals associated to Z, and Z,,
overlap. Thus even though the indices seem to have different values, it is not possible to conclude
with certainty about the influence of those variables.

Quantile shifting The first quantile to be perturbed is the extreme left-hand tail, namely the
5%-quantile. The result of such a perturbation for all the variables is plotted in Figure 3.38.
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Figure 3.38: 5" percentile perturbation on the flood case

When it comes to a left-hand tail perturbation, the influence of K over the three other variables
is preponderant. In particular, a reduction of the weight of the 5th percentile to 0.015 leads to a
division by 3 of the failure probability.

The 15t quartile is then perturbed and the results are plotted in Figure 3.39.
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Figure 3.39: 1°* quartile perturbation on the flood case

Once again when perturbing the left-hand tail, the influence of K is larger than the influence
of the other variables.

The median of the input distributions is then perturbed, the resulting indices are plotted in
Figure 3.40.

The influence of Kg is weaker than in the two previous figures, as Ks and @ have a similar
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Figure 3.40: Median perturbation on the flood case

influence (although the effects of a median perturbation of these variables is reversed). Z,, has less
impact on the failure probability than Z,, when dealing with a median perturbation.
The third quartile is then perturbed and the indices are plotted in Figure 3.41.
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Figure 3.41: 3"quartile perturbation on the flood case

Increasing the weight of the right hand tail (that is to say decreasing the weight of the 3
quartile) increases the failure probability for @ and Z, whereas it reduces the probability for Z,,
and K. The magnitude of influence is the following: @ has most influence, then K and Z, have
almost the same influence, then comes Z,,.

Finally, the extreme right-hand tail is perturbed, this comes to a perturbation on the 95
percentile. Results are plotted in Figure 3.42.
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Figure 3.42: 95" percentile perturbation on the flood case

This last graph shows the strongest influence of () when perturbing extreme right-hand quantiles.
More precisely, increasing the weight of the right-hand tail of @) increases the failure probability
whereas it is the opposite when decreasing this weight. The impact of the other variables is much
smaller.

As a conclusion, we would say that the practitioner needs to be careful when modelling the
right-hand tail of @) and the left-hand tail of K, as the failure probability is sensitive to a variation
of these two quantities. Additionally, the code seems to behave in a monotonic fashion (the indices
of a given variable have the same sign all along the interval of variation).

Parameters perturbation The model is driven by 12 parameters:
e 2 location parameter, a scale parameter and a minimum for Q;
e a mean, a standard deviation and a minimum for Kj;
e a minimum, a maximum and a mode for Z,;
e 3 minimum, a maximum and a mode for Z,,.

However on this case we decide to perturb only the parameters that do not affect the support of
the densities, namely the location, the scale, the mean, the standard deviation and the two modes.
These parameters are perturbed and the estimated indices are plotted in function of the Hellinger
distance in Figure 3.43 as explained in Figure 3.8. 95% confidence intervals are provided as well.

Table 3.18, presenting the relationship between the parameter perturbation and the Hellinger
distance, is needed to interpret Figure 3.43.

Increasing the parameters value increases the failure probability when dealing with the standard
deviation of Kj, the scale, the location of () and the mode of Z,,. It decreases the failure probability
when dealing with the mode of Z,, and the mean of K. The effect on the failure probability are
reversed when decreasing the value of the parameters. The perturbation of the parameters produces
a large perturbation of the failure probability for the parameters associated to K and for the scale
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id

0.1 0.05 0 0.05 0.1
Hellinger Distance

Figure 3.43: Parameters perturbation on the flood test case. The indices corresponding to () are
plotted in green: dark green for the location parameter and light green for the scale parameter. The
indices corresponding to K are plotted as follows: black for the mean, dark grey for the standard
deviation. The indices of the mode of Z, are plotted in red while the ones corresponding to the
mode of Z,, are plotted in blue.

parameter of (). The impact on the failure probability is moderate when perturbing the location of
@, and is quasi-null when perturbing the modes of Z, and Z,,.

It is thus of prime importance to model correctly the parameters conducting K, and the scale
parameter of Q.

Conclusion and discussion On this test case, we can conclude the following:

e In terms of mean perturbation, the indices associated to K, and @ have a high value.

e The quantile perturbation has shown that the right-hand tail of () and the left-hand tail of K
are particularly influential on the failure probability. Additionally, the code seems to behave
in a monotonic fashion.

e The parameters perturbation has demonstrated that the parameters of K, and the scale pa-
rameter of () impact most the output.
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Xi ~ Gr(loc = 1013, scale = 558, min = 0) X, ~Nr(p=30,0 =7.5,min = 1)
loc|scale = 558, min = 0 | scale|loc = 1013, min =0 | pyloc =7.5,min =1 | o|u =30, min =1
H*(X;, Xi5) =0 1013 558 30 7.5
H?*(X;, X;5) = 0.01 893/1128 478/661 28.49/31.50 6.51/8.65
H?(X;, X;5) = 0.025 820/1194 437/736 27.62/32.38 5.99/9.42
H?(X;, X;5) = 0.05 732/1269 395/838 26.62/33.38 5.44/10.40
H%(X;, X;5) = 0.1 590,/1377 342/1021 25.19/34.81 4.73/12.08
Xi~T(@a=49,b=51,c=50) | X; ~ 7T (a=54,b=56,c=55)
cla=49,b=>51 cla = 54,b = 56
H?(X;,Xi5) =0 50 55
H?(X;, X;5) = 0.01 49.79/50.21 54.79/55.21
H?(X;, X;5) = 0.025 49.65/50.35 54.65/55.35
H?(X;, X;5) = 0.05 49.49/50.51 49.49/50.51
H*(X;,Xi5) =0.1 49.26/50.74 49.26/50.74

Table 3.18: Hellinger distance in function of the parameter perturbation

This more realistic test case has shown that the DMBRSI provide several complementary infor-
mations.

3.5 Improving the DMBRSI estimation

This chapter has presented a new SA methodology based on density perturbations. For the sake of
simplicity, we have considered a crude Monte-Carlo framework. However, this consideration might
be unrealistic when dealing with real application cases where the number of function calls is limited.
We thus propose in this Section to improve the DMBRSI estimation with importance sampling
(Section 3.5.1) and with subset simulation (Section 3.5.2).

3.5.1 Coupling DMBRSI with importance sampling
3.5.1.1 Estimating P; with IS

Denoting f a d—dimensional importance density such that Supp(f) 2 Supp(f). Suppose one has
an i.i.d. N-sample with pdf f, denoted x" with n going from 1 to N.

The failure probability Py can be estimated with Importance Sampling method (see Section
1.2.1.3) and the associated estimator with N function calls is:

N

Pore— L f&=")
Pnis = ;::1 Ligxn)<o} Tl (3.32)
One can show that:
- 1 X 1 2
Var |:PN15’] = NV&I‘J; |:1{G(X)<0} %} = N </ 1{G(x)<0}%dx - Pf) (333)

X
NB : the variance reduction from IS is not straightforward, one should compare Var ; [1 {G(X)<0} &]

f(X)

and Var [1G<X)<0] to conclude, as stressed in Section 1.2.1.3.
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3.5.1.2 Estimating P;; with IS

Let us recall that Fial)
6\ Lq
Pu; = /1{(; )<0} f&( ) f(X)dX.

Thus the expression of P;s using IS is:

Pis = /1{6( )<0} J;ﬁf(( Z)) f(fng) dx.

