
	

PhD	Thesis	proposal:	Merging	Data-driven	and	physics	driven	modelling	to	

optimize	production	of	mature	hydrocarbon	reservoirs			
 
Traditional tools used to make forecasts and optimize oil reservoirs production are based on complex 
geological modeling of the subsurface and on computationally expensive numerical solvers of the fluid flow 
equations in porous media. This approach enables to integrate all the available data (seismic, cores samples, 
wells logs, geological and physical understanding), however it is very time consuming, moreover  the model 
obtained is usually not predictive enough for the short term production optimization particularly for large and 
mature fields.  
More recently a different paradigm based on data-driven reservoir modeling has emerged
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 that aims at 

providing faster results using data analytics.  
This approach has the advantage of being much faster and easy to implement, however validating and 
trusting the model forecasts is usually more controversial.  
One of the main issues with data-driven models is to assess how much the model can be generalized to 
other data that has not been seen during the training. In fact in order to use these models for production 
optimization one needs to modify the way the wells are controlled and be able to propose new well settings 
that were not tested in the past. 
The objective of this thesis is to investigate effective methods to combine data-driven models with simplified 
physics driven models with the objective of obtaining more reliable models to be used for production 
optimization. The combination of traditional physical models with statistical models based on machine 
learning and artificial intelligence is a current area of investigation in several other industries. 
        

Main	principles	of	data-driven	the	tool	
The data-driven tool is based on the construction of a spatio-temporal statistical model of the water-oil-gas 
production and reservoir pressure for each well. The spatio-temporal model, aims at modelling the oil-water-
gas evolution at two different time-steps (t, t+Δt) at each well (existing or to be drilled). We know from the 
laws of physics of fluid flows in porous media that if Δt is short enough the production evolution of well I is 
only affected by the values of pressure and production of very nearby wells. This assumption is very 
important as it will limit considerably the number of variables of our spatio-temporal function.       
In order to take into account the time evolution we use recurrent neural networks and more specifically LSTM. 
These techniques are today among the state of art technique for time evolution statistical models, although 
other more classical machine learning techniques could also be tested during this work. 
A data-driven tool based on LSTM has been recently developed by Total R&D and will be available for the 
project. One of the first objectives of this thesis will be to test the validity of the current approach in some real 
data. The physical laws of fluid flows in porous media are learnt by the algorithm based on historical data, 
however we do not have any guarantee that such physical constraints would be honoured also in the 
forecasts. The amount of training data depends on the field (maturity and number of wells), but it would be 
usually around few thousands observations. Because of this short amount of data the features used in the 
model needs to be selected carefully and are based on physical understanding of the input/output 
relationship. An effective modeling of the features to be used in the statistical model is therefore a 
fundamental part to improve the accuracy of the forecasts.   
 

Recurrent	Neural	Networks	and	LSTM	
We have decided to use LSTM to model the time evolution of the system. LSTM are more suitable to 
classical neural networks used in
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 for modeling time series: the LSTM state vector and weights are modified 

at each time steps to take into account some possible evolutions of the input-output relation occurring 
through time.  

	



	

Uncertainty	
In some cases the amount of available data may not be sufficient for the neural network model to learn the 
behavior of the system in order to obtain the required accuracy in the forecasts. Moreover the available data 
is of very different type and resolution (3D data (seismic, logs), production data at different locations, 
operational constraints… Interpreted/synthetized data coming from geoscientist synthesis could then be used 
to build the neural network model (drainage areas and average properties in these areas such as remaining 
oil in place and permeabilities/porosities). This choice will however necessitate to test different set of input 
data resulting in different possible NN models.  
Other approaches such as data-augmentation (generating noisy data) or using dropout could be used to 
define a more robust model.  
The objective is to be able to propose forecasts envelope based on different possible models. Each model 
may have a different weight according to its likelihood (accuracy in honouring the training data) similarly to a 
Bayesian approach.  

	

New	wells	prediction		
A problem strictly related to the previous problem of taking into account uncertainty is how to provide the 
missing data for new wells (the wells not available in the training data). A similar approach to the one 
considered above could be adopted for missing wells, however the construction of a more systematic 
technique to define missing value properties for such new wells should be defined in this case. Some 
classical approaches such as kriging or random forests will be tested. In fact we should also try to use 
production data to better evaluate such missing value problem and not only spatial correlation.    

		

Including	Physical	constraints	
The idea is to investigate the possibility of including physical constraints such as material balance directly into 
the neural networks models as for example an additional term in the objective function to minimize. Normally 
the training data will respect all the physical laws (unless there are major errors in this data), however the 
considered neural network model may not be able to reproduce exactly all the training data. In this case 
adding an additional term in the learning function could be useful to push the NN to honour more particulalry 
such constraints (the method used is similar to the well known technique of Lagrange multipliers). 
Another interesting approach should be to test this constraint in the forecasts obtained by the different 
possible neural networks models that will be generated and to use it as an additional criteria to perform model 
selection.  

	

Defining	real	experiments	to	improve	the	data-driven	model	forecasts	
In order to increase the reliability of the data-driven model some real experiments could be planned: such 
experiments should short in order to not affect considerably the reservoir production but should be long 
enough to let the statistical model learn the reservoir behavior. For example in order to train the model to 
learn the effect of changing the well controls several variations of such controls should be performed. This is 
not always the case in real reservoir as operators tends to not perform too many changes of well controls to 
avoid loosing production.     

	

Combining	data-driven	models	with	simplified	physics	driven	models		
The classical reservoir modeling workflow involves the construction of a very complex geological model of the 
subsurface where the petrophysical properties (permeabilities, porosities, …) are defined statistically (due to 
the lack of information) in every small region of the reservoir. More precisely a reservoir grid is built in which 
all the different properties are defined. This same grid discretization or an upscaled one is then used to solve 
the numerical equations of fluid flow in porous media. In order to represent the real heterogeneity of the 
reservoir typically millions of grid cells are used, therefore the simulation of the model to produce forecasts 
can be very long (several hours on large parallel computers).  



	

Moreover in order to fill the properties of each grid cell of the model very complex workflows are used 
combining different data sources at different scales (seismic, core samples and well logs) and involving many 
different domain experts (geologists, geophysicists, but also experts on fluids, geostatistics, geomechanics, 
…).  In this work we would like to investigate much more simple approaches to fill the physical model 
parameters based on pure data-driven approaches. To this end the resulting physical model should contain a 
number of macroscopic parameters not observable directly from the data but that could be derived by 
matching historical production data. One of the main challenges would then be to obtain the possible values 
of these parameters by assimilating production data but also other “static” information such as seismic data 
or well logs. This results in having to solve an inverse problem. Stochastic optimization techniques and 
machine learning methods could then be used to solve this problem. 
Such simplified data and physics driven models will be fast to run and could be used as such to guide the 
optimization of the reservoir by testing many different scenarios (changing the injection, the operating well 
pressures, but also shutting wells, converting producers into injectors or drilling new infill wells). Methods to 
combine such models with purely data-driven models as described above will be investigated with the 
objective of obtaining more reliable forecasts and a more robust production optimization. 
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