ESTIMATION SEMI-PARAMÉTRIQUE PAR MINIMISATION DE L'ENTROPIE DES RÉSIDUS

Éric Thierry & Luc Pronzato & Éric Wolsztynski Laboratoire I3S UMR Nice Sophia-Antipolis FRANCE

Séminaire CEA 13/12/2005

Quel est le problème ?

1 - Un problème d'estimation semi-paramétrique pour un modèle de régression, où l'on considère les observations

$$y_i = \eta(\bar{\theta}, x_i) + \varepsilon_i, \ i = 1, \dots, n$$

avec $\eta(.,.)$ connue et (ε_i) i.i.d., de densité $f \in \mathcal{P}$

- Modèle paramétrique: $\mathcal{P}_{(\theta,\nu)} = \{f(y \eta(\theta, x), \nu), \theta \in \Theta \mid \nu \in \Omega\}$ $dim(\Theta)$ et $dim(\Omega)$ finies. Efficacité asymptotique
- Modèle semi-paramétrique: $\mathcal{P}_{(\theta,f)} = \{f(y \eta(\theta, x)); \theta \in \Theta \text{ et } f \in \mathfrak{F}\}$ $dim(\Theta)$ finie mais $dim(\mathfrak{F})$ infinie. Perte d'efficacité mais pas toujours !

2 - Un problème de traitement d'image, où l'on considère 2 copies a et b bruitées et altérées d'une même image, à intensité lumineuse prêt - observations = le seul bloc rouge situé en $\overline{\theta}$ à l'intérieur de a

- on parcourt **b** par blocs; on considère leur différence avec le bloc pris dans **a**

Difficultés: nature du bruit inconnue, images altérées, intensités \neq

Estimation Paramétrique

Modèle statistique: $\mathcal{P} = \{f(e(\theta)), \theta \in \Theta\}$ $e(\theta) = y - \eta(\theta, x)$ et observations i.i.d

Log-vraisemblance: $l(\theta; \mathbf{y} = (y_1, \dots, y_n)) = \sum_{i=1}^n \log f_{\epsilon}(e_i(\theta))$ Maximum de vraisemblance $\widehat{\theta}_{MV} = \operatorname{argmax}_{\theta} l(\theta)$

Performances asymptotiques

Consistance asymptotique: $\widehat{\theta}_{MV} \xrightarrow{P} \overline{\overline{\theta}}$ Normalité asymptotique: $\sqrt{n}(\widehat{\theta}_{MV} - \overline{\overline{\theta}}) \rightsquigarrow \mathcal{N}(0, I^{-1}(\overline{\overline{\theta}}))$ Matrice d'information:

$$I(\vartheta) = E\left[\frac{\partial l(\vartheta, \mathbf{y})}{\partial \vartheta} \frac{\partial l(\vartheta, \mathbf{y})}{\partial \vartheta^t}\right]$$

Si $\vartheta = (\theta, \nu)$ avec θ paramètres d'intéret et ν paramètres de nuisance

$$I(\vartheta) = \begin{pmatrix} E[\frac{\partial l(\theta)}{\partial \theta} \frac{\partial l(\theta)}{\partial \theta^{t}}] & E[\frac{\partial l(\theta)}{\partial \theta} \frac{\partial l(\nu)}{\partial \nu^{t}}] \\ E[\frac{\partial l(\nu)}{\partial \nu} \frac{\partial l(\theta)}{\partial \theta^{t}}] & E[\frac{\partial l(\nu)}{\partial \nu} \frac{\partial l(\nu)}{\partial \nu^{t}}] \end{pmatrix}$$

Adaptativité

$$I^{-1}(\vartheta) = \begin{pmatrix} I^{11} & -I^{11}I_{12}I_{22}^{-1} \\ -I^{22}I_{21}I_{11}^{-1} & I^{22} \end{pmatrix}$$

avec

$$(I^{11})^{-1} = I_{11} - I_{12}I_{22}^{-1}I_{21} \quad (I^{22})^{-1} = I_{22} - I_{21}I_{11}^{-1}I_{12}$$