(3.34)

(3.35)

Then supposing one has an i.i.d. N-sample with pdf f , denoted x™ as previously, one can estimate

P,s with:

Pisnrs = Z Ligxmy<o} J;ﬁf(( )) ;EX ;

It is straightforward that the expectation of PZ-(;NIS is Pis.
One is obviously interested in the variance of such an estimate, therefore one has:

fis(X0) [(X)] _ A0 1269 0 o
vary [ 5 >ﬁ} = [ oo i o e

Then:

2
Var [ uSNIS] = % </ Ligx)<o JZS(( ))J;;((:)) dx — P%)
3.5.1.3 Asymptotic results
Proposition 3.5.1 Assume the usual conditions
(1) Supp(fis)  Supp(fi),
(ii) Supp(f) 2 Supp(f)

(m)/ 2()al:z:<oo
Supp(ss) fi(®)
then R
Pisnis —— Pis
N—oo
and
VN (ﬁiéNIS - Pz‘&) —E s N(0,0%).
N—oo
One has:

Fa(X0} F(X) L) P2
7% f(xﬂ - [1ema)} P2@) foo N

This comes from Van der Vaart [98], 2.17.
0?5 can be consistently estimated by:

2 n 2(<wN R
6'2'251\/ N Z [ {G(x")<0} f2((§£1)) J;((;(n)) — Pz%NIS .

o = Varg [1{G(X)<O
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Improving the DMBRSI estimation

Proposition 3.5.2

Pnis Py
N ~ — 0,>; 3.43
\/_< Pisnis < P )) mN( o15) (3-43)
where:
9 fzé( )
[ ax) <o} dfb" — Py [ e <o} ) f(x) X dx — PP
Sisrg = (3.44)

fzé(xz) f4(x ( ) f2(x
[ Lex <0} (@) J;((X))dX—PfH(S fl{G(X)<0}fi2($i) f((x))dX_Pz%

This comes according to Van der Vaart [98], 2.18.
We propose the following estimator for ;s5rg:

e\ pe 1 PO fu@)) 5 s
Z {GGem)<0y 77 ) — Pnis ( Liaxn)<oy > — PnisPisnis
= ( P >;(< N e - ()f)()( N
<nz:1 {G(x")<0} f( ) () > — Pn1sPisnts N <nz_:1 Lien )<o} (x") fé‘(x:)> _PZ%NIS
(3.45)

Proposition 3.5.3 Introducing the function s(x,y) = ( ) Liysay + ( ) Lizsyy, denoting:
(i) Sis = s(Pr, Pis)

(ii) Snisrs = s(Pnis, Pisnis)-

As s is differentiable in (P, P;s) (see Proposition 3.2.2), one has:
VN (§Ni6]S - Sié) NL> N(0,df Sisrsds). (3.46)
—00
The proof lies in Theorem 3.1 in Van der Vaart [98].

3.5.2 Coupling DMBRSI with subset simulation

We refer to Section 1.2.3 for more details about subset simulation. The aim of the current section
is to show that it is possible to use the results of a subset simulation algorithm to estimate the
quantity Pjs, the perturbed failure probability (see Equation 3.1).

Let us imagine, for the sake of clarity, a two-step subset where the levels are fixed in advance.
Let us denote by A, B, 0 the thresholds to cross at the algorithm’s steps, with A > B > 0.

We have Py — / Lcwen f @)z Po = [ Loy fa)de and Py = [ 1(gyco) fla)ds
Additionally, let us remind that

P = /1{0( )<0} J;&(( ))f(w)dx = E[l{g(x;5)<0}] = P (G(Xis) < 0) (3.47)

The algorithm starts with N points 2§ = 1.. N distributed according to f, the original
density. P4 can be estimated by:

—~ 1
Pa=+ > Ligeniy<a (3.48)
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where one has:
E [PA} = /1{G(I)<A}f(a:)da: = PA. (349)

Then, after a mutation/selection step, one has N points z)2 j =1...N distributed according
to f(z]A) = %j}ﬂm). The following estimator is proposed for P4 = /1{G(m)SB|G(m)SA}f($)d$ =

JYcw<Bnaw=<ayf(@)de _ [Yew<pf(@)de _ pg.

T {c@)y<ay f(@)de T [lic@)<ay f(@)de — Pa”
Py 1
Py N D Lewo2)<ny- (3.50)
One has:
Pg| Laway /(@) [Lews<py f(@)dz  Pp

After a second mutation /selection step, one has N points z@)3 j =1... N distributed according

to f(z|B) = %}f}ﬂx). The following estimator is proposed for Py = / Lic(z)<ojc(@)<B} f (z)d:

— 1
P0|B - N Z 1{G(:L‘(j)v3)§0}' (352)
One can check that:

— LG@)<pyf(z) [ Ye@<oy fx)dz P
E |Pys| = / Nty = > =5 (3.53)

Finally, Py = Pag X Ppja X Pyp,a- Yet B = A thus Fyp s = Fyp- P is estimated by:

P = PyPp s Py
Considering ]/3,\4 Ppla et ]50|\B as realisation of independent random variables ! one has:

_ ey Py P
E [P] ) [PA]E [PBM]E {PO‘B} —pPax Bl _p
Py Py
Then, it is observed that:
P;s Pp
Ps—=-0"Bp
0 PB PA A

Considering the N points zU)3,j = 1..N distributed according to f(z/B) = %}f}ﬂx). yem

is estimated by:

o
S

Py 1 fia(wﬁj)’?’)
B =% 2 Loeos)<o 55
B fz($z )
One can check that:
Py Lcw<m F(@) fis(z:) 1 Fis() P
E|l—| =1 lic: = dr = — | lic(z x)dr = —.
Pp / {G(=)<0} Pp fi(zs) Py | EO=0 g f@) Pp

!This is not the case in reality, the mutation step is just performed several times
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—_

Considering g—'g, B et P, as realisation of independent random variables ? one has:

P
Pp

Py

E_
Py

E[E]:E

E [ﬁ:x} = Ps.

Conclusion To couple DMBRSI and subset simulation, one just has to perturb the points coming
from the last step of the subset. However, the variance of P;s5 is intractable so far. This will be the
object of further researches.

3.6 Discussion and conclusion

3.6.1 Conclusion on the DMBRSI method

The method presented in this chapter gives relevant complementary information in addition of
traditional SA methods applied to a reliability problem. Traditional SA methods provide variable
ranking, whereas the proposed method provides an indication on the variation in the probability
of failure given the variation of parameter 6. This is useful when the practitioner is interested on
which configurations of the problem lead to an increase of the failure probability. This might also
be used to assess the conservatism of a problem, if every variations of the input lead to decrease in
the probability of failure. Additionally, it has three advantages:

e the ability for the user to set the most adapted constraints considering his/her problem /objective.

e The MC framework allowing to use previously done function calls, thus limiting the CPU cost
of the SA, and allowing the user to test several perturbations.

e They are easy to interpret.

We argue that with an adapted perturbation, this method can fulfill the presented reliability engi-
neer’s objective (see Section 3.3.3 for further discussions on this topic). From this point of view, the
DMBRSI are a good alternative to FORM/SORM’s importance factors (as they can provide wrong
results, see the Ishigami case) and to Sobol’ indices (as they are costly and non-informative).

3.6.2 Equivalent perturbation

The question of "equivalent" perturbation arises from cases where all inputs are not identically
distributed. Indeed, problems may emerge when some inputs are defined on infinite intervals and
when other inputs are defined on finite intervals (such as uniform distributions). We have proposed
three ways to deal with these problems:

e perform a mean perturbation relatively to the standard deviation, hence including the spread
of the various inputs in their respective perturbation;

e perform a quantile shifting;

e perform a parameters perturbation.

2This is not the case in reality
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3.6.3 Support perturbation

In most examples given throughout this chapter, the perturbations of the inputs left the support
of those variables unperturbed. However, a support modification has been tested on the Ishigami
case where the parameters defining the support have been perturbed. Yet, we stress that given the
estimation method (reverse importance sampling), it is mandatory that the support of the perturbed
density is included in the support of the original density. Thus one cannot perturb the inputs so
that the perturbed support is wider than the original one.

3.6.4 Further work

Most of the further work will be devoted to adapting the estimator of the indices S;s in term of
variance reduction and of number of function calls. Further work will be made with importance sam-
pling methods (test the proposed estimators). The adaptation of estimators using subset simulation
must also be done.

A perturbation based on an entropy constraint might also be proposed. The differential entropy
of a distribution can be seen as a quantification of uncertainty (Auder et al. [6]). Thus an example
of (non-linear) constraint on the entropy can be:

—/fig(x) log fis(z)dx = —5/fi(x) log f;(z)dzx.

Yet further computations have to be made to obtain a tractable solution of the KL minimization
problem under the above constraint.

Another avenue worth exploring would be to change the metrics/divergences. That would amount
to change the D in equation 3.9 (choice was made to take KLD); and to take another distance than
Hellinger’s in the parameter perturbation context. This has to be tested.
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Chapter 4

Application to the CWNR case

4.1 Introduction

This fourth chapter presents the application of some of the developed methods to the CWNR case.
This numerical model has been presented in the outline of the thesis, page 24. Remind that this
black-box model provided the initial motivation for this thesis.

The software interfacing is done using the Open TURNS [2] software that manages the probabilist
part of the analysis. A wrapper calls the model when necessary. Concerning the sensitivity analysis
part, post-processing of the data obtained is done using the R software.

