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La navigation autonome des drones constitue un enjeu majeur pour des applications variées, allant de
l'inspection d'infrastructures a la logistique, la surveillance environnementale ou encore les opérations en
zones contestées. La fiabilité de ces missions dépend directement de la qualité des algorithmes de
navigation embarqués, capables de fusionner en temps réel des données issues de capteurs hétérogenes
[3].

Pour des missions de courte durée, une navigation inertielle peut suffire. En revanche, sur des durées
longues, il devient indispensable d’intégrer des mesures de recalage et d’utiliser des algorithmes de fusion
de données robustes. Traditionnellement, cette fusion repose sur le filtre de Kalman étendu (EKF) [3,10],
adapté aux systémes faiblement non linéaires et aux incertitudes gaussiennes. Cependant, ses
performances se dégradent lorsque les modéles présentent de fortes non-linéarités, ou lorsque les
incertitudes sont non gaussiennes voire multimodales.

Le filtrage particulaire, formalisé dans les années 90 [1,2,11], constitue une alternative intéressante. En
s’appuyant sur des méthodes de Monte-Carlo séquentielles, il permet de traiter des distributions arbitraires
sans hypothéses restrictives. Toutefois, on observe en pratique des divergences du filtre particulaire dues
aux approximations Monte-Carlo successives (surtout lorsqu’il y a incohérence entre la densité prédite et la
vraisemblance) aussi bien dans I'’évaluation des intégrales que dans I'étape de ré-échantillonnage [2].

C’est dans ce contexte que les espaces de Hilbert a noyau reproduisant (RKHS) apportent une nouvelle
perspective [4-8]. En représentant les distributions de probabilité sous forme de vecteurs (généralement
de dimension infinie) dans un espace de Hilbert (kernel mean embeddings), ils permettent de réaliser les
mises a jour bayésiennes par de simples opérations linéaires, ce qui offre une formulation plus contrélée
que les approches particulaires classiques [4], une représentation précise des incertitudes [5] et des
garanties théoriques de consistance et de convergence des estimateurs [6-8]. Par ailleurs, le formalisme
RKHS permet de contourner le fléau de la dimension : alors que la précision des méthodes particulaires
classiques se dégrade rapidement et que le colt de calcul croit fortement avec la dimension de I'espace
d’état, 'estimation des embeddings en RKHS bénéficie de bornes d’erreur uniformes et indépendantes de
la dimension [9,12,13]. Il devient ainsi possible d’obtenir des performances stables, méme dans des
espaces d’état de grande dimension, a condition que le noyau choisi capture adéquatement la géométrie
intrinséque des données.

Ces avancées récentes ouvrent la voie a une nouvelle génération de filtres particulaires exploitant la
puissance du formalisme RKHS pour la navigation robuste de drones.

Objectifs de la thése
La thése visera a développer un nouveau cadre de filtrage particulaire basé sur les RKHS, combinant la

robustesse des méthodes de Monte-Carlo face aux erreurs de modéles avec les garanties de convergence
théoriques offertes par le formalisme RKHS.

Les principaux objectifs seront :
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- Etudier et développer de nouveaux filtres particulaires dans les espaces de Hilbert & noyau reproduisant
(RKHS) ;

- Analyse théorique : établir des résultats de consistance, de stabilité et des bornes d’erreur, en exploitant
les outils de la Maximum Mean Discrepancy (MMD), de la théorie des noyaux caractéristiques, et en
étudiant 'impact du choix du noyau sur le fléau de la dimension ;

- Evaluation numérique : comparer les performances du filtre particulaire RKHS & celles d'un filtre
particulaire classique, sur des scénarios représentatifs de navigation de drones (missions longues, pertes
GNSS, recalage multimodal).

- Implémentation embarquée et temps réel : étudier les compromis entre précision et colt de calcul a 'aide
de méthodes d’approximation modernes, telles que I'inférence variationnelle (mean-field et ses variantes
[14]), les approximations low-rank issues des méthodes parcimonieuses pour GPs [15] et approximation de
Nystrém [16], ou encore les approches plus récentes de type Stein Variational Gradient Descent (SVGD)
[17].
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