Si les paramètres de nuisance sont connus alors

 $V[\widehat{\theta}] = I_{11}^{-1}$

Si les paramètres de nuisance sont inconnus alors

$$V[\widehat{\theta}] = I^{11} = (I_{11} - I_{12}I_{22}^{-1}I_{21})^{-1}$$

Il y a adaptation si $I_{12} = 0$

Exemple Modèle Position/Echelle

Contexte paramétrique: $f(y; \theta) = \frac{1}{\sigma} f(\frac{y-\mu}{\sigma})$

Ici $\theta = \mu$, $\nu = \sigma$ et f(.) est connue.

Log-vraisemblance: $l(\vartheta) = -\ln(\sigma) + \ln(f(\frac{y-\mu}{\sigma}))$

Anti-diagonale de la matrice d'information:

$$\frac{\partial l(\vartheta)}{\partial \mu} = -\frac{1}{\sigma} \frac{f'(\frac{y-\mu}{\sigma})}{f(\frac{y-\mu}{\sigma})}$$
$$\frac{\partial l(\vartheta)}{\partial \sigma} = -\frac{1}{\sigma} - \frac{y-\mu}{\sigma^2} \frac{f'(\frac{y-\mu}{\sigma})}{f(\frac{y-\mu}{\sigma})}$$
$$I_{12}(\vartheta) = E[\frac{\partial l(\vartheta)}{\partial \mu} \frac{\partial l(\vartheta)}{\partial \sigma}] = \frac{1}{\sigma} \int u(\frac{f'(u)}{f(u)})^2 f(u) du$$

Si f(.) est symétrique alors $I_{12}(\vartheta) = 0$, il y a adaptation !

Régression semi-paramétrique

On considère les observations

$$y_i = \eta(\bar{\theta}, x_i) + \varepsilon_i, \ i = 1, \dots, n$$

- **9** (ε_i) i.i.d., de densité f inconnue symétrique
- X et $ε_i$ indépendantes (Prob $[X \in dx] = μ(dx)$)

Les résidus donnés par

$$e_i(\theta) = y_i - \eta(\theta, x_i)$$

sont i.i.d. de densité $f_e(u) = \int_{\mathcal{X}} f(u - \eta(\overline{\theta}, x) + \eta(\theta, x)) \mu(dx)$.

Critère du minimum d'entropie

1- Motivations

- En $\theta = \overline{\theta}$, $e_i(\overline{\theta}) \equiv \varepsilon_i$ et $f_e \equiv f$. La vraisemblance coïncide avec l'entropie de f:

$$\bar{H}_n(\bar{\theta}) = -\frac{1}{n}l(\bar{\theta}) = -\frac{1}{n}\sum_i \log f(\varepsilon_i) \quad \stackrel{LLN}{\longrightarrow} \quad H(f) = -\int f\log f$$

- $H(f_e)$ est une mesure de la dispersion de f_e
- PB : L'entropie est invariante par translation
- \Rightarrow on considère les résidus symétrisés $e^{s}(\theta) = [e_{i}(\theta), -e_{i}(\theta)]_{i=1}^{n}$

Propriétés du Critère du minimum d'entropie

Critère: $E_X[H(f_{e,X}^s)]$

 $f_{e,X}^s = 0.5(f(u - \eta(\bar{\theta}, X) + \eta(\theta, X)) + f(u + \eta(\bar{\theta}, X) - \eta(\theta, X)))$

Critère localement convexe, de dérivée nulle en $\theta=\bar{\theta}$

$$\nabla E_X[H(f_{e,X}^s)]|_{\theta=\bar{\theta}} = 0 \quad \nabla^2 E_X[H(f_{e,X}^s)]|_{\theta=\bar{\theta}} = I(\bar{\theta})$$

Critère $H(f_e^s)$

 $f_e^s = \int f_{e,X}^s(u) \mu(dx)$

Propriétés locales identiques.

