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RÉSUMÉ FRANÇAIS

Présentation générale et calibration de modèles

De nombreux phénomènes naturels sont modélisés afin de mieux connaître leurs
comportements et de pouvoir les prévoir. Cependant, lors du processus de modélisation,
de nombreuses sources d’erreurs sont introduites. Elles proviennent par exemple des
paramétrisations qui rendent compte des phénomènes sous-mailles, ou bien de l’ignorance
des conditions environnementales réelles dans lesquelles le phénomène est observé.

De manière plus formelle, on peut distinguer grossièrement deux types d’incertitudes
dans ces modèles, comme évoqué dans Walker et al. (2003).

• les incertitudes dites épistémiques, qui proviennent d’un manque de connaissance
sur des caractéristiques du phénomène étudié, mais qui pourraient être réduites

• les incertitudes dites aléatoires, qui proviennent directement de la variabilité intrin-
sèque du phénomène étudié.

Dans le cadre de cette thèse, les incertitudes épistémiques prennent la forme de la
méconnaissance de la valeur d’un paramètre θ ∈ Θ, que l’on va chercher à calibrer. Un
exemple de ce genre de problèmes est l’estimation de la friction dans les modèles d’océan
qui va donc nous servir de cas d’application. En effet, la friction de fond est dûe à
la rugosité du plancher océanique, provoquant de la dissipation d’énergie à cause des
turbulences engendrées. L’estimation de la friction de fond est un problème à forts enjeux,
notamment dans les régions côtières, du fait de son influence sur les courants et de son
interaction avec la marée (Sinha and Pingree, 1997; Boutet, 2015).

Cette estimation peut être traitée dans un cadre d’assimilation de données avec des
méthodes variationelles comme dans Das and Lardner (1991, 1992) sur un cas simplifié, ou
dans un cas plus réaliste dans Boutet (2015), avec une méthode de gradient stochastique,
permettant de se passer du calcul exact du gradient.

Les incertitudes aléatoires, quant à elles, représentent des conditions environnemen-
tales, comme le forçage d’un modèle ou les conditions aux bords. Ces conditions ne
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Résumé

sont pas directement contrôlées par le modèle, donc l’on subit leurs fluctuations, ou leur
imprécision. Ces variables environnementales vont être modélisées à l’aide d’une variable
aléatoire U , de réalisation notée u ∈ U.

Comme le modèle que l’on cherche à calibrer vise à représenter la réalité, il est
souhaitable que les prédictions du modèle soient le plus proche possible des observations
dont on dispose. Cette notion est retranscrite en définissant une fonction J , dite fonction
coût ou fonction objectif qui mesure l’écart entre la sortie du modèle et les observations
disponibles. Cette fonction prendra donc en entrée le paramètre à estimer θ, que l’on
nommera paramètre de contrôle, ainsi que u, le paramètre environnemental:

J : Θ× U → R+

(θ, u) 7→ J(θ, u)

La définition de la fonction coût dans un problème de calibration sera abordé dans
le Chapitre 1, en lien notamment avec l’inférence fréquentiste et Bayésienne.

Notions de robustesse

Ne pas prendre en compte les incertitudes aléatoires dans l’estimation de θ peut
amener à compenser de manière artificielle certains aspects physiques dûs à la variable
environnementale, et donc amener à un comportement analogue au sur-apprentissage
(overfitting), ou optimisation localisée (terme introduit dans Huyse et al. (2002)): des
situations où le paramètre estimé n’est optimal que pour la valeur de u supposée, et pour
une autre réalisation de la variable aléatoire sous-jacente, le modèle ainsi calibré donne
des prédictions potentiellement aberrantes (Kuczera et al., 2010).

On cherche donc à définir une valeur de θ, notée θ̂ de manière à ce que J(θ̂, u) reste
acceptable lorsque l’on prend en compte la variabilité intrinsèque de u. Comme U est
une variable aléatoire, pour un θ donné, la fonction coût peut être elle aussi vue comme
une variable aléatoire: J(θ, U), que l’on va chercher à “minimiser” dans un sens qui reste
à définir. Cette problématique porte différents noms, comme “optimisation robuste”, où
cette robustesse doit être comprise comme l’insensibilité aux variations de U , “optimisation
sous incertitudes” (Optimisation under Uncertainty ou OUU ), ou encore “optimisation
stochastique”, selon la configuration du problème. Une nomenclature prenant en compte
les différences, notamment sur les contraintes potentiellement présentes, peut être trouvé
dans Lelièvre et al. (2016)

L’objectif de la thèse est donc de proposer différents critères de robustesse, et
d’appliquer des méthodes adaptées permettant d’estimer un paramètre en présence
d’incertitudes. Cette estimation se réalise dans un premier temps dans des cas simples
(fonctions analytiques, problèmes simplifiés de faibles dimensions), puis sur des problèmes
plus complexes d’estimation de la friction de fond océanique.

Critères basés sur le regret additif et relatif

Dans le Chapitre 2, nous abordons le problème de calibration en présence d’incertitudes.
Un certain nombre des méthodes d’optimisation sous incertitude se basent sur la minimi-

iv



Résumé

sation des moments de la variable aléatoire J(·, U) comme dans Lehman et al. (2004);
Janusevskis and Le Riche (2010), ou les incorporent dans un problème d’optimisation
multiobjectif (Baudoui, 2012; Ribaud, 2018).

Dans le cadre de cette thèse, nous proposons une approche basée sur le regret, qui
consiste à comparer les valeurs de la fonction J avec le minimum conditionnel, qui est le
minimum de la fonction J(·, u), où u est une réalisation de la variable aléatoire U . Le
minimum conditionnel est donc défini par

J∗(u) = min
θ∈Θ

J(θ, u)

et le minimiseur conditionnel associé est

θ∗(u) = arg min
θ∈Θ

J(θ, u)

Ceci nous permet de définir différentes notions de regret: le regret additif J − J∗
et étant donné la stricte positivité de J , le regret relatif J/J∗. Ceci nous permet
d’introduire une notion d’acceptabilité, à entendre dans le sens d’écart par rapport au
minimum conditionnel.

Pour un u ∈ U donné, θ ∈ Θ est dit β-acceptable si J(θ, u) ≤ J∗(u) + β, pour
β ≥ 0. La notion de β-acceptabilité est donc associée au regret additif: J(θ, u)− J∗(u).
Similairement, on définit la notion de α-acceptabilité: θ est dit α-acceptable si J(θ, u) ≤
αJ∗(u), pour α > 1. Dans la suite, sous nous intéresserons plus particulièrement au
regret relatif, qui permet de mieux prendre en compte les variations de magnitude de la
fonction objectif, mais les définitions suivantes peuvent être adaptée au regret additif.

En prenant en compte le caractère aléatoire de U , nous pouvons donc étudier la
probabilité pour un point θ, d’être α-acceptable:

Γα(θ) = PU [J(θ, U) ≤ αJ∗(U)]

Cette probabilité peut ensuite être optimisée, pour donner

θRR,α = arg max
θ∈Θ

Γα(θ)

L’optimum atteint est donc la probabilité maximale avec laquelle le regret-relatif est
borné par α.

Si, au lieu de choisir un seuil α pour la minimisation, nous cherchons plutôt à atteindre
une certaine probabilité d’acceptabilité p, nous pouvons définir la fonction quantile du
regret relatif comme

qp(θ) = QU

(
J(θ, U)

J∗(U)
; p

)

où QU (·; p) est la fonction quantile à l’ordre p de la variable aléatoire en argument. qp(θ)
représente donc la valeur qui borne le regret au point θ avec une probabilité donnée p.
Ce quantile peut aussi être minimisé, donnant

θRR,αp = arg min
θ∈Θ

qp(θ)
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et le minimum atteint est par conséquent αp, qui vérifie Γαp(θRR,αp) = p.

D’après ces deux formulations nous pouvons donc soit chercher à maximiser la
probabilité Γα pour α > 1 bien choisi, soit chercher à minimiser le quantile qp, au niveau
de confiance p.

Ces critères dépendent donc d’un paramètre additionel, α, ou p selon la formulation
choisie, qui va permettre d’ajuster le caractère conservatif de la solution. En effet, choisir
une grande valeur de α (ou p très proche de 1) permet de se prévenir des hautes déviations
de la fonction objectif avec un grande probabilité. Si à l’inverse, α est choisi plus faible,
on favorisera les solutions qui donnent des valeurs de la fonction objectif proches du
minimum atteignable, mais potentiellement avec une probabilité plus faible. Ce travail a
mené à la publication de Trappler et al. (2020).

Optimisation robuste et processus Gaussiens

D’un point de vue pratique, ces notions de minimiseur conditionnel et de minimum
conditionnel peuvent s’avérer difficiles et coûteuses à calculer, car nécessitant une procé-
dure d’optimisation. De plus, la connaissance de la fonction objectif doit être suffisante
afin de calculer assez précisemment les quantités Γα et qp. Dans le Chapitre 3, nous
proposons d’utiliser des processus Gaussiens (GP), afin de créer un modèle de substitution,
bien moins coûteux à évaluer, permettant de se passer d’une connaissance exhaustive de
la fonction J .

Soit Z le GP construit avec un plan d’expérience X = {(θi, ui), J(θi, ui)}1≤i≤n,
comprenant donc n points. Le métamodèle associé à Z et construit d’après X sera noté
mZ : Θ × U → R, et utilisé en lieu et en place de J pour estimer Γα ou qp, dans une
approche dite plug-in.

Les propriétés des GP nous permettrons aussi d’établir des stratégies d’enrichissement.
En effet, des méthodes existantes dites adaptatives permettent d’améliorer l’estimation de
diverses quantités, comme la probabilité de défaillance (Razaaly, 2019; Moustapha et al.,
2016; Bect et al., 2012), ou les minimiseurs et minimums conditionnels dans Ginsbourger
et al. (2014). Ces méthodes, parfois appelées méthodes SUR (Stepwise Uncertainty
Reduction, réduction d’incertitude séquentielle) sont basées sur la définition d’un critère
κ qui va ensuite être optimisé, et dont le maximiseur va ensuite être évalué par la fonction
(supposée coûteuse) J :

(θn+1, un+1) = arg max
(θ,u)∈Θ×U

κ ((θ, u);Z)

puis le plan d’expérience est enrichi avec ce nouveau point et son évaluation:

Xn+1 = Xn ∪ {(θn+1, un+1), J(θn+1, un+1)}

et enfin, Z est mis à jour avec le nouveau plan d’expérience Xn+1. Ce critère va donc
représenter une mesure de l’incertitude sur l’estimation, que l’on va chercher à réduire.
Nous allons ainsi proposer plusieurs méthodes permettant d’améliorer l’estimation de Γα
ou de qp. Nous proposons aussi des méthodes basées sur l’échantillonage d’une variable
aléatoire à support dans Θ× U, dont les échantillons sont des points à forte incertitudes
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par rapport à l’objectif final, comme dans Echard et al. (2011); Razaaly (2019). Après
une procédure de réduction statistique, comme le partitionnement (ou clustering en
anglais), on peut donc évaluer et ajouter au plan d’expérience un lot de points, et ainsi
tirer parti du parallélisme quand une telle architecture est disponible.