In this thesis, focus has been set on SA methods that are separated from the sampling step (see
Chapter 2), Chapter 3), thus the separation between the estimation of P and the sensitivity analysis.
To estimate Py, the failure probability, FORM (see Section 1.2.2.2) method and crude Monte-Carlo
(see Section 1.2.1.1) have been used. Crude Monte-Carlo is considered to be the reference method
in this chapter. Importance sampling (see Section 1.2.1.3) was available but was not used due to
the lack of knowledge to set the importance densities. Subset simulation (see Section 1.2.3) was
also available but was not used due to the fact that the Open TURNS module only provides an
estimation for Py and not the sampling points.

The sensitivity analysis part then focuses on three methods: first, importance factors (see Section
1.3.2.2) are derived from the FORM sampling. Then, random forests (see Section 2.2) are built on
the MC sample and sensitivity measures are obtained. Finally, DMBRSI (see Chapter 3) are used.
Several perturbations (mean, quantile and parameters) are proposed.

Sobol” indices (see Section 1.4) are not tested in this chapter due to the limited information
provided and the high computational cost. §7°(Ay) indices (see Section 2.3) are not used in this
chapter since a sampling scheme from subset simulation was not available.

This chapter is divided in three main sections, focusing respectively on random input of dimension
3 (Section 4.2), dimension 5 (Section 4.3) and dimension 7 (Section 4.4). Notice that the smaller
the dimension of the input, the more penalizing the case (since non-probabilised variables are set to
penalizing values). Thus the failure probability diminishes as the dimensionality growths. A final
section (Section 4.5) concludes.

4.2 Three variables case

In this first section, three variables are probabilised. Table 1 is partially reproduced in Table 4.1 to
indicate which distributions follow the variables. Table A.1l is a reminder of the inputs’ densities.
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Random var. ‘ Distribution ‘ Parameters
Thickness (m) Uniform a = 0.0075, b = 0.009
h (m) Weibull a = 0.02, scale= 0.00309, shape= 1.8
Ratio height/length | Lognormal | a =0.02, In(b) = —1.53, In(c) = 0.55

Table 4.1: Distributions of the random physical variables of the CWNR model - 3 variables

4.2.1 Estimating Py
4.2.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 10000. 683 points
were failing points thus the failure probability is estimated by:

P = 0.0683.

This will be considered as the reference result. The sampling scheme will be used to build random
forests (Section 4.2.2.1) and DMBRSI (Section 4.2.2.2).

4.2.1.2 FORM

FORM has been used. 52 function calls have been done. However the estimated failure probability
is here of:

PFORM =3.19 x 10_16,

which is several orders of magnitude beneath the reference value. The results of FORM are not
trustworthy in this case, therefore no sensitivity analysis will be performed with FORM in this case.
Notice that the user is not warned that the FORM results are wrong. This is a major drawback of
this technique.

4.2.2 Sensitivity Analysis
4.2.2.1 Random Forests

The methodology presented in Section 2.2 is used along this section. A forest of 500 trees is fitted
on the MC sample. The reference value |v/d] is used as the number of variables randomly selected
at each step. In this case, it means that 1 variable is selected as d = 3.

Variable‘ Thickness ‘ h ‘ Ratio
Index | 0.01448048 [ 0.10574811 | 0.02529668

Table 4.2: MDA index - 3 variables

MDA From Table 4.2, it can be inferred that the most influential variable is h, with 5 times as
much influence as the secondly important variable, namely the ratio. Finally comes the thickness
with an index twice as small as the one of the ratio. However from the numerical results of Section
2.2, it can be stated that the thickness has some influence on its own, according to the MDA indices.
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Three variables case

Variable ‘ Thickness ‘ h ‘ Ratio
Index | 103.473 [ 998.0205 | 169.5899

Table 4.3: Gini importance - 3 variables

Gini importance Table 4.3 assesses that the variable ranking is not modified when switching the
measure. The index of h is more than 5 times higher than the one of the ratio, which is almost twice
as large as the one of the thickness. However, due to the fact that here the Gini importance is used,
it cannot be certain that the thickness has an influence on its own.

Model validation The confusion matrix (on the out-of-bag samples) of the forest is presented in
Table 4.4.

Oobserveld Class prediction error
09209 18 0.001931952
Predicted =355 0.062057540

Table 4.4: Confusion matrix of the forest - 3 variables

It can be seen that the class prediction error is around 30 times bigger for the failing points than
for the safe points. This is much less than in the tests of Section 2.2, but the model is still uneven.

4.2.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,
a mean shift, a quantile shift and a parameter shift will be applied on this test case. It has been
discussed further in Section 3.3.1.3, and the flood case (Section 3.4.7) might be used as an example.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,
the original distribution is perturbed so that its mean is the original’s one plus § times its standard
deviation, ¢ ranging from —1 to 1 with 40 points. The result is plot in Figure 4.1.

Figure 4.1 shows two tendencies. First the thickness and the ratio behave as follows: increasing
the mean of these variables slightly decreases the failure probability whereas decreasing their mean
slightly increases the failure probability. The effect is a little bit stronger for the thickness, but
the confidence intervals are not well separated thus it is difficult to conclude with certainty on the
relative influence of these two variables. On the other hand, increasing the mean of h increases the
failure probability and decreasing the mean of h strongly decreases the failure probability. The effect
is much stronger for h than it is for the two other variables.

Quantile shifting The first quantile to be perturbed is the extreme left-hand tail, namely the
5%-quantile. The result of such a perturbation for all the variables is plotted in Figure 4.2.
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Figure 4.1: Estimated indices g;; for the CWNR case with a mean perturbation - 3 variables
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Figure 4.2: 5" percentile perturbation on the CWNR case - 3 variables

This graph shows that a quantile weight reduction for the thickness and the ratio diminishes
the failure probability, whereas it increases the failure probability for h. The effect is reversed when

170



Three variables case

increasing the weight of the quantile. The influence is of the same order of magnitude for the three
variables, with a slightly smaller influence for the ratio. However, the confidence intervals for the
ratio and the thickness are not well separated.

The 15t quartile is then perturbed and the results are plotted in Figure 4.3.
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Figure 4.3: 1°* quartile perturbation on the CWNR case - 3 variables

When perturbing less extreme values of the left-hand tail, the results are similar. In particular,
the influences are of the same order of magnitude yet h has a larger influence than the thickness,
which has a larger influence than the ratio. The confidence intervals are separated.

The median of the input distributions is then perturbed, the resulting indices are plotted in
Figure 4.4.

When perturbing the median, tendencies are similar to the two previous graphs. The influence
of h is larger than the influence of the other variables. The thickness has a larger influence than the
ratio. Confidence intervals are well separated.

The third quartile is then perturbed and the indices are plotted in Figure 4.5.
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Figure 4.4: Median perturbation on the CWNR case - 3 variables
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Figure 4.5: 3' quartile perturbation on the CWNR case - 3 variables

Tendencies are similar to the three previous graphs. The influence of h is much larger than the
influence of the thickness and of the ratio. Confidence intervals are well separated.
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Three variables case

Finally, the extreme right-hand tail is perturbed, this comes to a perturbation on the 95
percentile. Results are plotted in Figure 4.6.
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Figure 4.6: 95" percentile perturbation on the CWNR case - 3 variables

The influence of h over the two other variables is tremendous. This variable is much more
sensitive to a right-hand tail perturbation than the thickness and the ratio.

As a conclusion, the practitioner needs to be careful when modelling the right-hand tail of h.
The left-hand tail of the three variables is equally important, but the indices are much smaller than
for the right-hand tail. Additionally, the code seems to behave in a monotonic fashion.

Parameters shifting 6 parameters will be perturbed on this case:
e a minimum and a maximum for the thickness;
e a scale and a shape for h;

e a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the
ratio.

These parameters are perturbed! and the estimated indices are plotted in function of the Hellinger
distance in Figure 4.7 as explained in Figure 3.8. 95% confidence intervals are provided as well.

First, the two parameters driving the thickness bear a small influence with respect to the others.
Diminishing the maximum of the thickness increases slightly the failure probability whereas increas-
ing its minimum slightly diminishes the failure probability. Second, the scale of h has the largest
influence over the model. Increasing it largely increases the failure probability whereas diminishes
it diminishes in a tremendous way the failure probability. The confidence intervals get broader yet

'notice that the minimum of the thickness is only increased and the maximum is decreased
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Figure 4.7: Parameters perturbation on the CNWR case - 3 variables

stay well separated from the others. Third, increasing the shape of h strongly diminishes the failure
probability. Decreasing the shape of h increases the failure probability. The effect of this augmen-
tation is not linear, as the growing tendency seems to vanish when decreasing strongly the shape.
This is an interesting result. Then, diminishing the meanlog of the ratio increases slightly the failure
probability whereas increasing it slightly diminishes the failure probability. Finally, the sdlog of the
ratio behaves in a similar manner, yet with a smaller influence. The final ranking of the parameters
in terms of influence is: the scale, the shape, the sdlog. Other parameters bear a quasi-null influence.
These results are consistent with the ones provided by the mean and the quantile perturbation.