- $H(f_e^s) \ge E_X[H(f_{e,X}^s)] \ge H(f)$

- Hyp: modele identifiable: $H(f_e^s) = H(f) \operatorname{ssi} \theta = \overline{\theta}$

Construction d'estimateurs de l'entropie

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.05

Estimateurs par substitution:

estimateur à noyaux \hat{f}_n^{θ} de f_e à partir des résidus symétrisés:

$$\hat{f}_n^{\theta}(x) = \frac{1}{2nh_n} \sum_{i=1}^n \left[K\left(\frac{x - e_i(\theta)}{h_n}\right) + K\left(\frac{x + e_i(\theta)}{h_n}\right) \right]$$

avec $h_n \to 0, \ nh_n \to \infty$ quand $n \to \infty$.

• Intégrale tronquée (avec $(A_n) \to \infty$ suffisamment lentement)

$$\hat{H}_n^1(\theta) = -\int_{-A_n}^{A_n} \hat{f}_n^{\theta}(x) \log \hat{f}_n^{\theta}(x) dx,$$

• Estimateur de Ahmad ($0 \le U_n(x) \le 1, U_n(x) \to 0$ suffisamment lentement)

$$\hat{H}_n^2(\theta) = -\frac{1}{n} \sum_{i=1}^n \log \hat{f}_n^\theta(e_i(\theta)) U_n(e_i(\theta))$$

Une approche efficace ET robuste ?

L'entropie suggère un critère d'estimation dont l'expression coïncide (localement) avec la vraisemblance, et qui semble être naturellement robuste aux données aberrantes, par sa propriété d'invariance par translation.

 $\hat{H}_n^1(\theta)$, f loi de Laplace modèle de position $\eta(\theta, x) = \theta$ 20 aberrations ajoutées à n = 100 observations régulières

CAS A) Répétitions en des points fixés x^1, \ldots, x^m $\xi^j = \text{masse en } x^j \Leftrightarrow n_j = n\xi^j \text{ observations en } x = x^j \text{ sur un total de } n$

- (i) Construire un estimateur à noyaux $\hat{f}^{j,\theta}$ en chaque x^j séparément, calculer les entropies correspondantes $H(\hat{f}^{j,\theta})$
- (ii) calculer pour $\hat{H}_n(\theta, x^j) = H(\hat{f}^{j,\theta}), \ j = 1, \dots, m$

$$\hat{\theta}^n = \arg\min_{\theta\in\Theta} \mathsf{E}_X\{\hat{H}_n(\theta, X)\}$$

Pb: ne peut s'étendre à des expériences + générales

CAS B) Général, pas de répétitions: ξ_n mesure empirique des X^j

Mélanger tous les résidus (symétrisés), estimer l'entropie $\hat{H}_n(\theta)$

Soit U = variable aléatoire, $\hat{f}^{j,\theta}$ sa distribution conditionnelle à X

$$E_{\xi_n} \{ \hat{H}_n(\theta, X) \} = \mathcal{H}(U|X)$$

= entropie conditionnelle de U à X donné
 $\leq \mathcal{H}(U) = \hat{H}_n(\theta)$

Adaptativité ?