Ceci sera fait en définissant notamment Z∗(u) = Z(θ∗(u), u), et

∆α,β(θ, u) = Z(θ, u)− αZ∗(u)− β

et
Ξ(θ, u) = log

(
Z(θ, u)

Z∗(u)

)

qui sont deux processus stochastiques dont les distributions, exactes sinon approchées,
pourront être déduites à partir de la loi de Z. Nous pourrons donc établir des stratégies
d’enrichissement de plans d’expériences par rapport à ces deux processus.

Application au code de calcul CROCO

Dans le Chapitre 4, nous nous intéressons à la calibration robuste d’un modèle réaliste
d’océan, basé sur le code de calcul CROCO. Les incertitudes introduites dans ce cadre
portent sur l’amplitude de différentes composantes de marée.

Comme mentionné plus tôt, nous cherchons à estimer un paramètre régissant la friction
de fond. Cette étude sera effectuée dans un cadre d’expériences jumelles, c’est-à-dire que
les observations seront obtenues grâce au code de calcul.

Nous effectuerons tout d’abord une optimisation de la fonction objectif, sans intro-
duire d’incertitudes. Ensuite, dans le but de réduire la dimension du problème, nous
segmenterons le domaine océanique étudié selon le type de sédiments qui se trouve au
fond. Afin de quantifier l’influence de chacune des régions délimitées par la classe de
sédiments, une analyse de sensibilité globale sera effectuée, afin de calculer les indices de
Sobol’ correspondants (Sobol, 2001; Iooss, 2011). Une étude similaire sera menée pour
les différentes composantes du paramètre représentant les incertitudes u. Enfin, une fois
la dimension du problème de calibration réduite significativement, nous appliquerons
des méthodes présentées au chapitre précédent, afin d’estimer de manière robuste le
paramètre de friction de fond dans ce problème académique.

* * *
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INTRODUCTION

To understand and to be able to forecast natural phenomena is crucial for many
applications with high social, environmental and economic stakes. In earth sciences
especially, the modelling of the ocean and the atmosphere is important for day to day
weather forecasts, hurricanes tracking, or pollutant dispersion for instance.

Those natural phenomena are then modelled mathematically, usually by representing
the physical reality with some general equations (Navier-Stokes equations in Compu-
tational Fluid Dynamics typically), and by making successive reasonable assumptions,
simplifications and discretisations in order to be able to implement appropriate solvers.

Models are then only a partial representation of the reality, which aim at representing
complex processes that occur across a large range of scales, scales that interact with each
other. By essence, no modelling system would be able to take all of those into account
but instead, their effects are incorporated in the modelling by overly simplifying them
and by parametrizing them.

In ocean modelling, and especially in coastal regions, a telling example of this is the
parametrization of the bottom friction. This phenomenon occurs as the asperities of
the ocean bed dissipates energy through turbulences, and thus affects the circulation at
the surface. Since this happens at a subgrid level, i.e. at a scale usually several order
of magnitudes below the scale of the domain after discretization, modelling all those
turbulences is completely unfeasible in practice: the knowledge of the ocean bed is too
limited for such applications and the computational power required would be unthinkable.
Instead, the effect of the bottom friction is accounted for through parametrization, so
by introducing a new parameter which is defined at every point of the mesh. This
parametrisation, or more precisely, the estimation of this parameter will motivate the
work carried in this thesis.

As this modelling is supposed to represent the reality, the prediction should be
compared with some data acquired through observations. This comparison usually takes
the form of the definition of a misfit function J that measures the error between the
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forecast and the observations. This objective function is then minimised with respect to
some chosen parameters θ (Das and Lardner, 1991, 1992; Boutet, 2015) in order to get a
calibrated model. Those parameters will be called the control parameters.

However, the parameters introduced are not the only source of errors in the modelling.
For such complex systems, some additional inputs are subject to unrepresented statistical
fluctuations (Zanna, 2011), manifesting themselves at the boundary conditions, or in
the forcing of the model for instance. Such intrinsic uncertainties are often subject
to variability, and neglecting this can lead to further errors (McWilliams, 2007), or
aberrant predictions (Kuczera et al., 2010). We chose to model this additional source
of uncontrollable uncertainty with a random variable U . Because of this, the objective
function is then a function which takes two arguments: the parameter to calibrate θ, and
some other parameter u, which can be thought as a realisation of the random variable U ,
that we shall call environmental parameter.

Due to the presence of this random source of uncertainty, we wish to calibrate the
model, i.e. to select a value of the control parameter θ, in a manner that guarantees that
the model represents accurately enough the reality, despite the random nature of the
value of the environmental parameter. In other words, as the objective function measures
in some sense the quality of the calibration, we wish that this function exhibits acceptable
values as often as possible, when θ is fixed. This defines intuitively the underlying notion
of robustness with respect to the variability of the uncertain variable.

In this thesis, we will study an aspect of the calibration of a numerical model under
uncertainty, by discussing the notions of robustness, and by proposing a new family of
criteria. Specific methods will also be introduced, and applied to the calibration of a
numerical model of the ocean. The thesis is organised as follows:

• in Chapter 1, we introduce notions of statistics and probabilities that we will use
to define the calibration problem. More specifically, the statistical and Bayesian
inference problems will be broached, as well as some aspects of nested model
selection using the likelihood ratio test. The link between probabilistic formulations
of the inference problem, and variational approach based on the optimisation of a
specified objective function will be emphasized.

• in Chapter 2, we are going to discuss some of the notions of robustness that can
be found in the literature, either from a probabilistic inference aspect, or throught
the prism of optimisation under uncertainties. Most existing methods rely on the
optimisation of the moments of θ 7→ J(θ, U) (in Lehman et al. (2004); Janusevskis
and Le Riche (2010)), while other methods are based on multiobjective problems,
such as in Baudoui (2012); Ribaud (2018).

We propose a new family of criteria, which are based on the comparison between
the objective function at a couple (θ, u) and its optimal value given the same
environmental variable. This notion of regret, either relative or additive, is then
optimised in the sense of minimising the probability of exceeding a specified
threshold, or to minimise one of its quantile, in order to control with high enough
probability its variations. This work has led to the publication of an article (Trappler
et al., 2020).

2
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• The family of criteria introduced in Chapter 2 can be quite expensive to evaluate,
that is why in Chapter 3, we will discuss the use of metamodels, Gaussian Processes
especially, in order to choose iteratively the new points to evaluate. The process of
selection, called SUR method (Bect et al., 2012) (Stepwise Uncertainty Reduction)
will depend on the type of robust estimation we wish to carry. Different methods
will be proposed in order to estimate members of the regret-based family of robust
estimators. These approaches differ by the measure of uncertainty on the function
we wish to optimise. We will also introduce methods in order to select a batch of
points, in order to take advantage of parallelism when available.

• Finally, in Chapter 4, we will study the calibration of a regional coastal model
based on CROCO1. This study will focus on the estimation of the bottom friction
parameter, where some uncertainties are introduced in the form of small pertur-
bations of the amplitude of some tidal constituents, that force the model. This
problem will be treated using twin experiments, where the observations will in fact
be generated using the model.

The definition of the problem will require first to segment the input space, and to
quantify the influence of each input variable, using global sensitivity analysis (Iooss,
2011). Based on this analysis, The input space will be reduced, in order to carry a
tractable robust estimation, using some of the methods proposed in Chapter 3.

* * *

1https://www.croco-ocean.org/

3

https://www.croco-ocean.org/


Chapter 0

4



CHAPTER 1

INVERSE PROBLEM AND
CALIBRATION

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Forward, inverse problems and probability theory . . . . . . 7

1.2.1 Model space data space and forward problem . . . . . . . . . . 7
1.2.2 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Notions of probability theory . . . . . . . . . . . . . . . . . . . 9

1.2.4.a Probability measure, and random variables . . . . . . 9
1.2.4.b Real-valued random variables . . . . . . . . . . . . . . 10
1.2.4.c Real-valued random vectors . . . . . . . . . . . . . . . 12
1.2.4.d Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . 13
1.2.4.e Important examples of real random variables . . . . . 15

1.3 Parameter inference . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 From the physical experiment to the model . . . . . . . . . . . 18
1.3.2 Frequentist inference, MLE . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3.a Posterior inference . . . . . . . . . . . . . . . . . . . . 21
1.3.3.b Bayesian Point estimates . . . . . . . . . . . . . . . . 22
1.3.3.c Choice of a prior distribution . . . . . . . . . . . . . . 23

1.4 Calibration using adjoint-based optimisation . . . . . . . . . 24
1.5 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.1 Likelihood ratio test and relative likelihood . . . . . . . . . . . 26
1.5.2 Criteria for non-nested model comparison . . . . . . . . . . . . 29



Chapter 1 Inverse Problem and calibration

1.6 Parametric model misspecification . . . . . . . . . . . . . . . 30
1.7 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 32

6



Inverse Problem and calibration Chapter 1

1.1 Introduction

In this chapter we will first lay the ground for developing the general ideas behind
calibration, by introducing the notions of models, and forward and inverse problems
in Section 1.2. This implies also a short review of notions of probability theory. Calibration
will be defined in Section 1.3 as the optimisation of an objective function: Maximum
likelihood estimation in a frequentist setting, or posterior maximisation using Bayes’
theorem. In practice, for large-scale applications, the optimisation is performed using
gradient-descent, and the computational cost of gradient computation can be overcome
by adjoint method, as described in Section 1.4. Finally, we are going to discuss two
aspects related to calibration, namely model selection in Section 1.5 and the influence of
nuisance parameters and model misspecification in calibration in Section 1.6.

1.2 Forward, inverse problems and probability theory

Running a simulation using numerical tools is useful to grasp a better understanding
of the physical phenomena, or to forecast them. On the other hand, when observing and
comparing the measurements and the output of the numerical simulation, we can quantify
the mismatch between the two and tune some parameters involved in the computations.
Indeed, these parameters represent different physical quantities or processes that are
for example unresolved at the model’s scale (such as the modelling of the turbulences),
or ill-known. A proper estimation of these parameters has to be performed in order to
guarantee a meaningful output when evaluating the model.

Model calibration or parameter estimation has been widely treated in the literature,
either from a statistical and probabilistic point of view using likelihood-based methods
and Bayesian inference, or from a variational point of view by defining proper objective
functions. To match those two approaches, we will first review the problem from
a probabilistic point of view, in order to define properly some appropriate objective
functions and introduce tools from optimal control theory to optimise them.

1.2.1 Model space data space and forward problem

In order to describe accurately a physical system, we have to define the notion of
models, and will be following Tarantola (2005) approach to define inverse problems. A
model represents the link between some parameters and some observable quantities. An
example is a model that takes the form of a system of ODEs or PDEs, maybe discretized,
while the parameters are the initial conditions and the output is one or several time
series, describing the time evolution of a quantity at one or several spatial points. An
important point is that a model is not only the forward operator, but must also include
the parameter space.