4.2.2.3 Conclusion
On the three variables CWNR case, the following can be concluded:

e The ranking provided by the forest is h, ratio then thickness.

e In terms of mean perturbation, the indices associated to h have a high (absolute) value whereas
the ones associated to the two other variables are much smaller.
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Five variables case

e The quantile perturbation has shown that the right-hand tail of kA has the more impact on the
failure probability. The left-hand tail of the three variables is equally important. Additionally,
the code seems to behave in a monotonic fashion.

e The parameters perturbation has demonstrated that the model is mostly driven by the scale
and the shape of h and by the sdlog of the ratio.
4.3 Five variables case

In this section, five variables are probabilised. Table 1 is partially reproduced in Table 4.5 to remind
which distributions follows the variables. Table A.1 is a reminder of the inputs’ densities.

Random var. ‘ Distribution ‘ Parameters
Thickness (m) Uniform a = 0.0075, b = 0.009
h (m) Weibull a = 0.02, scale= 0.00309, shape= 1.8
Ratio height/length | Lognormal | a =0.02, In(b) = —1.53, In(c) = 0.55
Azimuth flaw (°) Uniform a=0,b=360
Altitude (mm) Uniform a = —5096, b = —1438

Table 4.5: Distributions of the random physical variables of the CWNR model - 5 variables

4.3.1 Estimating Py
4.3.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 10°. Only 81
points were failing points thus the failure probability is estimated by:

P = 0.00081.

This will be considered as the reference result. The sampling scheme will be used to build random
forests (Section 4.3.2.1) and DMBRSI (Section 4.3.2.2).

4.3.1.2 FORM

FORM has been used. 106 function calls have been done. However the estimated failure probability
is here of:

Prory = 6.28 x 1072,

which is two orders of magnitude above the reference value (the failure probability is overestimated).
The results of FORM are not trustworthy here, therefore no sensitivity analysis will be performed
with FORM in this case.

4.3.2 Sensitivity Analysis
4.3.2.1 Random Forests

The methodology presented in Section 2.2 is used along this section. A forest of 500 trees is fitted
on the MC sample. 2 variables are selected at each step of the tree building.
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4. APPLICATION TO THE CWNR CASE

Variable | Thickness | h | Ratio | Azimuth [ Altitude
Index |3.99x107° [ 516 x 10~ | 552 x 107 [ 3.91 x 10~* | 3.19 x 10~*

Table 4.6: MDA index - 5 variables

MDA Indices are quite close to 0, as if no variable was influential. The variables with the strongest
indices are h, the azimuth and the altitude.

Variable ‘ Thickness ‘ h ‘ Ratio ‘ Azimuth ‘ Altitude
Index [ 19.79398 | 53.43655 | 22.38101 | 37.72627 | 28.28982

Table 4.7: Gini importance - 5 variables

Gini importance Indices are smaller than in the tests. The ranking provided is the following: h,
azimuth, altitude, the ratio and the thickness.

Model validation The confusion matrix (on the out-of-bag samples) of the forest is presented in
Table 4.8.

O(};serve(ﬁi Class prediction error
_ 99917 | 2 2 x 1077
Predicted 1 59 | 22 0.73

Table 4.8: Confusion matrix of the forest - 5 variables

It can be seen that the class prediction error for the failure points is above 0.7. The fitted model
is then unusable. No conclusion should be drawn from this forest, therefore the rankings provided
above are not to be considered. This lack of quality of the fitted model is a major drawback of the
method.

4.3.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,
a mean shift, a quantile shift and a parameter shift will be applied on this test case.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,
the original distribution is perturbed so that its mean is the original’s one plus § times its standard
deviation, ¢ ranging from —1 to 1 with 40 points. The result is plot in Figure 4.8.

Figure 4.8 shows three different behaviours. First the thickness and the ratio behave as is the
three variables case: increasing the mean of these variables slightly decreases the failure probability
whereas decreasing their mean slightly increases the failure probability. The effect is a little bit
stronger for the thickness when increasing the mean, while it is a little bit stronger for the ratio
when decreasing the mean. The confidence intervals are not well separated here. Then, increasing
the mean of h increases the failure probability and decreasing the mean of h strongly decreases
the failure probability. The behaviour is the same for the altitude with a smaller impact. Finally,
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Figure 4.8: Estimated indices 5‘;; for the CWNR case with a mean perturbation - 5 variables

increasing or decreasing the mean of the azimuth slightly increases the failure probability. The two
more influential variables here are h and the altitude, yet it has to be noticed that h is of primary
importance.

Quantile shifting The first quantile to be perturbed is the extreme left-hand tail, namely the
5%-quantile. The result of such a perturbation for all the variables is plotted in Figure 4.9.

This graph shows two opposite behaviours. First, decreasing the weight of the 5% percentile
decreases the failure probability for the thickness, the ratio and the azimuth. For these variables,
increasing the weight of the considered quantile increases the failure probability. Then, the behaviour
is reversed for h and the altitude. Concerning the variable ranking, the azimuth has the more
influence, while the altitude and h have the same small influence. The ratio has a larger influence
than the thickness, but the confidence intervals are not well separated here.

The 15 quartile is then perturbed and the results are plotted in Figure 4.10.

When perturbing less extreme values of the left-hand tail, the behaviour are similar, but the
order of influence is modified. In particular, the azimuth that was the most influential variable in
Figure 4.9 is now the less influential. Then comes the thickness, and the three remaining variables
have an equivalent influence.

The median of the input distributions is then perturbed, the resulting indices are plotted in
Figure 4.11.

When perturbing the median, tendencies are similar to the two previous graphs for the thickness,
h, the ratio and the altitude. However, the tendency is modified for the azimuth: increasing the
weight of the median slightly decreases the failure probability whereas decreasing the weight increases
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Figure 4.10: 1% quartile perturbation on the CWNR case - 5 variables
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Figure 4.11: Median perturbation on the CWNR case- 5 variables

the failure probability. The influence of h is the largest, then comes the altitude, followed by the
ratio and the thickness. The azimuth has the smallest influence.

The third quartile is then perturbed and the indices are plotted in Figure 4.12.

Tendencies are similar to the previous graphs. The influence of h and of the altitude is larger
than the one of the other variables. Confidence intervals are well separated except for the ratio and
the thickness.

Finally, the extreme right-hand tail is perturbed, this comes to a perturbation on the 95
percentile. Results are plotted in Figure 4.13.
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Figure 4.13: 95" percentile perturbation on the CWNR case - 5 variables

The influence of h over the other variables is tremendous. The azimuth is also more influential
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Five variables case

than the three remaining variables.

As a conclusion, the practitioner needs to be careful when modelling the right-hand tail of h,
and the tails of the azimuth. In terms of value of the indices, the right-hand tails have much more
impact than the left-hand tails. Additionally, this analysis revealed the non-monotonic behaviour of
the azimuth.

Parameters shifting 10 parameters will be perturbed on this case:
e a minimum and a maximum for the thickness;
e a scale and a shape for h;

e a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the
ratio.

e 3 minimum and a maximum for the azimuth;
e 3 minimum and a maximum for the altitude;

These parameters are perturbed so that the support is not increased: the minimums are only
increased and the maximums are decreased. The estimated indices are plotted in function of the
Hellinger distance in Figure 4.14 as explained in Figure 3.8. 95% confidence intervals are provided
as well.

Due to the large number of parameters perturbed, the image is difficult to read. However, the
influence of the parameters driving h (plotted in red) is tremendous. The indices associated to the
scale are larger than the ones associated to the shape, however the width of the confidence intervals
grows quite large, thus it is difficult to conclude on these two parameters. Then, the maximum of
the altitude seems to have the most influence over the failure probability. Diminishing the maximum
of the altitude leads to a decrease of the failure probability. It is followed by the meanlog of the
ratio. The indices associated with other parameters are too noisy and stacked around 0.