 $H(f_e^s), \mathbb{E}_X\{H(f_{e,X}^s)\}, \hat{H}_n(\theta) \text{ et } \hat{H}_n(\theta | X),$

- $\eta(\theta, x) = \theta_1 \exp(-\theta_2 x), \, \overline{\theta} = (100, 2)^\top$
- 10 points (design) régulièrement répartis entre 1 et 2, masses $\xi^j = 1/10$
- $A_n = \infty, U_n(x) \equiv 1$
- $h_n \rightarrow$ méthode des double noyaux [Berlinet, Devroye, 1994] (à partir des résidus obtenus par un *M*-estimateur robuste)

 \rightarrow trace et det. de la matrice de cov. empirique \hat{C}_n de $\sqrt{n}(\hat{\theta} - \bar{\theta})$ (100 répétitions, n = 100 observations)

$$n = 100, (10^{-3} \operatorname{trace}(\hat{C}_n), 10^{-2} \operatorname{det}(\hat{C}_n))$$

f	$\mathcal{N}(0,1)$	\exp	t_3
optimum ($\hat{C}_n = \mathbf{M}_F^{-1}$)	(6.2, 0.8)	(3.1, 0.2)	(3.1, 0.2)
LS	(8.8, 1.2)	(13.6, 3.6)	(9.1, 2.0)
ME	(9.2, 1.25)	(3.8, 0.4)	(4.9, 0.4)

$$q$$
 aberrations ajoutées aux $n=100$ observations régulières,
$$q\sim \mathcal{N}(10,4)$$
$$(10^{-3}\mathrm{trace}(\hat{C}_n), 10^{-2}\det(\hat{C}_n)), f=\exp$$

q	20	40	60	80
LS	(84.25, 42.8)	(146.25, 67.0)	(184.45, 58.2)	(208.7, 58.5)
MHD	(4.25, 0.9)	(12.7, 2.25)	(23.4, 4.5)	(56.95, 19.8)
ME_1	(4.0, 0.5)	(9.8, 1.7)	(6.0, 0.9)	(6.7, 13.6)
ME_2	(3.95, 0.5)	(8.4, 1.7)	(5.5, 0.9)	(10.9, 39.7)

ME₁ = estimateur type ShannonME₂ = estimateur type Ahmad (empirique)

Propriétés asymptotiques

Modèle de position

 $Y_i = \overline{\theta} + \varepsilon_i$, f symétrique en 0

Problème avec adaptation [Bickel,82]

Régression non-linéaire

 $Y_i = \overline{\beta} + \eta(\overline{\theta}, X_i) + \varepsilon_i$, f symétrique en 0

Problème avec adaptation [Manski,84]

Résultats pour le modèle de position

• Adaptativité d'une approche en 2 étapes:

Séparation des données

$$\begin{array}{ll} (Y_1, \dots, Y_m) & \Rightarrow & \hat{\theta}_1^m & \Rightarrow & e_i(\hat{\theta}_1^m) \text{ and } \hat{f}_m \\ (Y_{m+1}, \dots, Y_n) & \Rightarrow & \hat{H}_n(\theta) = -\frac{1}{n-m} \sum_{i=m+1}^n \log \hat{f}_m(e_i(\theta)) \end{array}$$

Un pas de Newton-Raphson
$$\hat{\theta}^n = \hat{\theta}_1^n - \left[M_n(\hat{\theta}_1^n)\right]^{-1} \nabla \hat{H}_n(\hat{\theta}_1^n)$$

avec
$$\begin{cases} \rho_m = (\hat{f}_m)' / \hat{f}_m U_n(u) \\ M_n(\theta) \text{ approximation de } \nabla^2 \hat{H}_n(\theta) \\ \nabla \hat{H}_n(\hat{\theta}_1^n) = -\frac{1}{n-m} \sum_{i=m+1}^n \rho_m(e_i(\theta)) \nabla \eta(\theta, x_i) \end{cases}$$

Si
$$h_m \to 0$$
, $a_m \to \infty$, $b_m \to 0$, $c_m \to \infty$, et $m^{-1}a_m h_m^{-3} \to 0$, $h_m c_m \to 0$,
 $m \to \infty$, $m/n \to 0$ alors Adaptation [Bickel,82]

• Propriétés asymptotiques d'une approche directe:

ł

$$\begin{split} \hat{\theta}^n &= \arg\min_{\theta\in\Theta} -\frac{1}{n}\sum_{i=1}^n \log\hat{f}^{\theta}_{n,i}(e_i(\theta))U_n(e_i(\theta)) \\ \hat{f}^{\theta}_{n,i}(x) &= \frac{1}{2(n-1)h_n}\sum_{j=1,\,j\neq i} \left[K\left(\frac{x-e_j(\theta)}{h_n}\right) + K\left(\frac{x+e_j(\theta)}{h_n}\right) \right] \\ a) \hat{H}_n(\theta) \stackrel{\theta,p}{\rightsquigarrow} H(\theta), \text{ avec } H(\bar{\theta}) < H(\theta) \forall \theta \neq \bar{\theta} \Rightarrow \hat{\theta}^n \stackrel{p}{\to} \bar{\theta} \\ b) \nabla^2 \hat{H}_n(\theta) \stackrel{\theta,p}{\rightsquigarrow} \nabla^2 H(\theta) \Rightarrow \nabla^2 \hat{H}_n(\hat{\theta}^n) \stackrel{p}{\to} \mathbf{M}_2 = \nabla^2 H(\bar{\theta}) \succ 0 \\ c) \text{ si } \sqrt{n} \nabla \hat{H}_n(\bar{\theta}) \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, \mathbf{M}_1), \text{ alors } \sqrt{n}(\hat{\theta}^n - \bar{\theta}) \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, \mathbf{M}_2^{-1}\mathbf{M}_1\mathbf{M}_2^{-1}). \\ \Rightarrow \text{ Si } [\mathbf{M}_2^{-1}\mathbf{M}_1\mathbf{M}_2^{-1} = \text{ inverse de la matrice d'info de Fisher] alors adaptativité ! \end{split}$$

Densités multivariées

- Problème des méthodes à noyaux en dimension supérieure:
 fléau de la dimension \Rightarrow sélection du lissage h difficile (dim d > 3)
- Pas de lissage optimal pour des noyaux variables, calculs lourds car répétés (ou alternatives contraignantes).

Une alternative: la méthode des k^e plus proches voisins (kPPV)

- Noyaux (variables) uniformes multidimensionnels approche robuste
- **Pas de fonction de lissage** h
- Toutes dimensions
- Discontinuités de gradient du critère → problèmes de recherche exhaustive ($\theta \in ensemble fini$), e.g. traitement d'images

[Goria, Leonenko, Mergel, Novi Inverardi, 2005]

L'estimateur par kPPV minimise (données de dimension d):

$$H_{k,n}(\theta) = d\log \bar{\rho}_k(\theta) + \log (n-1) - \psi(k) + \log c_1(d)$$

- $\bar{\rho}_k(\theta) = \left(\prod_{i=1}^n \rho_{i,k}(\theta)\right)^{1/n}$
- $\psi(k) = \Gamma'(k) / \Gamma(k)$ fonction digamma
- $c_1(d) = 2\Pi^{d/2}/(d\Gamma(d/2))$ vol. boule unité de \mathbb{R}^d
- $k/n \to 0$, et $k \to \infty$, $n \to \infty$ (ex $k = \sqrt{n}$)

Remarque: correspond à un estimateur de l'entropie par substitution

$$\tilde{H}_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log\left(\frac{k}{n \left(\rho_k(x)\right)^d c_1(d)}\right) + b(n,k)$$

(estimateur de densité par kPPV converge p.s.)