Definition 1.2.1 – Model: A model M is defined as a pair composed of a forward
operator M, and a parameter space Θ

M = (M,Θ) (1.1)

7
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The forward operator is the mathematical representation of the physical system, while
the parameter space is chosen here to be a subset of a finite dimensional space, so
usually, Θ will be a subset of Rp.

As we will usually choose Θ as a subset of Rp, for p ≥ 1, we can define the dimensionality
of the model, based on the number of degrees of freedom available for the parameters.

Remark 1.2.2: The dimension of a model M = (M,Θ) is the number of parameters
not reduced to a singleton, so if Θ ⊂ Rp, the dimension of M is d ≤ p. The dimension
of a model M is sometimes called the degrees of freedom of M.

Example 1.2.3: A model with parameter space Θ = R2 × [0, 1] has dimension 3,
while Θ = R2 × {1} has dimension 2.

Now that we have introduced the forward operator and the parameter space, we will
focus on the output of the model. Ideally, the data space Y consists in all the physically
acceptable results of the physical experiment. Then, the forward operatorM maps the
parameter space Θ ⊂ Rp to the data space Y, as one can expect that all models provide
physically acceptable outputs.

1.2.2 Forward problem

Given a model (M,Θ), the forward problem consists in applying the forward operator
to a given θ ∈ Θ, in order to get the model prediction. The forward problem is then to
obtain information on the result of the experiment based on the parameters we chose as
input, so deriving a satisfying forward operatorM.

M : Θ −→ Y
θ 7−→ M(θ)

(1.2)

As said earlier, the forward operator can be a set of ODEs or PDEs, discretized or not.
The forward problem is then the attempt to link the causes, so the parameters, to the
consequences, i.e. the output in the data space.

1.2.3 Inverse Problem

The inverse problem is the counterpart of the forward problem, and consists in trying
to gather more information on the parameters, based on: first the result of the experiment
(the observation of the physical process), and secondly on the knowledge of the forward
operator, as illustrated Fig. 1.1.

This is done by directly comparing the output of the forward operator, and trying to
reduce the mismatch between the observed data and the model prediction.

However, a purely deterministic approach for the inverse problem is doomed to under-
perform: as most physical processes are not perfectly known, some uncertainties remain
in the whole modelling process. Those uncertainties are ubiquitous: the observations
available may be corrupted by a random noise coming from the measurement devices and

8
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Numerical Model Observations

Forward Problem

Inverse Problem

Figure 1.1 – Forward and Inverse problem diagram

the model may not represent perfectly the reality, thus introducing a systematic bias for
instance. Taking into account those uncertainties is crucial to solve the inverse problem.

In that perspective we are going to introduce briefly the usual probabilistic framework,
along with common notations that we will use throughout this manuscript. Those notions
are well established in the scientific literature, and one can read Billingsley (2008) for a
more thorough description.

1.2.4 Notions of probability theory

1.2.4.a Probability measure, and random variables

We are first going through some usual notions of probability theory.

Definition 1.2.4 – Event probability and conditioning: Let us consider the
usual probabilistic space (Ω,F ,P). We call an outcome of a random experiment ω
an element of the sample space Ω, and an event A is an element of the σ-algebra F
(σ-algebra on the set Ω). The probability of an event A ∈ F is defined as the Lebesgue
integral

P[A] =

∫

A
dP(ω) = P[{ω;ω ∈ A}] (1.3)

Observing an event B ∈ F can bring information upon another event A ∈ F . In that
sense, we introduce the conditional probability of A given B. Let A, B ∈ F . The
event A given B is written A | B and its probability is

P[A | B] =
P[A ∩B]

P[B]
(1.4)

Formally, an event can be seen as an outcome of some uncertain experiment, and its
probability is “how likely” this event will happen.

Let us now introduce a measurable state (or sample) space S, that is the set of all
possible outcomes we can observe (and upon which we can assign a probability).

Definition 1.2.5 – Random Variable, Expectation: A random variable (abbre-
viated as r.v.) X is a measurable function from Ω −→ S. A random variable will
usually be written with an upper case letter. A realisation or observation x of the
r.v. X is the actual image of ω ∈ Ω under X: x = X(ω). If S is countable, the

9
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random variable is said to be discrete. When S ⊆ Rp for p ≥ 1, X is sometimes called
a random vector

The expectation of a r.v. X : Ω→ S is defined as

E[X] =

∫

Ω
X(ω) dP(ω) (1.5)

Using the Definition 1.2.5, the probability of an event A can be seen as the expectation
of the indicator function of A:

1A : Ω −→ {0, 1}

ω 7−→
{

1 if ω ∈ A
0 if ω /∈ A

(1.6)

and it follows that
E[1A] =

∫

Ω
1A dP(ω) =

∫

A
dP(ω) = P[A] (1.7)

As we defined the notion of a r.v. in Definition 1.2.5 as a measurable function from
Ω → S, we can now focus on the measurable sets through X, by using in a sense the
change of variable x = X(ω).

Definition 1.2.6 – Image (Pushforward) measure: Let X : Ω→ S be a random
variable, and A ⊆ S. The image measure (also called pushforward measure) of P
through X is denoted by PX = P ◦X−1. This notation can differ slightly depending
on the community, so one can find also PX = P ◦ X−1 = X]P, the latter notation
being used in transport theory. The probability, for the r.v. X to be in A is equal to

P[X ∈ A] = PX [A] =

∫

A
dPX(ω) =

∫

X−1(A)
dP(ω) = P[X−1(A)] = P [{ω ; X(ω) ∈ A}]

(1.8)

Similarly, for any measurable function h, the expectation taken with respect to a
specific random variable X is

EX [h(X)] =

∫

Ω
h(X(ω)) dPX(ω) (1.9)

In most of this thesis, the sample space will be S ⊆ Rp for p ≥ 1, so we are going
to introduce useful tools and notations to characterize these particular real random
variables.

1.2.4.b Real-valued random variables

We are now going to focus on real-valued random variables, so measurable function
from Ω to the sample space S = R.

Definition 1.2.7 – Distribution of a real-valued r.v.: The distribution of a r.v.
can be characterized by a few functions:

10
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• The cumulative distribution function (further abbreviated as cdf) of a real-valued
r.v. X is defined as:

FX(x) = P [X ≤ x] = PX
[

]−∞, x]
]

(1.10)

and lim−∞ FX = 0 and lim+∞ FX = 1 If the cdf of a random variable is
continuous, the r.v. is said to be continuous as well.

• The quantile function QX is the generalized inverse function of the cdf:

QX(p) = inf{q : FX(q) ≥ p} (1.11)

• If there exists a function f : S → R+ such that for all measurable sets A

P[X ∈ A] =

∫

A
dPX(ω) =

∫

A
f(x) dx (1.12)

then f is called the probability density function (abbreviated pdf), or density of
X and is denoted pX . As P[X ∈ S] = 1, it follows trivially that

∫
S f(x) dx = 1.

One can verify that if FX is derivable, then its derivative is the density of the
r.v. :

dFX
dx

(x) = pX(x) (1.13)

Probability density functions are useful tools to characterize random variables, so the
assumption of derivability of FX is sometimes relaxed for ease of notation.

Remark 1.2.8: When restricting this search to “classical” functions, pX may not exist.
However, allowing generalized functions such as the dirac delta function, provides a
way to consider simultaneously all types of real-valued random variables (continous,
discrete, and mixture of both). Dirac’s delta function can (in)formally be defined as

δx0(x) =

{
+∞ if x = x0

0 elsewhere
and

∫

S
δx0(x) dx = 1 (1.14)

Example 1.2.9: Let us consider the random variable X that takes the value 1 with
probability 0.5, and follows a uniform distribution with probability 0.5 over [2, 4]. Its
cdf can be expressed as

FX(x) =





0 if x < 1

0.5 if 1 ≤ x < 2

0.5 + x−2
8 if 2 ≤ x < 4

1 if 4 ≤ x

(1.15)

11



Chapter 1 Inverse Problem and calibration

and its pdf (as a generalized function)

pX(x) =
1

2
δ1(x) +

1

4
1{2≤x<4}(x) (1.16)

The pdf and cdf are shown Fig. 1.2.

0 2 4 6
x

0.0

0.5

1.0

Pdf and cdf of the r.v. X

pX

FX

Figure 1.2 – Cdf and Pdf of X defined in Example 1.2.9. The arrow indicates Dirac’s
delta function

Definition 1.2.10 – Moments of a r.v. and Ls spaces: Let X be a random
variable. The moment of order s is defined as E [Xs], and the centered moment of
order s is defined as

E[(X − E[X])s] =

∫
(X(ω)− E[X])s dP(ω) =

∫
(x− E[X])s · pX(x) dx (1.17)

To ensure that those moments exists, let us define Ls(P) as the space of random
variables X such that E [|X|s] < +∞. If X ∈ L2(P), the centered moment of order 2
is called the variance:

E
[
(X − E[X])2

]
= Var[X] ≥ 0 (1.18)

These definitions above hold for real-valued random variables, so 1D r.v., but can be
extended for random vectors.

1.2.4.c Real-valued random vectors

Most of the definitions for a random variable extend component-wise to random
vectors:

Definition 1.2.11 – Joint, marginal and conditional densities: Let X =
(X1, · · · , Xp) be a random vector from Ω → S ⊆ Rp. The expected value of a
random vector is the expectation of the components

E[X] = (E[X1], . . . ,E[Xp]) (1.19)

12
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The cdf of X at the point x = (x1, . . . xp) is

FX(x) = FX1,...,Xp(x1, . . . , xp) = P [X1 ≤ x1, · · · , Xp ≤ xp] (1.20)

= P

[
p⋂

i=1

{ω; Xi(ω) ≤ xi}
]

Similarly as in the real-valued case, we can define the pdf of the random vector, or
joint pdf by derivating with respect to the variables:

pX(x) = pX1,...,Xp(x1, . . . , xp) =
∂pFX

∂x1 · · · ∂xp
(x) (1.21)

and it still integrates to 1:
∫
S pX1,...,Xp(x1, . . . , xp) d(x1, . . . , xp) = 1

For two random vectors X and Y , the (cross-)covariance matrix of X and Y is
defined as

Cov [X,Y ] = E
[
(X − E[X])(Y − E[Y ])T

]
= E[XY T ]− E[X]E[Y ]T (1.22)

and based on this definition, we can extend the notion of variance to vectors. The
covariance matrix Σ ∈ Rp×p of X, is defined as

Σ = Cov(X) = Cov[X,X] = E
[
(X − E[X]) (X − E[X])T

]
= E[XXT ]− E[X]E[X]T

(1.23)