4.3.2.3 Conclusion
On the five variables CWNR case, the following can be concluded:

e The ranking provided by the forest is not to be considered as the model is badly fitted.

e In terms of mean perturbation, the indices associated to h have the highest (absolute) value.
Then comes the altitude, followed by the ratio, the azimuth and the thickness. Notice that
the relative influence of the ratio, the azimuth and the thickness is hardly separable.

e The quantile perturbation has shown that the right-hand tail of &, and the tails of the azimuth
are more influential than the tails of others variable. The right-hand tails have much more
impact than the left-hand tails though. Additionally, this analysis revealed the non-monotonic
behaviour of the azimuth.

e The parameters perturbation has demonstrated that the model is mostly driven by the scale
and the shape of h. Then, the maximum of the altitude seems to have the most influence over
the failure probability, followed by the meanlog of the ratio.

It is noticeable that the ranking differs from the three variables case, yet the dimension of the
flaw h is still the most influential variable. Additionally, it seems interesting to notice that the
altitude is influential, but mostly in the right-hand tail (see Figure 4.12).
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Figure 4.14: Parameters perturbation on the CNWR case - 5 variables

4.4 Seven variables case

In this section, seven variables are probabilised. Table 1 is reproduced in Table 4.9 to remind which
distributions follows the variables. Table A.l is a reminder of the inputs’ densities.

Random var. ‘ Distribution ‘ Parameters
Thickness (m) Uniform a = 0.0075, b = 0.009
h (m) Weibull a = 0.02, scale= 0.00309, shape= 1.8
Ratio height/length | Lognormal | a =0.02, In(b) = —1.53, In(c) = 0.55
Azimuth flaw (°) Uniform a=0,b=360
Altitude (mm) Uniform a = —5096, b = —1438
oATT Gaussian u=00=1
oRes Gaussian u=0,0=1

Table 4.9: Distributions of the random physical variables of the CWNR model - 7 variables
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Seven variables case

4.4.1 Estimating Py
4.4.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 7 x 10%. Notice
that this samples took several weeks to be computed. 468 points were failing points thus the failure
probability is estimated by:

Py =6.68 x 107°.

This will be considered as the reference result.

4.4.1.2 FORM

FORM has been used. 183 function calls have been done. The estimated failure probability is here
of:

PFORM =4.23 x 10_7,

which is two orders of magnitude under the reference value (the failure probability is underestimated).
The results of FORM are not trustworthy in this case.

4.4.2 Sensitivity Analysis
4.4.2.1 Random Forests

The methodology presented in Section 2.2 is used along this section. We tried to fit a forest of 500
trees on the MC sample which dimension was 7 x 7000000, with 2 variables selected at each step of
the tree building. However the fitting step failed due to the size of the sample (as in Section 2.2.5.2,
paragraph "increasing the sample size").

4.4.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,
a mean shift, a quantile shift and a parameter shift will be applied on this test case.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,
the original distribution is perturbed so that its mean is the original’s one plus § times its standard
deviation, ¢ ranging from —1 to 1 with 40 points. The result is plot in Figure 4.15.

Three different behaviours can be observed. When increasing the mean of h, of the altitude
and of ¢ ATT it increases the failure probability while when decreasing their means it decreases the
failure probability. The effect is reversed for the thickness, the ratio and o Res. Finally, increasing or
decreasing the mean of the azimuth slightly increases the failure probability. In terms of amplitude,
three variables differentiate themselves from the others: h, cATT and oRes. Others variables have
a smaller influence and their confidence intervals contains 0.

Quantile shifting The first quantile to be perturbed is the extreme left-hand tail, namely the
5%-quantile. The result of such a perturbation for all the variables is plotted in Figure 4.16.

It first should be notices that the indices for A and for ¢ ATT coincide. This graph shows
two opposite behaviours. First, decreasing the weight of the 5" percentile decreases the failure
probability for the thickness, the ratio, the azimuth and for o Res. For these variables, increasing
the weight of the considered quantile increases the failure probability. Then, the behaviour is reversed
for h, the altitude and o ATT. Concerning the variable ranking, o Res has the more influence. Then
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Figure 4.15: Estimated indices 3’;; for the CWNR case with a mean perturbation - 7 variables

comes the azimuth that has a medium influence, while the rest of the variables have the same small
influence.

The 15¢ quartile is then perturbed and the results are plotted in Figure 4.17.

The indices for h and for the altitude coincide. When perturbing less extreme values of the left-
hand tail, the behaviour are similar, but the order of influence is modified. The azimuth that was
an influential variable in Figure 4.16 is now the less influential. The two most influential variables
are cATT and oRes.

The median of the input distributions is then perturbed, the resulting indices are plotted in
Figure 4.18.

When perturbing the median, tendencies are similar to the two previous graphs for all the
variables but the azimuth. Indeed increasing or decreasing the weight of the median for this variable
does not impact the failure probability. The influence of cATT is the largest, followed by h and
o Res that have a similar impact (but a different behaviour). Then comes the ratio and the thickness.
The two other variables have a small to null impact.

The third quartile is then perturbed and the indices are plotted in Figure 4.19.

Tendencies are similar to the previous graphs except for the altitude and the thickness. The
influence of h and of ¢ ATT is larger than the one of the other variables. The impact of the ratio
and of o Res is similar.

Finally, the extreme right-hand tail is perturbed, this comes to a perturbation on the 95
percentile. Results are plotted in Figure 4.20.

This figure shows clearly the impact of the following variables (for which increasing the weight
of the quantile decreases the failure probability), ordered by influence: h, cATT, the azimuth. The
others variables have a small to null impact.
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4. APPLICATION TO THE CWNR CASE

< | m  Thickness
o e h
4 Ratio
*  Azimuth
Altitude
o OATT
g 1 - o oRes
=}
<N
o |
o
N
? .

0.3 0.4 0.5 0.6 0.7
o

Figure 4.18: Median perturbation on the CWNR case- 7 variables
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Figure 4.19: 3" quartile perturbation on the CWNR case - 7 variables
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Figure 4.20: 95" percentile perturbation on the CWNR case - 7 variables

As a conclusion, the practitioner needs to be careful when modelling the right-hand tail of A
and o ATT altogether with the left-hand tail of o Res. The tails of the azimuth need caution too.
Additionally, this analysis revealed the non-monotonic behaviour of the azimuth for the 7 variables
case.

Parameters shifting 14 parameters will be perturbed on this case:
e a minimum and a maximum for the thickness;
e a scale and a shape for h;

e a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the
ratio.

e 3 minimum and a maximum for the azimuth;

e a minimum and a maximum for the altitude;

a mean and a standard deviation for cATT
e a mean and a standard deviation for oRes.

These parameters are perturbed so that the support is not increased: the minimums are only
increased and the maximums are decreased. The estimated indices are plotted in function of the
Hellinger distance in Figure 4.21 as explained in Figure 3.8. 95% confidence intervals are provided
as well.

Due to the large number of parameters perturbed, the image is very difficult to read.
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Figure 4.21: Parameters perturbation on the CNWR case - 7 variables

However, the influence of the parameters driving h (plotted in red), of cATT and of oRes is
tremendous. The impact of a parameter perturbation for other variables is much smaller. In partic-
ular for h, increasing the scale or decreasing the shape increases the failure probability. Concerning
oATT, increasing the mean and the standard deviation increases the failure probability while de-
creasing these parameters has a much smaller impact. Finally when shifting the parameters of o Res
it can be seen that decreasing the mean or increasing the standard deviation strongly increases the
failure probability. However the width of the confidence intervals grows quite large.

4.4.2.3 Conclusion
On the seven variables CWNR case, the following can be concluded:

e The forest model could not be fitted due to the size of the sample.

e In terms of mean perturbation, the indices associated to h, cATT and o Res have the highest
(absolute) value.
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Conclusion

e The quantile perturbation has shown that the right-hand tail of h and cATT altogether with
the left-hand tail of cRes and the tails of the azimuth are more influential than the tails
of others variable. Additionally, this analysis revealed the non-monotonic behaviour of the
azimuth.

e The parameters perturbation has demonstrated that the model is mostly driven by the pa-
rameters of h of cATT and of o Res . This confirms the conclusion of the mean perturbation.

It is noticeable that the ranking differs from the three and the five variables case. However the
dimension of the flaw h is still an influential variable.

4.5 Conclusion

Concerning the Py estimation part, the MC method is still the reference method on an industrial
code. The major drawback is of course the computational time needed. FORM is wrong in all the
cases and should not be used.

Concerning the sensitivity analysis part, the random forest technique provides questionable re-
sults, since the fitted models are uneven or bad. This method is inconclusive at the moment.

DMBRSI seems an adapted method to perform sensitivity analysis on a failure event. Several
tunings for several problems have been tested. However, if a single graph had to be provided to
decision makers, we would present the mean perturbation one, as it carries most of the information.

In all the configuration studied, h is a priority variable. This is also the case for cATT and
oRes in the 7 variables case.