Application en traitement d'images

- 2 copies **a** et **b** bruitées et altérées d'une même image, d'intensités lumineuses \neq
- observations = le seul bloc rouge (optimal) pris à l'intérieur de **a**
- $\bar{\theta} \Leftrightarrow$ coordonnées de ce bloc dans l'image **a**
- on parcourt **b** par blocs; on considère leur différence avec le bloc pris dans **a**

Difficultés: nature du bruit inconnue, images altérées par endroits, intensités \neq

Intérêts de l'entropie:

- entropie minimale \iff taux de compression maximal
- entropie invariante et \neq intensités lumineuses \implies **pas de symétrisation**

Exemple 1: image N&B ($dim(e_i) = 1$)

- $\varepsilon \sim \mathcal{N}(0, 10)$
- différence d'intensités $I_1 I_2 = 10$
- blocs 15×15 , 2×6 aberrations (5.33%)

	$\overline{\overline{\theta}}$	MEs	kPPV	Hellinger	MVA	MC
sym	80	81.11	80.00	74.64	82.15	86.29
	70	64.98	69.99	84.48	64.45	65.87
non sym	80	80.04	80.01	74.09	81.89	86.34
	70	71.47	70.09	86.00	64.43	65.84

moyennes des estimées sur 100 répétitions

Exemple 2: image couleur $(dim(e_i) = 3)$

- $\varepsilon \sim \mathcal{N}(0, 10)$
- différence d'intensités $I_1 I_2 = 40$
- blocs 32×32 , $2 \times 9 + 7 \times 2$ aberrations (3.1%)

Critères vs θ (image couleur, bruit gaussien $\mathcal{N}(0, 10)$ avec aberrations)

Exemple 3: couleur, ajout de bruit *poivre et sel* sur l'exemple 2 (valeurs de pixels ← max ou min, pixels aberrants uniformément répartis).

Estimées pour 1 expérience				
$ar{ heta}$	MC	kPPV	MEs	
140	152	140	140	
170	161	170	170	

Bruit poivre et sel sur bruit gaussien, couleur

Exemple 4: bruit non-symétrique lognormal, var. $10, \neq d$ 'intensités $I_1 - I_2 = 10$

• Image **N&B**

woychnes des estimees sur 100 repetitions						
	$ar{ heta}$	MEs	kPPV	Hellinger	M-estim.	MC
non sym	80	80.54	80.01	74.88	81.61	85.86
	70	71.36	70.27	85.73	64.33	65.83

Moyennes des estimées sur 100 répétitions

• Image couleur

Estimées pour 1 expérience					
$ar{ heta}$	MC	kPPV	MEs		
140	152	140	140		
170	167	170	170		

Perspectives

- Applications pratiques en image (compression vidéo, recalibration, ...): premiers résultats encourageants en compression vidéo
- Applications en traitement du signal en dim supérieure, modèles AR, ...
- Etude des propriétés d'alternatives à l'estimateur par substitution (dont kNN)
- Le MV coïncide avec la divergence de Kullback-Leibler KL(f, f_e^θ), dont on tire l'entropie de Shannon.
 D'autres divergences permettent-elles l'utilisation d'autres formes d'entropies (ex Renyi) ?

Quelques références

[BeirlantDGM97] J. Beirlant, E.J. Dudewicz, L. Györfi, and E.C. van der Meulen, *Nonparametric entropy estimation; an overview*, Intern. J. Math. Stat. Sci., 6(1), p.17–39, 1997.

[BerlinetD94] A. Berlinet and L. Devroye, *A comparison of kernel density estimates*, Publications de l'institut de statistique de l'Université de Paris, 38, p.3-59, 1994.

[Bickel82] P.J. Bickel, On adaptive estimation, Annals of Statistics, 10, p.647–671, 1982.

[GoriaLMNI05] M.N. Goria, N.N. Leonenko, V.V. Mergel and P.L. Novi Inverardi, *A new class of random vector entropy estimators and its applications in testing statistical hypotheses*, Journal of Nonparametric Statistics, 2005.

[Manski84] C. Manski, *Adaptive estimation of nonlinear regression models*, Econometric Reviews, 3(2), p.145-194, 1984.

[Scott92] D.W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, 1992.

[WTP05] E. Wolsztynski, E. Thierry, and L. Pronzato, *Minimum-entropy estimation in semiparametric models*, Signal Processing, Special Issue on Information Theoretic Signal Processing, 2005.