We can now define the marginal densities. For notation clarity, we are going to set
X = (Y, Z): the marginal densities of Y and Z are

pY (y) =

∫

R
pY,Z(y, z) dz and pZ(z) =

∫

R
pY,Z(y, z) dy (1.24)

The random variable Y given Z, denoted by Y | Z has the conditional density

pY |Z(y | z) =
pY,Z(y, z)

pZ(z)
(1.25)

allowing us to rewrite the marginals as

pY (y) =

∫

R
pY |Z(y | z)pZ(z) dz = EZ

[
pY |Z(y | z)

]
(1.26)

pZ(z) =

∫

R
pZ|Y (z | y)pY (y) dy = EY

[
pZ|Y (z | y)

]
(1.27)

1.2.4.d Bayes’ Theorem

The classical Bayes’ theorem is directly a consequence of the definition of the con-
ditional probabilities in Definition 1.2.4, and for random variables admitting a density
in Definition 1.2.11.
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Theorem 1.2.12 – Bayes’ theorem: Let A,B ∈ F . Bayes’ theorem states that

P[A | B] · P[B] = P[B | A] · P[A]

P[A | B] =
P[B | A] · P[A]

P[B]
if P[B] 6= 0

In terms of densities, the formulation is sensibly the same. Let Y and Z be two
random variables. The conditional density of Y given Z can be expressed using the
conditional density of Z given Y .

pY |Z(y | z) =
pZ|Y (z | y)pY (y)

pZ(z)
=
pZ|Y (z | y)pY (y)∫
pZ,Y (z, y) dy

∝ pZ|Y (z | y)pY (y) (1.28)

Bayes’ theorem is central as it links in a simple way conditional densities. In the inverse
problem framework, if Y represents the state of information on the parameter space,
while Z represents the information on the data space, Z | Y can be seen as the forward
problem. Bayes’ theorem allow us to “swap” the conditioning, and get information on
Y | Z, that can be seen as the inverse problem.

The influence of one (or a set of) random variable(s) over another can be measured
with the conditional probabilities. Indeed, if the state of information on a random variable
does not change when observing another one, the observed one carries no information on
the other. This notion of dependence (and independence) is first defined on events and
then extended to random variables

Definition 1.2.13 – Independence: Let A,B ∈ F . Those two events are said
independent if P[A∩B] = P[A]P[B]. Quite similarly, two real-valued random variables
Y and Z are said to be independent if FY,Z(y, z) = FY (y)FZ(z) or equivalently,
pY,Z(y, z) = pY (y)pZ(z). Speaking in terms of conditional probabilities, this can be
written as pY |Z(y, z) = pY (y). If Y and Z are independent, Cov[Y,Z] = 0. The
converse if false in general.

We discussed so far the different quantities that characterize random variables. Let us
consider now two random variables which share the same sample space: X,X ′ : Ω→ S.
There exists various way to compare those two random variables, usually by quantifying
some measure of distance between their pdf when they exist. One of the most used
comparison tool for random variables is the Kullback-Leibler divergence.

Definition 1.2.14 – KL–divergence and entropy: The Kullback-Leibler diver-
gence, introduced in Kullback and Leibler (1951) is a measure of dissimilarity between
two distributions, based on information-theoretic considerations. Let X, X ′ be r.v.
with the same sample space S, and pX and pX′ their densities, such that ∀A ∈ F ,

14
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∫
A pX(x) dx = 0 =⇒

∫
A pX′(x) dx = 0. The KL-divergence is defined as

DKL (pX‖pX′) =

∫

S
pX(x) log

pX(x)

pX′(x)
dx (1.29)

= EX [− log pX′(X)]− EX [− log pX(X)] (1.30)
= H

[
X ′, X

]
−H [X] (1.31)

H[X] is called the (differential) entropy of the random variable X, and H[X ′, X] the
cross-entropy of X ′ and X. Using Jensen’s inequality, one can show that for all X and
X ′ such that the KL-divergence exists, DKL (pX‖pX′) ≥ 0 with equality iff they have
the same distribution, a desirable property when measuring dissimilarity. However,
the KL–divergence is not a distance function, as it is not symmetric in general, and it
does not verify the triangle inequality.

1.2.4.e Important examples of real random variables

One of the most important and simple distribution is the uniform distribution,
translating the idea that the random variable takes a value on a given interval almost
surely.

Example 1.2.15 – The uniform distribution: Let X be a r.v. from Ω to R, and
a < b. X is said to be uniformly distributed on [a, b] if

pX(x) = 1[a,b](x)
1

b− a (1.32)

One other well-known distribution is the normal distribution, also called Gaussian
distribution, that appears in various situations, but most notably in the central limit
theorem.

Example 1.2.16 – The Normal distribution: Let X be a r.v. from Ω to R. If
X follow the normal distribution of mean µ ∈ R and variance σ2 > 0, we write
X ∼ N (µ, σ2), and its pdf is

pX(x) = φ(x) =
1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
(1.33)

For the multidimensional case, let X be a r.v. from Ω to Rp, that follows a normal
distribution of mean µ ∈ Rp and covariance matrix Σ ∈ Rp×p, where Σ is semi-definite
positive. In that case, X ∼ N (µ,Σ) the density of the random vector X can be written
as

pX(x) = (2π)−
p
2 |Σ|−1 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.34)

where |Σ| is the determinant of the matrix Σ, and (·)T is the transposition operator. As
the covariance matrix appears through its inverse, another encountered parametrization
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is to use the precision matrix Σ−1. Examples of pdf of Gaussian normal distributions
are displayed Fig. 1.3.
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Figure 1.3 – Probability Density functions of 1D Gaussian distributed r.v. (left), and
density of Z, a 2D Gaussian r.v. (right)

When adding independent squared samples of the normal distribution, the resulting
random variable follows a χ2 distribution.

Example 1.2.17 – The χ2 distribution: Let X1, X2, . . . , Xν be ν independent
random variables, such that for 1 ≤ i ≤ ν, Xi ∼ N (0, 1) We define the random
variable X as

X =
ν∑

i=1

X2
i (1.35)

By definition, the random variable X follows a χ2 distribution with ν degrees of
freedom: X ∼ χ2

ν . The quantile of order β is written χ2
ν(β) and verifies

P[X ≤ χ2
ν(β)] = β (1.36)

The pdf of such a r.v. is displayed Fig. 1.4, for different degrees of freedom.
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1.3 Parameter inference

1.3.1 From the physical experiment to the model

We can represent both the reality and the computer simulation as models. The physical
system (the reality) that is observed can be represented by a model M = (M ,Θreal), so
by a forward operator M , and a parameter space Θreal. Observing the physical system
means to get access to y ∈ Y that is the image of an unknown parameter value ϑ ∈ Θreal

through the forward operator, so y = M (ϑ) ∈ Y ⊆ Rn.

On the other hand, let us assume that a numerical model of the reality has been
constructed, by successive various assumptions, discretizations and simplifications giving
(M,Θ). The main objective of calibration is to find θ̂ such that the forward operator
applied to θ̂: M(θ̂) represents as accurately as possible the physical system, and thus
matches as closely the data M (ϑ) = y. This is illustrated Fig. 1.5.

·θ

Θ

M M(θ)

Numerical Model

Forward
problem

·ϑ

Θreal

M

Physical Model

M (ϑ) = y

Inverse Problem

Figure 1.5 – Forward and inverse problem using models as defined Definition 1.2.1

For the sake of simplicity, let us assume that ϑ ∈ Θ ⊆ Θreal. In Kennedy and O’Hagan
(2001); Higdon et al. (2004), the authors rewrite the link between the reality and the
model at this value as

M (ϑ) =M(ϑ) + ε(ϑ) ∈ Y ⊆ Rn (1.37)

The difference ε(ϑ) = M (ϑ) −M(ϑ) is the error between the physical model and
the model, called sometimes the misfit, or the residual error. This error is unknown and
encompasses different sources of uncertainties, such as measurement errors, or model bias
(with respect to the reality). To deal with this unknown, we are going to model it as a
sample of a random variable, leading us to treat the obtained data as a random sample
as well.

From the diverse assumptions we can make upon this sampled random variable,
we can then treat the calibration procedure as a parameter estimation problem of a
random variable. The estimated parameter will be written θ̂, and the subscript will
denote additional information on the estimator. In this thesis, we focus on extremum
estimators. Those estimators are defined as the optimiser of a given objective function J ,
θ̂ = arg min J . In the next sections, we will see the probabilistic origins of a few classical
objective functions.
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1.3.2 Frequentist inference, MLE

As mentioned before, we can model the observations as a random variable, say Y
(uppercase to highlight its random nature), and assume that this r.v. belongs to a family
of parametric distributions, whose densities are

{y 7→ pY (y; θ); θ ∈ Θ} (1.38)

This choice of notation has been made to keep explicit the dependency on θ. Assuming
now that the residual are normally distributed with a given covariance matrix Σ, and
that Y ⊆ Rn, Y is a random vector distributed as

Y ∼ N (M(θ),Σ) (1.39)

whose one sample is y = M (ϑ).

Now, instead of looking at the densities of Eq. (1.38) as functions taking as arguments
the samples in Y, we may look at it as a function of θ, as the observations y ∈ Y
do not vary. We can then define the likelihood function and its associated extremum
estimator.

Definition 1.3.1 – Likelihood function, MLE: The probability density function
of the observations for a set of parameters is called the likelihood of those parameters
given the observations, and is written L. In the Gaussian case, this can be written as

L(·; y) : θ 7→ pY (y; θ) = L(θ; y) (1.40)

= (2π)−n/2|Σ|−1/2 exp

(
−1

2
(M(θ)− y)TΣ−1(M(θ)− y)

)

(1.41)

If Σ = diag(σ2
1, . . . , σ

2
n), the likelihood can be written as the product of 1D Gaussians:

L(θ; y) =

(
n∏

i=1

1√
2πσi

)
exp

(
n∑

i=1

−(M(θ)i − yi)2

2σ2
i

)
(1.42)

=

n∏

i=1

1√
2πσi

exp

(
−(M(θ)i − yi)2

2σ2
i

)
(1.43)

with y = (y1, . . . , yn) and M(θ) = (M(θ)1, . . .M(θ)n). Based on the likelihood
function, we can define the Maximum Likelihood Estimator, or MLE, that maximises
the likelihood defined above:

θMLE = arg max
θ∈Θ

L(θ; y) (1.44)

For practical and numerical reasons, the maximisation of the likelihood is often replaced
by the minimisation of the negative log-likelihood:

θMLE = arg min
θ∈Θ

− logL(θ; y) = arg min
θ∈Θ

−
n∑

i=1

log pYi|θ(yi | θ) (1.45)
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where

− logL(θ; y) =
1

2
(M(θ)− y)TΣ−1(M(θ)− y) +

n

2
log(2π) +

1

2
log|Σ| (1.46)

As the optimisation is performed on θ, we can remove the constant terms of the
objective function, and rewrite the objective function as a L2 norm in Eq. (1.47).

