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La navigation autonome des drones constitue un enjeu majeur pour des applications variées, allant de 
l’inspection d’infrastructures à la logistique, la surveillance environnementale ou encore les opérations en 
zones contestées. La fiabilité de ces missions dépend directement de la qualité des algorithmes de 
navigation embarqués, capables de fusionner en temps réel des données issues de capteurs hétérogènes 
[3]. 
 
Pour des missions de courte durée, une navigation inertielle peut suffire. En revanche, sur des durées 
longues, il devient indispensable d’intégrer des mesures de recalage et d’utiliser des algorithmes de fusion 
de données robustes. Traditionnellement, cette fusion repose sur le filtre de Kalman étendu (EKF) [3,10], 
adapté aux systèmes faiblement non linéaires et aux incertitudes gaussiennes. Cependant, ses 
performances se dégradent lorsque les modèles présentent de fortes non-linéarités, ou lorsque les 
incertitudes sont non gaussiennes voire multimodales. 
 
Le filtrage particulaire, formalisé dans les années 90 [1,2,11], constitue une alternative intéressante. En 
s’appuyant sur des méthodes de Monte-Carlo séquentielles, il permet de traiter des distributions arbitraires 
sans hypothèses restrictives. Toutefois, on observe en pratique des divergences du filtre particulaire dues 
aux approximations Monte-Carlo successives (surtout lorsqu’il y a incohérence entre la densité prédite et la 
vraisemblance) aussi bien dans l’évaluation des intégrales que dans l’étape de ré-échantillonnage [2]. 
 
C’est dans ce contexte que les espaces de Hilbert à noyau reproduisant (RKHS) apportent une nouvelle 
perspective [4–8]. En représentant les distributions de probabilité sous forme de vecteurs (généralement 
de dimension infinie) dans un espace de Hilbert (kernel mean embeddings), ils permettent de réaliser les 
mises à jour bayésiennes par de simples opérations linéaires, ce qui offre une formulation plus contrôlée 
que les approches particulaires classiques [4], une représentation précise des incertitudes [5] et des 
garanties théoriques de consistance et de convergence des estimateurs [6-8]. Par ailleurs, le formalisme 
RKHS permet de contourner le fléau de la dimension : alors que la précision des méthodes particulaires 
classiques se dégrade rapidement et que le coût de calcul croît fortement avec la dimension de l’espace 
d’état, l’estimation des embeddings en RKHS bénéficie de bornes d’erreur uniformes et indépendantes de 
la dimension [9,12,13]. Il devient ainsi possible d’obtenir des performances stables, même dans des 
espaces d’état de grande dimension, à condition que le noyau choisi capture adéquatement la géométrie 
intrinsèque des données. 
 
Ces avancées récentes ouvrent la voie à une nouvelle génération de filtres particulaires exploitant la 
puissance du formalisme RKHS pour la navigation robuste de drones. 
 
Objectifs de la thèse 
 
La thèse visera à développer un nouveau cadre de filtrage particulaire basé sur les RKHS, combinant la 
robustesse des méthodes de Monte-Carlo face aux erreurs de modèles avec les garanties de convergence 
théoriques offertes par le formalisme RKHS. 
 
Les principaux objectifs seront : 
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- Étudier et développer de nouveaux filtres particulaires dans les espaces de Hilbert à noyau reproduisant 
(RKHS) ; 
- Analyse théorique : établir des résultats de consistance, de stabilité et des bornes d’erreur, en exploitant 
les outils de la Maximum Mean Discrepancy (MMD), de la théorie des noyaux caractéristiques, et en 
étudiant l’impact du choix du noyau sur le fléau de la dimension ; 
- Évaluation numérique : comparer les performances du filtre particulaire RKHS à celles d’un filtre 
particulaire classique, sur des scénarios représentatifs de navigation de drones (missions longues, pertes 
GNSS, recalage multimodal). 
- Implémentation embarquée et temps réel : étudier les compromis entre précision et coût de calcul à l’aide 
de méthodes d’approximation modernes, telles que l’inférence variationnelle (mean-field et ses variantes 
[14]), les approximations low-rank issues des méthodes parcimonieuses pour GPs [15] et approximation de 
Nyström [16], ou encore les approches plus récentes de type Stein Variational Gradient Descent (SVGD) 
[17]. 
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