The improvement perspectives of this study are:

e to combine subset simulation with the DMBRSI. To do so, an implementation of subset sim-
ulation that provides the sampling scheme must be performed;

e to combine importance sampling with the DMBRSI, now that the priority zones are known.
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Conclusion

Summary and contributions

This thesis’ first objective was to perform a sensitivity analysis on a black-box model, the CWNR,
case. Because the quantity of interest is a (small) failure probability, appropriate methods had to
be used. Thus this thesis focused on two fields: structural reliability in one hand, and sensitivity
analysis on the other hand.

First step was a bibliographical chapter (Chapter 1). This chapter aimed at clarifying the main
existing techniques to estimate a failure probability (Section 1.2) and the main sensitivity analysis
methods (Section 1.3). Then one of the most used sensitivity analysis technique (Sobol” indices)
was tested on reliability toy-cases (Section 1.4). Sobol” indices applied to a failure indicator have
highlighted a capacity to distinguish the non-influential from the influential variables. However, tests
have shown that the following configuration -low first-order indices, high total order indices- is often
present. Therefore the information provided by such indices is limited and may only confirm that all
the variables interact to cause the failure event. Next, a moment-independent method (Borgonovo’s
0; indices) was tested on reliability toy-cases (Section 1.5). However, the produced indices were
rather small with a positive bias in the estimations. The conclusion is that moment independent
techniques are not adapted within the reliability context. A synthesis of the tested methods was
proposed in Section 1.6. Finally, a discussion on the meaning and objectives of sensitivity analysis
when dealing with failure probabilities, that we argue might be of use for the practitioner, was
conducted in Section 1.7.

The conclusion of this bibliographical chapter is that there is a need for new sensitivity analysis
methods in the reliability context. The next two chapters aimed at reaching this objective.

The second chapter focused on sensitivity analysis techniques with a variable ranking objective.
Two sensitivity analysis methods were presented, thought as by-products of two sampling techniques
(Monte-Carlo and subset simulation). The first part of the chapter (Section 2.2) was devoted to
importance measures derived from random forests.

Reminders on specific binary classifiers (random trees) were proposed altogether with a review
on stabilisation methods, including random forests. The importance measures (Gini importance and
Mean Decrease Accuracy importance) were elicited. Then a bibliographical step was performed on
the "sensitivity analysis using random forests" theme. Then the importance measures have been
tested on reliability toy-cases. The conclusions were that the Mean Decrease Accuracy importance
indices seemed more adapted since the Gini importance indices could affect a non-null importance
to a non-influential variable. However, it must be stressed that the fitted models’ quality is not
satisfying. Indeed, from the imbalance of the classes in the original sample, there is a tendency in
getting "weak" predictors that make much more prediction error on the minority class. This is a
problem when drawing conclusions on sensitivity analysis with these types of models. The second
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CONCLUSION

part of the chapter (Section 2.3) proposed a new sensitivity measure based upon the departure, at
each step of a subset method, between each input original density and the density given the subset
reached. Several tunings of the departure can be used. However this sensitivity analysis method
gives a similar information that the one provided by the Sobol’ indices on the failure indicator.

The third chapter presented an original sensitivity analysis method, called Density Modification
Based Reliability Sensitivity Indices (DMBRSI). This sensitivity index is based upon input density
modification, and is adapted to failure probabilities. The proposed indices reflect the impact of
an input density modification on the failure probability. One needs to differentiate the proposed
index and the perturbations. The indices are independent of the perturbation in the sense that
the practitioner can set the perturbation adapted to his/her problem. The sensitivity index can
be computed using the sole set of simulations that has already been used to estimate the failure
probability, thus limiting the number of calls to the numerical model.

First, the indices and their theoretical properties have been presented in Section 3.2, altogether
with the estimation methodology. For the sake of simplicity, a Monte-Carlo sampling scheme was
considered. Second, Section 3.3 dealt with several perturbation methodologies. These perturbations
can be classified into two main families: Kullback-Leibler minimization methods and parameter
perturbations methods. The behaviour of the indices was examined in Section 3.4 through numerical
simulations. In Section 3.5, it was proposed to improve the DMBRSI estimation with importance
sampling and with subset simulation.

This chapter presented an original method designed for failure probabilities. One of the main
advantage is the possibility to modify the perturbation applied without new calls to the model.
However a major drawback persists: when there are too many parameters to perturb, the results
may be complicated to interpret.

The fourth chapter presented the application of some of the developed methods to the CWNR
case. Remind that this black-box model provided the initial motivation for this thesis.

To estimate Py, two methods were used: crude Monte-Carlo and FORM. It appeared that FORM
was wrong in every case, thus Monte-Carlo stays the reference method.

The sensitivity analysis part then focused on two methods: random forests (Chapter 2), and
DMBRSI (Chapter 3). Sobol’ indices (see Section 1.4) were not tested in this chapter due to the
limited information provided and their high computational cost. 677 (Ay) indices (see Section 2.3)
were not used either since a sampling scheme from subset simulation was not available.

This chapter is divided in three main sections, focusing respectively on random input of dimension
3 , dimension 5 and dimension 7. Notice that the smaller the dimension of the input, the more
penalizing the case (since non-probabilised variables are set to penalizing values). Thus the failure
probability diminishes as the dimensionality growths.

DMBRSI appeared as an adapted method to perform sensitivity analysis on a failure event. In
all the configurations studied, h (the dimension of the flaw) is a priority variable. This is also the
case for cATT and oRes in the 7 variables case.

Future avenues for research and application
The methods presented in Chapter 2 can be improved. Specifically, there is a need to improve the
binary classifiers (random forests). The MDA indices when using subset simulation must be imple-

mented Another perspective of improvement, when using the 5;95 (Ag) indices, is to conduct a work
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including the copula theory.

The DMBRSI introduced in Chapter 3 have several ways of improvement. Most of the further
work will be devoted to adapting the estimator of the indices S;5 in terms of variance reduction and
of number of function calls. The adaptation of estimators using subset simulation must also be done.
A perturbation based on an entropy constraint might also be proposed. Yet further computations
have to be made to obtain a tractable solution of the KL minimization problem. Another avenue
worth exploring would be to change the metrics/divergences. That would amount to change the
D in equation 3.9 (choice was made to take KLD); and to take another distance than Hellinger’s
in the parameter perturbation context. Another avenue might be the introduction of a structural
dependency between the marginals of the input vector, and to perturb this dependency wia the
copula theory.

Further work can be done in Chapter 4. The main improvement perspectives of this study is
to use subset simulation, to improve the estimation of P; and to reduce the computational time.
A coupling with the random forests via adapted MDA indices might be of interest as well. This
could also allow the use of the c.d.f. departure measures §7°(Ay). Still to reduce the variance of the
estimators, importance sampling must be tested.

Broader perspectives have to be considered. In particular, the use of sequential methods coupled
with meta-models (Bect et al. [9]) is to be tested.

Recently, Fort et al. [35] introduced a new sensitivity index as a generalisation of Sobol’ indices.
They propose an adapted contrast function for each statistical purpose. It is interesting to notice
that the contrast adapted to a threshold exceed is presented. This index then has to be tested and
compared with DMBRSI in further work.
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Appendix A

Distributions formulas

‘ Distribution ‘ Parameters ‘ pdf ‘ Support ‘
Uniform a,b f(z) = 4= [a, b]
Weibull a, b, c f(x) =7 (:”—;“)c_l exp [— (I—g“)c] T>a

Lognormal W, o f(z) = Ml% e_%;_)z x>0
Gaussian o f(z) = 0\}%6_%(1;M)2 | — 00, 4+00[

Table A.1: Distributions of the random physical variables taken for the CWNR models.
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Appendix B

Test cases

In the present subsection, usual sensitivity test cases will be presented. They will be used as
benchmark cases for the sensitivity analysis methods. One should note that these test cases return
binary values, failure or non-failure of the studied system. One should notice that the focus is set
on the probability Py = P(G(X) < 0).

B.1 Hyperplane test case
For the first case, X is set to be a d—dimensional vector, with d independent marginals normally

distributed. Unless otherwise mentioned (that is to say for the last case), one has f; ~ N(0,1) for
i =1,..,d. The failure function G(.) is defined as:

d
GX)=k-> aX, (B.1)
i=1
where k is a threshold and a = (aq,...,aq) are the parameters of the model. One can see that

the model is solely linear. What can be expected in terms of SA is that the influence of each variable
on Py depends on its coefficient, namely a;. The greater the absolute value of the coefficient is, the
bigger the expected influence is. One can, by adjusting k, set the failure probability Py to a value
of interest. An explicit expression for Py can be given as the sum of the d variables behaves like a

d
Za?, unless in the last case.
i=1
In table B.1 the usual test cases that will be employed throughout the document are detailed.