θMLE = arg min
θ∈Θ

1

2
(M(θ)− y)TΣ−1(M(θ)− y)

= arg min
θ∈Θ

1

2
‖M(θ)− y‖2Σ−1 (1.47)

Frequentist inference and Maximum Likelihood estimation boils down to Generalized
non-linear least-square regression, that minimises the squared Mahalanobis distance
betweenM(θ) and y (Mahalanobis, 1936). This is only true as we assumed a Gaussian
form of the errors in Eq. (1.39). Other choices of the sampling distribution will result
in different objective functions. To reduce the sensitivity on outliers, some authors
such as Rao et al. (2015) introduce Student or Laplace distributed errors, or specifically
designed norm such as the Huber norm (Huber, 2011).

If the covariance matrix is diagonal, the residual errors are then uncorrelated, thus
independent due to their Gaussian nature as defined in Eq. (1.39). The likelihood can be
rewritten as the product of densities evaluated at the different samples yi, obtained from
their true distribution Y . A direct link can be written between the KL–divergence and
the MLE. The KL–divergence between the true density pY and the parametric sampling
distribution pY (·; θ) is

DKL (pY ‖pY (·; θ)) = EY [log pY (Y )]− EY [log pY (Y ; θ)] (1.48)

As the first term does not depend on θ, minimising this expression is equivalent to
minimising the second part of the equation, so

arg min
θ∈Θ

DKL (pY ‖pY (·; θ)) = arg min
θ∈Θ

−EY [log pY (Y ; θ)] (1.49)

The true distribution of the observation is unknown, but samples yi are available. Using
the empirical KL-divergence denoted Dempirical

KL , and replacing the theoretical expectation
with the empirical one, the equation above becomes:

arg min
θ∈Θ

Dempirical
KL (pY ‖pY (·; θ)) = arg min

θ∈Θ

1

n

n∑

i=1

− log pY (yi; θ) = θMLE (1.50)

Thus, the MLE minimises the empirical KL-divergence between the true distribution of
the observations and the sampling distribution of the observation (that depends on θ).

The MLE possesses desirable asymptotic properties, such as asymptotic normality
when the number of observations grows large (Reid, 2013). Those properties permit
the construction of asymptotic confidence intervals, and to test hypothesis for model
selection. This aspect will be further developed in Section 1.5.

So far, the only information assumed on θ is its parameter space Θ. In the case where
some belief on θ is present before the calibration, we can incorporate this information
using the Bayesian framework.
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1.3.3 Bayesian Inference

In Bayesian inference, the uncertainty present on θ is modelled by considering it as a
random variable. Instead of having a precise value for θ, albeit unknown, we assume that
we have a prior distribution on θ, denoted pθ, that represents the initial state of belief
upon the parameter, prior to any experiment and observations. The choice of this prior
distribution will be discussed later. Using the experiment, whose sampling distribution is
given by the likelihood, the prior distribution is updated to reflect the new state of belief
upon the parameter. The Gaussian likelihood in Eq. (1.39) for the frequentist approach
can be almost be rewritten as is in the Bayesian setting, just by conditioning Y with θ.
Eq. (1.39) becomes

Y | θ ∼ N (M(θ),Σ) (1.51)

and the likelihood is the pdf L(θ; y) = pY |θ(y | θ). Using Bayes’ theorem, the posterior
distribution of the parameters given the observed data is

pθ|Y (θ | y) =
pY |θ(y | θ)pθ(θ)

pY (y)
=
L(θ; y)pθ(θ)

pY (y)
(1.52)

The denominator can be seen as a normalizing constant, ensuring that
∫

Θ pθ|Y = 1. But
it can also be seen as a measure of how well does the model explain the data obtained.
This interpretation will be extended in Section 1.5

Definition 1.3.2 – Model Evidence: The model evidence, (or marginal likelihood,
integrated likelihood) is defined as the distribution of the data marginalised over the
parameters:

pY (y) =

∫

Θ
pY,θ(y, θ) dθ =

∫

Θ
pY |θ(y | θ)pθ(θ) dθ (1.53)

This quantity depends implicitly on the underlying mathematical model M = (M,Θ).
Comparing evidence of different models allows for the comparison of those different
models. However, computing the model evidence requires the expensive evaluation of
an integral over the whole parameter space, and no analytical form is available except
for trivial cases. Specific techniques for this evaluation are reviewed in Friel and Wyse
(2011).

When the model (M,Θ) and the data y is fixed, the model evidence is constant with
respect to the calibration parameter θ. The posterior distribution is thus often written
and evaluated up to a multiplicative constant.

pθ|Y (θ | y) ∝ L(θ; y)pθ(θ) (1.54)

1.3.3.a Posterior inference

This posterior distribution is central in Bayesian analysis, as it gathers all the
information we have on the parameter, given the observed data. Given Eq. (1.52),
evaluating the posterior density at a point requires the evaluation of the model evidence,
that is an expensive integral. To bypass this evaluation, several techniques have been
developed to get samples from a unnormalized arbitrary function. One of the most
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well-known method is based on the construction of a Markov-chain whose stationary
state is the searched posterior. Classical MCMC algorithms such as Metropolis-Hastings
require the use of a proposal density, and then to accept or reject the proposal based on
the posterior distribution evaluated at the point.

A lot of refinement of these methods are available in the literature in order to better
tackle the high-dimensionality of the parameter space, or to improve the mixing of
the sampled MC chain. One important adaptation to mention is Hamiltonian Monte-
Carlo (Hanson, 2001; Betancourt, 2017), that improves the performance of the chain by
using the value of the gradient of the log-posterior distribution. Obtaining this gradient
(although for a different purpose) is discussed in Section 1.4.

For time-dependent systems, Bayesian framework is particularly well-suited to treat
observations sequentially, especially because Bayesian updating is done via multiplication.
Bayes’ theorem is the basis of many data assimilation methods, such as Kalman filter or
various particle filters, that are often used for state estimation.

1.3.3.b Bayesian Point estimates

The whole posterior distribution aggregates a lot of information on the problem.
However, as mentioned above, a certain work has to be done in order to get independent
samples. Instead, one can try to find a point θ ∈ Θ that summarizes this distribution.
Consequently, the chosen estimate is often an indicator of the central tendency. In
that sense, we wish to get a value that is quite close to all sampled values from the
posterior (Lehmann and Casella, 2006).

Let us define a function L that measures a distance in the parameter space: L : Θ×Θ.
For a candidate θ′, the measured risk with respect to a sample from the posterior
θsample ∼ θ | Y is L(θ′, θsample). The Bayesian risk for θ′ is then the expectation of this
Bayesian loss functions L under the posterior distribution: Eθ|Y [L(θ′, θ) | y]. A Bayesian
point estimate is defined as a minimiser of the Bayesian risk:

θL = arg min
θ′∈Θ

Eθ|Y
[
L(θ′, θ) | y

]
(1.55)

Obviously, different loss functions will lead to different Bayesian point estimates, and
we are going to evoke two of them.

Posterior mean

By defining L as the squared error L(θ′, θ) = (θ′−θ)2 (or (θ′−θ)T (θ′−θ) if dim Θ > 1),
we can define the Mean Squared Error as MSE : θ′ 7→ Eθ|Y

[
(θ′ − θ)2 | y

]
. Finally, the

value corresponding to the Minimum Mean Squared Error is

θMMSE = arg min
θ′∈Θ

Eθ|Y
[
(θ′ − θ)2 | y

]
(1.56)

Simple algebraic manipulations show that the minimiser is in fact the posterior mean:

θMMSE = Eθ|Y [θ | y] =

∫

Θ
θ · pθ|Y (θ | y) dθ (1.57)
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In order to compute θMMSE, it is easier to compute directly the mean of the poste-
rior samples obtained via posterior inference, than to solve the minimisation problem
in Eq. (1.56).

Posterior Mode: the MAP

By reaching a bit on the notion of function for L and choosing L(θ′, θ) = −δθ(θ′),
the dirac delta function defined in Eq. (1.14), one can show that the minimiser of
Eθ|Y [L(θ′, θ) | y] is the mode of the posterior distribution, and is called the Maximum A
Posteriori (MAP):

θMAP = arg min
θ′∈Θ

Eθ|Y
[
δθ(θ

′) | y
]

= arg min
θ′∈Θ

−pθ|Y (θ′ | y) (1.58)

= arg max
θ′∈Θ

pθ|Y (θ′ | y) = arg max
θ′∈Θ

L(θ′; y)pθ(θ
′)

One interesting fact about the MAP, is that its evaluation does not require the full
knowledge of the posterior distribution, nor samples to evaluate the integral of Eq. (1.57).
We can resort to classical optimisation techniques for this evaluation. Similarly to the
likelihood, taking the negative logarithm leads to the following minimisation problem.

θMAP = arg min
θ′∈Θ

− logL(θ′; y)− log pθ(θ
′) (1.59)

1.3.3.c Choice of a prior distribution

As seen in the application of Bayes’ theorem in Eq. (1.52), the prior has a preponderant
role in the formulation of the posterior distribution. Indeed, this prior distribution
represents the current state of knowledge on the value of the parameter, before any
experiment. This comes usually from an expert opinion, or some reasonable assumptions
about the nature of θ.

Let us assume for instance that we have a Gaussian prior for θ: θ ∼ N (θb, B) where
B is called the background covariance error matrix and θb is called the background value
that acts as a plausible reference value. Assuming a Gaussian form for the errors as well
with covariance matrix Σ, the MAP can be written as

θMAP = arg min
θ∈Θ

1

2
‖M(θ)− y‖2Σ−1 +

1

2
‖θ − θb‖2B−1 (1.60)

Adding a Gaussian prior for the parameter comes down to adding a L2 regularization
term to the optimisation problem, also called Tikhonov regularization (Tikhonov and
Arsenin, 1977). This expression is very analoguous to the state estimation in the 3D-Var
method in Data assimilation. Other choices of priors lead to other regularizations, such
as the lasso regularization (Tibshirani, 2011) that is a consequence for choosing θ that
follows a priori a Laplace distribution of mean 0.

The choice of a prior distribution has an influence on the inference of the parameter
and its point estimation. Where there is no knowledge on the parameter beforehand,
one can try to choose a non-informative prior in order to try to mitigate its effect. One
can for instance choose a “flat” prior over the parameter space, but this can lead to
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improper priors, in the sense that they do not integrate to 1. However, improper priors
do not necessarily lead to improper posterior, allowing for the usual Bayesian analysis
of the quantity. For instance, if Θ = Rp, the prior pθ(θ) ∝ 1 is improper, but the MAP
estimation is equivalent to the MLE.

All in all, when looking for the MAP or the MLE, parameter estimation boils down
to the minimisation of a well chosen objective function, that measures the misfit between
the output of the numerical model and the observations. This objective function will be
written J in the following, to match the notation of data assimilation. In this context of
calibration, we can then summarize the estimation as a minimisation problem, where J
represents some kind of distance betweenM(θ) and the observations.

θ = arg min
θ∈Θ

J(θ) (1.61)

1.4 Calibration using adjoint-based optimisation

Point estimates in this context take the form of extremum estimators, that is an
extremum of some given objective function J . This function is proportional to the
log-likelihood for the MLE, or the log-posterior for the MAP, but other misfits can be
considered, such as optimal transport based metrics. The formulation is then quite
simple, but the problem of efficient optimisation remains. For differentiable problems,
most of minimisation instances are solved using gradient-based methods, such as gradient
descent or quasi-Newton methods.

This implies to be able to compute efficiently the gradient of the objective function
J with respect to the parameter: ∇θJ . The straightforward way is to compute the
gradient using finite differences. Let us suppose that θ = (θ1, · · · θp), and ei is 0 for all
its component except the ith one which is 1. The gradient can be approximated by the
usual 1st order forward finite-difference scheme:

∇θJ ≈
[
J(θ + εe1)− J(θ)

ε
,
J(θ + εe2)− J(θ)

ε
, . . . ,

J(θ + εep)− J(θ)

ε

]
for ε� 1

(1.62)
In addition to the run of the model at θ, we have to evaluate the model p times,
for each one of the coordinate of θ. If this is feasible in practice for low-dimensional
problems, this is impossible for large problems that count more than hundreds of
parameters. Nevertheless, different methods can be used to compute the gradient, at least
approximately for optimisation purpose: for instance, Boutet (2015) uses Simultaneous
Perturbation Stochastic Approximation to approximate the gradient using only one
additional run, indepedently on the number of parameters.

In geophysical applications, parameter estimation and the subsequent optimisation is
usually performed by deriving the adjoint equations in order to get the exact gradient for
a relatively reasonable cost. This gradient is used afterward in optimisation methods such
as conjuguate gradient, or BFGS for instance. Adjoint methods are thus very popular in
large-scale optimisation of Computational Fluid Dynamics codes, as the additional cost
of implementation is often worth the gain in the short term. This situation is common in
data assimilation, as shown in Das and Lardner (1991, 1992); Honnorat et al. (2010);
Couderc et al. (2013), or in shape optimisation of airfoils in Huyse and Bushnell (2001).
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To derive the adjoint equations, we will first rewrite the objective function as a
function of the forward operator and the parameter: J(θ) = J(M(θ), θ). The estimation
of the parameter can be written as the following constrained optimisation problem:

min
θ∈Θ

J(θ) = J(y, θ)

such that F(y, θ) = 0
(1.63)

where the constraint on F signifies that the model is admissible, i.e. that y =M(θ) ∈ Y.

Differentiating the Eq. (1.63) with respect to θ using the chain rule gives

∇θJ =
∂J

∂y

∂y

∂θ
+
∂J

∂θ

∇θF =
∂F
∂y

∂y

∂θ
+
∂F
∂θ

(1.64)

In those equations, the partial derivatives with respect to θ are quite easily obtainable,
while the real challenge is to obtain the derivative with respect to the state variable: ∂

∂y .

To treat the constrained optimisation in Eq. (1.63), let us introduce the Lagrange
multiplier λ ∈ Y, so that we can write the Lagrangian L :

L (θ, y, λ) = J(y, θ)− λTF(y, θ) (1.65)

and the unconstrained optimisation problem is then

min
θ,y,λ

L (θ, y, λ) (1.66)

The first-order condition of optimality for the Lagrangian: ∂L
∂θ = ∂L

∂y = ∂L
∂λ = 0 translates

into the optimality condition, adjoint equation and the state equation. Indeed, when
differentiating with respect to the adjoint variable, we retrieve the state equation:

∂L

∂λ
= −F(y, θ) = 0 (State equation)

When differentiating with respect to the state variable, the equation that verifies the
adjoint variable is called the adjoint equation

∂L

∂y
=
∂J

∂y
− λT ∂F

∂y
= 0 (Adjoint equation)

Finally, when λ verifies the adjoint equation:
(
∂F
∂y

)T
λ =

(
∂J
∂y

)T
, the gradient of the

objective function can be expressed using the partial derivative with respect to θ of the
objective function and of the forward model, and the adjoint variable:

∂L

∂θ
= ∇θJ =

∂J

∂θ
− λT ∂F

∂θ
= 0 (Optimality condition)

So, to get ∇θJ , as the partial derivatives with respect to the control variables are
relatively easy to obtain, the challenge lies in solving the adjoint equation. Albeit
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tedious, one can derive those equations by writing the tangent linear model of the original
model, and implement a dedicated solver for the adjoint variables. A more common
and way simpler approach is to derive the adjoint equations directly from the computer
code implemented to solve the model, by using Automatic differentiation tools, such as
TAPENADE (Hascoet and Pascual, 2013). Those programs directly translate the source
code into a program that solves the original model equations and the adjoint equations,
and outputs the gradient along with the objective function.

1.5 Model selection

So far, we have discussed the calibration of a specific model (M,Θ) given some
observations, thus solving an inverse problem and finding θ as an extremum of an
objective function. But different models may be considered to explain the data. Those
models may differ by their forward operator, by their parameter space, or by both at the
same time.

But changing models also means changing the potential “best” fit attainable, in terms
of minimum reached by the objective function. More complex models usually provide a
better fit of the model but to the cost of a higher dimension in the parameter space. At
the same time, more complex models may exhibit an overfitting behaviour.

Example 1.5.1: Figure 1.6 shows a curve-fitting problem using polynomial functions,
where the yi’s are realisations of Yi ∼ N (i, 1) for i = 0 to 10. The objective function
associated is J(θ) =

∑10
i=0 ‖P (i; θ)− yi‖2, where P is a polynomial of degree dim Θ,

and whose coefficients are given by θ = (θ1, . . . , θn). For this problem of curve fitting,
increasing the degree of the polynomial used (thus the dimensionality of the model)
decreases the minimum value of J reached. However, the increase in the degree leads
also to some oscillations between the sampled points, as the fitting procedure looks to
account for the deviations due to the random origin of the yi’s

We can then look to reduce the complexity of the model, without decreasing signifi-
cantly its performance.

We are first going to consider the case of nested models: models that share the same
forward model, but whose parameter spaces are nested. Model selection in this case is a
way to reduce the dimension of the model, by reducing the parameter space.

Finally, tools introduced in this section bring up model comparison. A calibrated
model (M, {θ̂}) is optimal given an objective function, but we can show that values close
to the calibrated value θ̂ may also be of interest, as the decrease of performance may
not be statistically significant. The “perturbated” model (M, {θ̂ + ε}) for small ε may
accurately describe the data as well.

1.5.1 Likelihood ratio test and relative likelihood

Generally speaking, more complex models have a better ability to represent the
observations, but all the parameters included in the model may not be relevant for
the modelling. It can be interesting to test if a “simpler” model would give similar
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Figure 1.6 – Overfitting phenomenon, and reduction of the minimal value of the objective
function

performances, or at least show a decrease in performances that is not statistically
significant. One of the most well-known test is the likelihood-ratio test, that tests if
two nested models are equivalent: Let us consider two nested models: M1 = (M1,Θ1),
M2 = (M2,Θ2), such thatM1 =M2 =M and Θ2 ( Θ1. In this case, M2 represents
the simpler model, with a reduced parameter space, while M1 is the more general model.
Recalling the notion of model dimension in Remark 1.2.2, M1 has dimension r, and M2

has dimension d with r > d. As M1 is more general, one can expect better performances.

The likelihood-ratio is defined as the ratio of the largest values taken by the likelihood
on their respective parameter space, value that is assumed to be attained at θ̂1 and θ̂2.

Λ(y) =
supθ∈Θ2

L(θ; y)

supθ∈Θ1
L(θ; y)

=
L(θ̂2; y)

L(θ̂1; y)
≤ 1 (1.67)

Based on this quantity, we can test whether the smaller model is sufficient to explain the
observations as well as the larger model. The two hypothesis for this test are

• The null hypothesis H0: The two models are statistically equivalent: the difference
between the maximal values of the likelihood is not statistically significant. This
corresponds to Λ close to 1

• The alternative hypothesis H1: the two models are statistically different: the larger
model performs better than the reduced one. This corresponds to Λ significantly
smaller than 1.
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Under the null hypothesis H0, −2 log Λ follows asymptotically (as the number of obser-
vations grows large) a χ2 distribution introduced in Example 1.2.17, according to Wilks’
theorem (Wilks, 1938). The number of degrees of freedom of the χ2 distribution is given
by the difference of dimensionality between the two models:

− 2 log Λ(y)
d−→ χ2

r−d (1.68)

By denoting χ2
r−d(1 − ν) the quantile of order 1 − ν of the χ2 distribution with r − d

degrees of freedom, the asymptotic rejection region of the null hypothesis at level ν is:

RejRegν =
{
y | −2 log Λ(y) > χ2

r−d(1− ν)
}

(1.69)

So if the data y ∈ RejRegν , we reject H0 at the ν-level, thus we accept H1. By
reformulating using the log-likelihoods and objective functions l(θ; y) = logL(θ; y) =
−J(θ)

RejRegν =

{
y | ( sup

θ∈Θ1

l(θ; y)− sup
θ∈Θ2

l(θ; y)) >
1

2
χ2
r−d(1− ν)

}
(1.70)

=

{
y | J(θ2)− J(θ1) >

1

2
χ2
r−d(1− ν)

}
(1.71)

Example 1.5.2 – Likelihood-ratio test for the MLE: Let Θ1 = Θ ⊂ R and
Θ2 = {θ} ⊂ Θ1. We have then supΘ1

L = L(θMLE), and supΘ2
L = L(θ) The

difference of dimensionality is then r − d = 1 and the .95 quantile of the χ2 r.v. is
χ2

1(1− 0.05) = 3.84. When the data falls into the rejection region (i.e. J(θ2) = J(θ)
significantly larger than J(θ1) = J(θMLE)), the null hypothesis is rejected, and the
models can be asserted significantly different.

Conversely, the rejection region defined above allows us to define an asymptotic
confidence interval for the parameter. Let us consider Θ1 = Θ, and Θ2 = {θ} as in
Example 1.5.2, and let us introduce the Relative Likelihood (Kalbfleisch, 1985) which is
the ratio of the likelihood evaluated at a point θ to the maximal value of the likelihood:

R(θ) =
L(θ; y)

L(θMLE; y)
=

L(θ; y)

supθ′∈Θ L(θ′; y)
(1.72)

This ratio allows for comparing the plausibility of the value θ, compared to the MLE.
The likelihood interval of level γ ∈]0, 1] is defined as

ILik(γ) =

{
θ | R(θ) =

L(θ; y)

L(θMLE; y)
≥ γ

}
(1.73)

γ can be set to an arbitrary threshold, but it can also be chosen specifically so that
ILik(γ) is the complement of the rejection region of a likelihood-ratio test with certain
confidence.