Gaussian distribution with parameters 0 and standard deviation

Number of variables Values of a; Value of k& | Value of P
4 (1,—6,4,0) 16 0.014
5 a; =1Vi=1:5 6 0.0036
a;=1Vi=1:5
15 a; =02Vi=6:10 6 0.00425
a; =0Vi=11:15
5 a= (%,...,1—10) 5 0.0036

Table B.1: Usual hyperplane test cases
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B. TEST CASES

In the first test case, with the specific values of a, the influence of X5 is greater than the influence
of X3 which is greater than X;’s. X4 has no impact on the output. It should be noted that X; and
X3 The aim of choosing one non-influential variable is to assess if the SA methods can identify this
variable as non-influential on the failure probability.

In the second test case, with all the components equally influential, the aim is to assess or infirm
the capability of the SA method to give the same importance to each input.

In the third case, the SA method is put to the test of determining the influential from the
little-influential and non-influential variables.

In the last test case, the impact of having variables with the same importance, but distributed
with a different spread is studied. Precisely, variables are such that f; ~ N (0,0 = 2i) for i = 1..5.
Thus given the a;, the variables have the same impact on the failure probability. The aim of this test
is to assess or infirm the capability of the SA method to give to each equally contributing variable
the same importance, despite their different spread.

B.2 Tresholded Ishigami function

The Ishigami function (Ishigami [51]) is a common test case in SA since it has a complex expres-
sion, with interactions between the variables. A modified version of the Ishigami function will be
considered here. A threshold is added to the value obtained with the regular expression and this is
considered as the failure function. Therefore:

G(X) = sin (X1) + 7sin? (X3) 4+ 0.1X3 sin (X1) + k (B.2)

where k = 7. X is a 3—dimensional vector of independent marginals uniformly distributed on
[—7, 7). In figure B.1, the failure points (where G(x) < 0) are plotted in a 3-d scatterplot.

Figure B.1: Ishigami failure points from a MC sample
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Flood case

The failure probability here is roughly P =589x103 (estimated by Monte-Carlo technique,
see section 1.2.1). The complex repartition of the failure points can be noticed. Those points lay in
a zone defined by the negative values of X7, the extremal and mean values of Xo (around —m, 0 and
m), and the extremal values of X3 (around —7 and )

B.3 Flood case

The goal of this test case is to assess the risk of a flood over a dyke for the safety of industrial
installations (Bernardara [10]). This comes down to model the level of a flood. As a function
of hydraulical parameters, many of them being randomized to account for uncertainty. From a
simplification of the Saint-Venant equation, a flood risk model is obtained.

The quantity of interest is the difference between the level of the dyke and the height of water. If
this quantity is negative, the installation is flooded. Hydraulic parameters are the following: @ the
flow rate, L the watercourse section length studied, B the watercourse width, K, the watercourse
bed friction coefficient (also called Strickler coefficient), Z,, and Z, respectively the upstream and
downstream bottom watercourse level above sea level and Hy the dyke height measured from the
bottom of the watercourse bed. The water level model is expressed as:

3
5

Q

=\ p oz (5:5)
KB/ 2ol
Therefore the following quantity is considered:
G=H;— (Z,+ H). (B.4)

Among the model inputs, the choice is made that the following variables are known precisely:
L = 5000 (m), B = 300 (m), H; = 58 (m), and the following are considered to be random. @
(m3.s71) follows a positively truncated Gumbel distribution of parameters a = 1013 and b = 558
with a minimum value of 0. K, (m'/3s™1) follows a truncated Gaussian distribution of parameters
p = 30 and o = 7.5, with a minimum value of 1. Z, (m) follows a triangular distribution with
minimum 49, mode 50 and maximum 51. Z,, (m) follows a triangular distribution with minimum
54, mode 55 and maximum 56.

The failure probability here is roughly P = 7.88 x 104 (estimated by MC technique, see 1.2.1).
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Appendix C

Isoprobabilistic transformations

Here, we briefly introduce the notion of copula, which is needed for the presentation of isoprobabilistic
transformations. Copulas are a mathematical object describing the dependencies in a random vector
without referring to the marginal distributions. Nelsen’s monograph [74] presents such objects.

C.1 Presentation of the copulas

Definition C.1.1 A d dimensional function f is said d—increasing if:

2 2
Z L Z (_1)Zl+'~'+zdf($1,i17 e ,x27,~d) >0
i1=1 tg=1

where x;1 = aj and xjo =b; Vj € {l,...,d} and a;,b; € [0,1],a; < b;Vj e {1,...,d}

Definition C.1.2 A d—dimensional copula C is a d—dimensional cumulative distribution function
defined over [0,1]%, whose marginal distributions are uniform over [0,1]:

e C is d—increasing;
e for all u € [0,1]% which have at least one component equal to 0, C(u) = 0;

e for allu € [0,1]¢ which have all their components equal to 1 except one, uy, C(u) = uy.

Theorem C.1.1 (Sklar 1959)
Let F' be a d—dimensional cumulative distribution function with Fi, ..., F, the marginal distri-
bution functions. There exists a d—dimensional copula, C, such that for all x € R we have:

F(zy,...,zp) = C(F1(z1), ..., Fp(xp)). (C.1)
If the marginal distributions Fy, ..., F, are continuous, then the copula C is unique, otherwise it
is uniquely determined over Im(Fy) x --- x Im(Fy). In the continuous case, for all u € [0,1]% we
have:
C(u) = F(F;  (w), ..., Fy (up) (C.2)
if absolutely continuous
d
f&) = c((Fi(ar), . Fywp)) [ ] filan) (C.3)
i=1



C. ISOPROBABILISTIC TRANSFORMATIONS

with ¢ the probability distribution function associated to C, f the probability distribution function
associated to F' and f; the marginal distributions function associated to F.

Definition C.1.3 Let us denote SO4(R) the rotation group over R% and supp(X) the set of the val-
ues that can be taken by a random vector X. An isoprobabilistic transformation T of a d—dimensional
random vector X is a diffeomorphism from supp(X) into R such that the random vectors U = T(X)
and U have the same distribution for all r € SO4(R).

C.2 Objectives, Rosenblatt transformation

We wish to transform a random vector X of pdf fx and of copula C' in a Gaussian vector U of same
dimension but with independent, standard Gaussian as components.

If the variables are independent and that the marginals are known, the transformation is straight-
forward :

ui = ¢~ (Fy(z;))

If there is a dependency structure in the variables, Rosenblatt and Nataf transformations are
possibilities [2].

We present here the Rosenblatt [84] transformation. This transformation is not unique if the
variables are correlated: it depends on the order in which the variables are transformed ! .

Transformation is done as follows:

uy = ¢~ (Fy(z1))

ug = ¢~ H(Fo(w2]| X1 = 21))

ug = ¢~ (Fy(zal X1 = 21, ..., Xg-1 = 24))

where Fj(.|X1,...X;—1) is the cdf of variable X; given the realisations of the previous variables.

Tt has been shown in Lebrun and Dutfoy [57| that if the copula of X is Gaussian, the order in which the variables
are transformed does neither impact the norm of the design point, nor the derivatives of the failure surface in this
point. In other words, the following quantities use in FORM/SORM methods do not depend upon the order of
transformation: ﬂHL,ﬁFORM, ﬁSORM-
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Appendix D

Appendices for Chapter 3

D.1 Proofs of asymptotic properties

Proof of Lemma 3.2.1

Under assumption (i), we have

fzé( )
* dx < is(ri) do; = 1.
/Supmfm (0090} G, iy S0 X</Supp(fia)f5(w) !

So that, the strong LLN may be applied to Bisn. Defining

f26
15 = Var |:1{G X)<0} f (( )):| (Dl)
one has
2 (@) 1°
Ji26 = / Licx<ot 77—~ o Hfj(:Ej) dX—P,% < oo under assumption (ii).
Supp(fi) fz( i) ki

Therefore the CLT applies:
VNo! (PMN - PM) £ N(0,1) .
Under assumption (ii), the strong LLN applies to 6’?5 ~- So that, the final result is straightforward
using Slutsky’s lemma.
Proof of Proposition 3.2.1

First, note that

E {1313;;] _PP; = — PP

1 N N fzé(x?)
B |5 | 20 Moo | | X tewnao gy

n=1

N n
= E [Z Ligeny<0)]” J;?fs((;é)) + ZZ Liaee <oy L) <o) fule, )]
n=1 Y\ n=1 j#i filz z)
_PP25
= N2 [NPys + N (N — 1) PP;] — PPy
= % (P,s — PPy) .
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Assuming the conditions under which Lemma 1 is true, the bivariate CLT follows with

([ PA-P) Ps(1-P)
i = <Pié(1—P) 50% >

Each term of this matrix can be consistently estimated, using the results in Lemma 1 and Slutsky’s
lemma.