Using the likelihood-ratio test, as in Example 1.5.2, we can test how well a given value
of the parameter θ performs compared to the MLE by comparing the models (M, {θ})
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and (M,Θ). Let R(θ) be the corresponding likelihood-ratio. The complement of the
rejection region Eq. (1.71) written using Eq. (1.73) is

ILik

(
exp

(
−1

2
χ2

dim(Θ)(1− ν)

))
=

{
θ | R(θ) ≥ exp

(
−1

2
χ2

dim(Θ)(1− ν)

)}
(1.74)

The values of the calibrated parameters in this set generate models that are statistically
equivalent to the model comprising the MLE as its calibrated parameter.

For 1 dimensional models and the confidence level of 0.05, the threshold of Eq. (1.74) is
exp

(
−1

2χ
2
dim(Θ)(1− ν)

)
= exp

(
−1

2χ
2
1(.95)

)
≈ 0.15, and at a level 0.10, exp

(
−1

2χ
2
1(.90)

)
≈

0.26.
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Figure 1.7 – Example of relative likelihood, and associated likelihood interval, for
γ = 0.15

Due to the likelihood-ratio test and the relative likelihood, we can see that even
though θMLE is the optimiser of the likelihood function, other values close to it may not
be discarded, provided that the value of the log-likelihood does not drop off too much.

1.5.2 Criteria for non-nested model comparison

The likelihood-ratio test presented above is defined for nested models. In the more
general case, we can also associate each model with a single numerical value that measures
the balance between “fit” and complexity of the model. This usually takes the form of

Crit(M) = −2 logL(θMLE) + Complexity penalization (1.75)

where L is the likelihood function for the model M = (M,Θ), and L(θMLE) = maxL.
The role of the complexity penalization is to avoid overfitting, and is often directly linked
to the dimension of the parameter space Θ. Two quite popular examples of criteria
are the AIC (Akaike Information Criterion) introduced in Akaike (1974) and the BIC
(Bayesian Information Criterion) in Schwarz (1978).
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Then, to compare two models M1 and M2, the magnitude of the difference Crit(M1)−
Crit(M2) is compared to some thresholds as shown in Burnham and Anderson (2004).
The difference shows whether a model should be preferred, or if no substantial evidence
exists for either model. These criteria, as well as the likelihood-ratio test, are based on
the evaluation of the likelihood at its maximal value.

Another approach is to marginalize the likelihood with respect to the prior distribution
of the calibration parameter, giving Bayesian model comparison. The criterion for a
model M1 is the evidence of the model, i.e. the pdf of the data given the model M1,
and Crit(M1) = log

∫
Θ L(θ)pθ(θ) dθ. Again, the logarithm of Bayes’ factor is compared

with specified thresholds (Kass and Raftery, 1995; Burnham and Anderson, 2004).

1.6 Parametric model misspecification

We introduced earlier the mathematical model (M,Θ), and based our analysis on
the fact that the “target model”, i.e. the reality is (M ,Θreal ⊇ Θ), so the parameter
spaces are the same for the two models. However, between the reality and the numerical
model, various simplifications are introduced, thus the reality is not often completely
representable by the numerical model: we have then misspecified models.

Definition 1.6.1 – Misspecified model: Let Y be the random variable associated
with the observations, and pY its pdf. Let {pY |θ; θ ∈ Θ} the parametric family of
densities, among which we are looking to find pY . The model is said to be misspecified,
if pY /∈ {pY |θ; θ ∈ Θ}.

We can also define this misspecification in terms of numerical models defined in this
chapter: let (M ,Θreal) be the physical system under study and (M,Θ) the numerical
model that is to be calibrated with respect to the observations y = M (ϑ). (M,Θ) is
said to be misspecified, if ϑ /∈ Θ.

Finally, when we have a family of models {(M(·, u),Θ) | u ∈ U}, where each
element depends on some additional parameter, and for all u ∈ U,M(·, u) 6= M , we
talk about parametric misspecification.

In practice, in addition to the simplifications, the parameter space Θ does not contain
necessarily all the parameters needed to run the forward model, but represents the space
of the parameters of interest, or calibration parameters. In addition to them, some
other parameters are at play, that we are going to call the environmental parameters,
or uncertain parameters written u ∈ U. These parameters come from instance from the
external forcings.

Bayesian framework and more specifically Bayesian update of the prior by the
likehihood puts the emphasis on the update of the information on the parameter of interest.
However the environmental parameters are assumed to have an inherent variability. In
that sense, it may not be worth spending time and resources to infer these parameter
values, as they are bound to change. Moreover, we can only get information on the
environmental conditions used to generate the observations.
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In terms of models, each choice of u ∈ U gives a different model M(u) = {M(·, u), Θ}.
Let us assume that we can model the uncertain parameters as a random variable
U . Let us consider that we chose a specific u0 ∈ U, and that we are given some
observation y = M (ϑ). We can formulate an inverse problem, and an objective function
J : θ 7→ J(θ, u0), that we wish to minimise with respect to θ. Some estimators still carry
nice properties. The MLE for instance, defined Section 1.3.2 can still be written as the
minimiser of the empirical KL–divergence. We assume that we can write the sampling
distribution as pY |θ,U , and

θMLE(u0) = arg min
θ∈Θ

Dempirical
KL

(
pY ‖pY |θ,U (· | θ, U = u0)

)
(1.76)

and can be seen as the “best” value given U = u0. However, the asymptotic properties
of the MLE are slightly different as described in White (1982). So when the model is
misspecified, minimising the same objective function still makes sense.

However, the calibration will depend on the chosen u0: θ(u0) = arg min θ∈Θ J(θ, u0),
and there is no guarantee that θ(u0) will minimise J(·, u1) for u0 6= u1, as illus-
trated Fig. 1.8.
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Figure 1.8 – Effect of the misspecification on the minimiser.

u0 and u1 are close to each other, but θ(u0) and θ(u1) are not. However, as the
objective function shows similar values at those points, choosing either one would lead
to a satisfactory outcome given U = u0 or U = u1. If U = u2 is considered as well, the
modeller may have a preference and choose θ(u1) as the final estimator.

In terms of model selection, the asymptotic distribution of the likelihood ratio statistic
defined Section 1.5.1 is also slightly different. Instead of following a χ2

r distribution,
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where r is the number of dimensions for the test, −2 log Λ will asymptotically have the
same distribution as a weighted sum of r random variables, where each one have a χ2

1

distribution and whose weights are the eigenvalues of a matrix involving the Jacobian
and the Hessian of the log-likelihood (Kent, 1982).

This random misspecification leads to some issues in the calibration of the model,
and it asks for a notion of robustness with respect to the environmental parameters.

1.7 Partial conclusion

In this chapter, starting from a probabilistic point of view, we established the usual
tools encountered in model calibration: the misfit between the data and the numerical
model is measured by an objective function J , that can be minimised using for instance
gradient descent. From this optimisation, we can define a “acceptable” region for the
estimate. In other words, values in this set yield an misfit that is not different enough to
be completely discarded.

Adding an environmental variable as a random parameter introduces a random
parametric misspecification to the model: each realization of this underlying random
variable will yield a different estimation. In Chapter 2, we will discuss the notion
of robustness under this random misspecification, and introduce a family of robust
estimators, inspired by model selection.

* * *
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In the previous chapter, we introduced the problem of calibration of a numerical
model with respect to a calibration parameter θ. This takes the form of the optimisation
of an objective function. We also raised the problem of parametric misspecification of
the numerical model with respect to the reality: u ∈ U. Moreover, this misspecification
is modelled by a random variable U with known distribution. One desirable property is
that the calibrated model shows relatively good performances when the environmental
variables vary, or in other words, we want the calibrated model to be robust with respect
to the varying environmental parameters. In this chapter, we are going to introduce some
criteria that aim at solving this robust optimisation problem. The actual computation of
those estimates will be discussed in the next chapter.

2.1 Defining robustness

2.1.1 Classifying the uncertainties

In the Bayesian formulation of the problem, the uncertainty on the calibration
parameter is modelled through the prior distribution, while the uncertain parameter, u
has its own distribution. While mathematically similar, those two representations actually
encompasses a significant difference: we are actively trying to reduce the uncertainty of
the calibration parameter by Bayesian update, while the uncertainty on the environmental
parameter is seen as a nuisance.

In that context, the very notion of uncertainty can be roughly split in two, as described
in Walker et al. (2003):

• Aleatoric uncertainties, coming from the inherent variability of a phenomenon, e.g.
intrinsic randomness of some environmental variables

• Epistemic uncertainties coming from a lack of knowledge about the properties and
conditions of the phenomenon underlying the behaviour of the system under study

According to this distinction, the epistemic uncertainty can be reduced by investigating the
effect of the calibration parameter θ upon the physical system, and choose it accordingly
to an objective function. The uncertain variable u on the other hand is uncertain in the
aleatoric sense, and cannot be controlled directly, as its value is destined to change. This
is why we model it using a random variable U . This distinction, illustrated in Fig. 2.1, is
a bit simplistic, as Kiureghian and Ditlevsen (2009) points out that deciding the type of
uncertainties is up to the modeller, who decides on which parameters inference is worth
doing.

2.1.2 Robustness and/or reliability

The notion of robustness is dependent on the context in which it is used. In this
work, the term “robust” qualifies a model that behaves still nicely under uncertainties, or
to put it in an other way, that is insensitive up to a certain extent to some perturbations.
Moreover, robustness is often linked and sometimes confused to the semantically close
notion of reliability. In Lelièvre et al. (2016) we can find summarized in Table 2.1 the
difference between these notions, by defining optimality as the deterministic counterpart
of robustness, and admissibility as the counterpart of reliability.

35



Chapter 2 Robust estimators in the presence of uncertainties

Physical system Mathematical model Computer code
Simplifications,
parametrizations

Discretization
implementation

Error on the
parameters

Natural variability

Figure 2.1 – Sources of uncertainties and errors in the modelling. The natural variability
of the physical system can be seen as aleatoric uncertainties, and the errors on the
parameters as epistemic uncertainties

No objective Objective with deterministic inputs Objective with uncertain inputs

Unconstrained Optimal Robust
Deterministic constraints Admissible Optimal and admissible Robust and admissible
Uncertain constraints Reliable Optimal and reliable Robust and reliable

Table 2.1 – Types of problems, depending on their deterministic nature for the constraints
or the objective. Shaded cells correspond to problems comprising an uncertain part.
Reproduced from Lelièvre et al. (2016)

Other definitions of robustness can be encountered in the literature, and will not
be treated in this work: Bayesian approaches are sometimes criticized for their use of
subjective probabilities that represent the state of beliefs, especially on the choice of
prior distributions. In that sense, robust Bayesian analysis aims at quantifying the
sensitivity of the choice of the prior distribution on the resulting inference and relative
Bayesian quantities derived. In the statistical community, robustness is often implied as
the non-sensitivity on the outliers in the sample set.