D.2 Computation of Lagrange multipliers

Let H be the Lagrange function:

K
H(A) = $i(A) = Y M.
k=1

Thus, using the results of Csizar [26], one has
A* = argmin H(\).
h

The expression of the gradient of H with respect to the jt variable is

fix) exp (i, Argn(x))da
exp ¥i(A)

Similarly, the expression of the second derivative of H with respect to the Ah and the jth variables
is

vy - L9

— 3.

_ Jon(@)g; (@) filx) exp (4 Muge(x))da
B exp ¥;(A)
S gi(@) fi(@) exp(isy Megr(@))da [ gn () filw) exp (g Arga(x))da
exp ¥;(A) exp ¥;(A) '
This method has been used in this paper for computing the optimal vector A* when a variance
shifting was applied. The integrals were evaluated with Simpson’s rule.

Dp;H(X)

D.3 Proofs of the NEF properties

In this Appendix, the details of the calculus for the Proposition 3.3.4 are provided.

NEF specificities : If the original density f;(x) is a NEF, then under a set of K linear constraints
on f(x), one has :

f(x) = b(z) exp [26 — n(0)],
thus :

K
fs(x) = f(z)exp [Z Akgr (@) — 1/’0\)]
k=1

The regularization constant from (3.13) can be written as:

K
0 + Z Mgk (z) — 77(6)] dx (D.2)
k=1

vl = log [ blz) exp

If the integral on (D.2) is finite, f5 exists and is a density.
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Proofs of the NEF properties

Mean shifting With a single constraint formulated as in (3.15), (D.2) becames :
YA = log / b(z) exp [0 + Az — n(0)] do

= log/b(a;) exp [z (6 + A) —n(0) +n(0 + X) —n(0 + N)] dx

if (@ + A) is well defined.

PA) = 0+ A) —n(0)) +log [/ b(x)exp [z (6 +A) —n(0 + A)]| dz
= (0 +X) — ()
b(x)exp [z (6 +A) = n(0 + A)] = fora(z)
with notation from (3.3.4), is a density of integral 1. Thus
fs(x) = bx)exp [z — o(0)]exp [Ax —n(0 + A) +n(0)]
= b(@)exp[z[0+ A —n(0 + A)] = fosa(z)

Thus the mean shifting of a NEF of CDF 7(.) results in another NEF with mean n'(6 + \) = §
(constraint) and variance n”(6 4+ \).

Variance shifting With a single constraint formulated as in (3.19), using (D.2), the new distri-
bution has for density:

fs(x) = b(x) exp [339 +2h 4 2% X — P(A) — 77(9)]

Since A is known or computed, and 6 is also known, consider the variable change z = \/A2x assuming
Mg is strictly positive (the variable change is z = v/—Agx if A9 is strictly negative). Thus,

z

fila) = ) emp [ exp | <= 04 ) () ~1(0)
= e | (22 <) - v ety |2y (520

V22 V22 V2
with
= L exX 22 .
C(z)_b(m) p [27]
By (3.13)
P(A) = log [ b(x)exp [z0 +z\ +2° Xy — n(0)] dz

/
/ z

— log b(—)\2)exp [22] exp [% —n(0) +n <(9j£1)> —n <(9;A_21)>} dz
: <<w>> o) v fecron [ (20

+ A1
= T n(0)

Thus one has :

f5(@) = e(z) exp {Z“’ ) <(0 + M)ﬂ

VA VA2
(0+X1)

thus the variance shifting of a NEF results in another NEF parameterized by T
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D.4 Numerical trick to work with truncated distribution

In the case where a mean shifting is considered on a left truncated distribution. We present a tip
that can help to compute A*.

The studied truncated variable Y7 has distribution fyr. Let us denote Y ~ fy the corresponding
non-truncated distribution. The truncation occurs for some real value a. This truncation may
happen for some physical modelling reason. One has:

1

fyr(y) = T Fla)

La,400[ () fy (y)-

The formal definition of My7(X) the mgf of Y7 for some A is:

1

Myr(X) = = Fy(a)

+o0o
[ e ds
Let us recall that we are looking for A*such as:

My (N Ty (y) exp [Nyl dy

5 — — .
Myr(X*) [ fy(y) exp [Ay] dy

(D.3)

When the expression does not take a practical form, one can use numerical integration to es-
timate the integral terms. Unfortunately, for some heavy tailed distribution (for instance Gumbel
distribution), this numerical integration might be complex or not possible. This is due to the multi-
plication by an exponential of y. The following tip helps to avoid such problems. Denoting My ()
the mgf of the non-truncated distribution, one can remark that:

+00 a o0
w= [ weohid= [ frwenl+ " () exp gl dy

—0 a
Thus another expression for My () is:

1

Myr(X) = T Fy(a)

[Myw [ wewin dy} |

The integral term is much smaller in the left heavy tailed distribution case. Therefore the numerical
integration (for instance using Simpson’s method) is much more precise or became possible.
The same goes for M{,,(A) which has alternative expression:

Myr ) = 1 [N = [ uvexw g

Finally, another form of D.3 is:

5 M) — [T ufv(y) exp Myl dy
 My(W) = [ fy(y)exp[Ayldy

(D.4)

This alternative expression may lead to more precise estimations of A* when My (A) and My, ()
are known (which is the case for most usual distribution) since the integral term are much smaller
than in the first expression.
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Résumé

Cette thése porte sur I’analyse de sensibilité dans le contexte des études de fiabilité des structures. On
considére un modéle numérique déterministe permettant de représenter des phénomeénes physiques
complexes. L’étude de fiabilité a pour objectif d’estimer la probabilité de défaillance du matériel &
partir du modéle numérique et des incertitudes inhérentes aux variables d’entrée de ce modele. Dans
ce type d’étude, il est intéressant de hiérarchiser I'influence des variables d’entrée et de déterminer
celles qui influencent le plus la sortie, ce qu’on appelle 'analyse de sensibilité. Ce sujet fait I’'objet de
nombreux travaux scientifiques mais dans des domaines d’application différents de celui de la fiabilité.
Ce travail de thése a pour but de tester la pertinence des méthodes existantes d’analyse de sensibilité
et, le cas échéant, de proposer des solutions originales plus performantes. Plus précisément, une étape
bibliographique sur ’analyse de sensibilité d’une part et sur l'estimation de faibles probabilités de
défaillance d’autre part est proposée. Cette étape souléve le besoin de développer des techniques
adaptées. Deux méthodes de hiérarchisation de sources d’incertitudes sont explorées. La premiére
est basée sur la construction de modeéle de type classifieurs binaires (foréts aléatoires). La seconde est
basée sur la distance, a chaque étape d’'une méthode de type subset, entre les fonctions de répartition
originelle et modifiée. Une méthodologie originale plus globale, basée sur la quantification de I'impact
de perturbations des lois d’entrée sur la probabilité de défaillance est ensuite explorée. Les méthodes
proposées sont ensuite appliquées sur le cas industriel CWNR, qui motive cette these.

Mots-clés Analyse de sensibilité ; Fiabilité; Incertitudes ; Expériences numeériques ; Perturbation
des lois

Abstract

This thesis’ subject is sensitivity analysis in a structural reliability context. The general framework
is the study of a deterministic numerical model that allows to reproduce a complex physical phe-
nomenon. The aim of a reliability study is to estimate the failure probability of the system from
the numerical model and the uncertainties of the inputs. In this context, the quantification of the
impact of the uncertainty of each input parameter on the output might be of interest. This step
is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability
scope. This thesis’ aim is to test existing sensitivity analysis methods, and to propose more efficient
original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation
of small failure probabilities on the other hand is first proposed. This step raises the need to develop
appropriate techniques. Two variables ranking methods are then explored. The first one proposes to
make use of binary classifiers (random forests). The second one measures the departure, at each step
of a subset method, between each input original density and the density given the subset reached.
A more general and original methodology reflecting the impact of the input density modification
on the failure probability is then explored. The proposed methods are then applied on the CWNR,
case, which motivates this thesis.

Keywords Sensitivity Analysis; Reliability; Uncertainties; Computer experiments; Input pertur-
bations
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