2.1.3 Robustness under parameteric misspecification

Given a family of models {(M(·, u),Θ) , u ∈ U} and some observations y ∈ Y sampled
from a random variable Y , we can derive a problem of parameter estimation for each
u ∈ U. As detailed in Chapter 1, we can formulate the likelihood L and the posterior
distribution, and then compute the MLE and the MAP.

Not taking into account the uncertainty on u may be an issue in the modelling,
especially if the influence of this variable is non-negligible. Choosing a specific u ∈ U
leads to localized optimisation (Huyse and Bushnell, 2001) and overcalibration, that is
choosing a value θ̂ that is optimal for the given situation (which is induced by u). This
value does not carry the optimality to other situations, or in Layman’s term according
to Andréassian et al. (2012), being lured by “fool’s gold”. In geophysics and especially in
hydrological models, this overcalibration may lead to the appearance of aberrations in
the predictions as those uncertainties become prevalent sources of errors. In hydrology,
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uncertainties are the principal culprit of the existence of “Hydrological monsters” (Kuczera
et al., 2010), that are calibrated models that perform really badly.

There are two main ways to tackle this problem. Since the environmental parameter
is random by nature with a known distribution, we can introduce it directly in the
probabilistic inference framework, by appending u to the calibration parameter and to
consider (θ, u) for the inference. This will be treated in Section 2.2. In this context, the
additional environmental variables are usually called nuisance parameters.

Another way, that we are calling the variational approach, is to consider instead
the objective function (θ, u) 7→ J(θ, u) that we want to minimise, as introduced in the
previous chapter. Due to the uncertainty on u, we can then study the family of random
variables indexed by θ ∈ Θ : {J(θ, U); θ ∈ Θ}. This will be addressed in Section 2.3.

2.2 Probabilistic inference

In probabilistic inference, the environmental parameters are sometimes called nuisance
parameters, and different ways have been studied to remove their influence. We will first
detail likelihood-based methods and then the extension to Bayesian framework.

2.2.1 Frequentist approach

From a frequentist approach, we define the joint likelihood L(θ, u; y) = pY |θ,U (y | θ, u).
Under a Gaussian assumption, the sampling distribution, Y | θ, U is

Y | θ, U ∼ N (M(θ, U),Σ) (2.1)

where Σ is a covariance matrix.

There are two common ways to get rid of the nuisance parameters: one by profiling,
one by marginalization. Profiling implies to perform first a maximisation of the likelihood
with respect to the nuisance parameters:

Lprofile(θ; y) = max
u∈U
L(θ, u; y) (2.2)

and
θprMLE = arg max

θ∈Θ
Lprofile(θ; y) (2.3)

In other words, considering the most favorable case of the likelihood given the nuisance
parameters. Comparing the MLE over Θ× U for the original joint likelihood and the
profile MLE on Θ for the profile likelihood, it is straightforward to verify that their
components on Θ coincide as

max
(θ,u)∈Θ×U

L(θ, u; y) = max
θ∈Θ
Lprofile(θ; y) (2.4)

The resulting estimator does not take into account the uncertainty upon u, and can
perform quite badly when the likelihood presents sharp ridges (Berger et al., 1999).
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Another alternative is to define the integrated, or marginalized likelihood as

Lintegrated(θ; y) =

∫

U
L(θ, u; y)pU (u) du (2.5)

=

∫

U
pY |θ,U (y | θ, u)pU (u) du (2.6)

=

∫

U
pY,U |θ(y, u | θ) du (2.7)

= pY |θ(y | θ) (2.8)

and by maximising this function,

θintMLE = arg max
θ∈Θ

Lintegrated(θ; y) (2.9)

Example 2.2.1: In order to illustrate the difference between those two methods, the
profile and integrated likelihood have been computed for the following likelihood:

Y | θ, U ∼ N (θ + u2, 22) (2.10)

and the observations y = (y1, · · · , y10) have been generated using θ + u2 = 1. We set
Θ = [−5, 5] and U = [−2, 2]. The likelihood evaluated on Θ× U is displayed Fig. 2.2,
with the integrated and profile likelihood. We can see that there is not unicity of
the maximiser for the profile likelihood: Lprofile(θ; y) is constant for θ ∈ [−3, 1]. This
is due to the fact that the observations can have been generated with any θ and u
verifying θ+u2 = 1. For the integrated likelihood however, there is a unique maximum,
attained for θintMLE ≈ 0.8.

2.2.2 Bayesian approach

Similarly as in Section 1.3.3, we can incorporate information on θ by introducing a
prior distribution pθ, and we can derive the posterior distribution using Bayes’ theorem.
We assume that U and θ are independent: pθ,U = pθ · pU . The likelihood of the data
given θ and u is

L(θ, u; y) = pY |θ,U (y | θ, u) (2.11)

The joint posterior distribution can be written as:

pθ,U |Y (θ, u | y) = L(θ, u; y)pθ(θ)pU (u)
1

pY (y)
(2.12)

∝ L(θ, u; y)pθ(θ)pU (u) (2.13)

Here, the posterior is used to do inference on θ and u jointly. In order to suppress the
dependency in u, we integrate with respect to U and get the marginalized posterior pθ|Y :

pθ|Y (θ | y) =

∫

U
pθ,U |Y (θ, u | y) du (2.14)

=

∫

U
pθ|Y,U (θ | y, u)pU |Y (u | y) du (2.15)
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We can then define the marginalized maximum a posteriori (MMAP) (Doucet et al.,
2002) as the maximiser of this marginalized posterior:

θMMAP = arg max
θ∈Θ

pθ|Y (θ | y) (2.16)

or, by taking the negative logarithm to get a minimisation problem, another writing is

θMMAP = arg min
θ∈Θ

− log pθ|Y (θ | y) (2.17)

Unfortunately, neither the integration with respect to the nuisance parameter in Eq. (2.14)
nor the subsequent optimisation is analytically easy. Assuming that we are able to get
i.i.d. samples {(θi, ui)}1≤i≤nsamples

from the posterior distribution using MCMC methods
for instance, by discarding the u components, the samples {θi}1≤i≤nsamples

are distributed
according to the marginal posterior pθ|Y , and thus can be used to get the MMAP. More
direct techniques, such as Doucet et al. (2002), introduce methods in order to estimate
iteratively the MMAP, through sampling of the joint posterior.

Example 2.2.2: Using the same data as in Example 2.2.1, we add a prior distribution
of θ as a centered normal distribution, truncated on Θ. On Fig. 2.2 we can see the
influence of the prior distribution, as it nudges the MMAP θMMAP toward 0, compared
to the integrated likelihood.

Figure 2.2 – Joint likelihood and posterior (left). Profile and integrated likelihood for
an uniform nuisance parameter and marginal posterior distribution (right)
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Those three estimators appear quite naturally in the probabilistic formulations. The
main difference between the MMAP and the integrated likelihood is the presence of the
prior distribution of θ in the formulation, thus similarly as in the inference problem of
the previous chapter (without nuisance parameter), we can incorporate information on
the calibration parameter. Regarding the profile likelihood however, this estimation relies
on the optimisation with respect to u, and thus does not really take into account its
random nature.
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2.3 Variational approach

We discussed so far the calibration problem with nuisance parameters in the formu-
lation of the likelihood or the posterior distribution. However, in data assimilation for
instance, problems of parameter estimation are often formulated directly by introducing
a cost function:

J : Θ× U −→ R+

(θ, u) 7−→ J(θ, u)
(2.18)

This function in a calibration context is measuring the misfit between the data y and
the forward operator, and can be written as the negative log-likelihood, or the negative
log-posterior distribution. Still, the objectives and criteria introduced in the following
are not specific to this context, and J can represent other properties that ought to be
reduced such as a loss or some unwanted physical properties such as the drag in airfoil
design optimisation. This general problem is sometimes quoted as Optimisation under
uncertainties (OUU) (Cook, 2018; Seshadri et al., 2014)

All in all, J(θ, u) represents the cost of taking the decision θ ∈ Θ when the environ-
mental variable is equal to u. We are going to make several assumptions:

• Θ is convex and bounded

• For all θ ∈ Θ and u ∈ U, J(θ, u) > 0

• For all θ ∈ Θ, J(θ, ·) is measurable

• For all θ ∈ Θ, J(θ, U) ∈ Ls(PU ) and s ≥ 2. So for each θ, mean and variance exist
and are finite.

As the function represents a cost, i.e. an undesirable property, we are interested in
minimising in some sense this random variable, which depends on θ. Most of existing
methods rely on the definition of a robust counterpart of the minimisation problem,
which implies to remove the dependence on the uncertain variable U . This counterpart
being a deterministic optimisation problem, we can solve it using classical methods of
minimisation.

2.3.1 Decision under deterministic uncertainty set

We will first introduce some estimators that can be argued robust, even though the
random nature of U is not directly taken into account. The uncertainty is modelled here
by assuming that no information is available on u, except that u ∈ U. In this paradigm,
U is called the uncertainty set (Bertsimas et al., 2010).

2.3.1.a Global optimisation

A global optimisation criterion, as its name suggests, advocates for minimising the
cost function over the whole space Θ× U, giving this optimisation problem:

min
(θ,u)∈Θ×U

J(θ, u) (2.19)
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Rearranging slightly this problem, the θ-component of the minimiser can be written as

θglobal = arg min
θ∈Θ

min
u∈U

J(θ, u) (2.20)

The global minimum is the equivalent of profile likelihood maximisation defined Eq. (2.2),
when J is the negative log-likelihood. This method exhibits some flaws: we are optimising
the cost function only over the most favourable cases of the environmental parameter,
thus there is no guarantee on the behaviour of J outside of those optimistic situations.
It then makes sense to “separate” θ and u in the optimisation.

2.3.1.b Worst-case optimisation

As global optimisation is inhenrently optimistic, we can easily derive a criterion which
is pessimistic in the sense that we want to minimise over the least favourable cases, thus
minimising the objective in the worst-case scenarios. The optimisation problem in this
case becomes

min
θ∈Θ

max
u∈U

J(θ, u) (2.21)

This criterion is sometimes called Wald’s Minimax criterion (Wald, 1945), and the
associated estimator is

θWC = arg min
θ∈Θ

max
u∈U

J(θ, u) (2.22)

Minimising in the worst-case sense also possesses some flaws, especially from a
computational point of view. First, the maximum on U may not exist, especially if
U is unbounded: we could make the model perform as badly as possible by taking
extreme values of u. Additionally, if it exists, the resulting estimator is most likely very
conservative as only the worse cases are considered.

2.3.1.c Regret maximin

One other approach, called Savage’s maximin regret (Savage, 1951) is to compare the
current objective to the best performance given the uncertain variable u. The translated
objective is called the regret and is defined as

r(θ, u) = J(θ, u)−min
θ∈Θ

J(θ, u) (2.23)

Using the regret as the new objective function, we can optimise it in the worst-case sense,
as introduced in Section 2.3.1.b, and the minimum is attained at θrWC:

θrWC = arg min
θ∈Θ

max
u∈U

r(θ, u) (2.24)

Example 2.3.1: Figure 2.3 shows global, worst-case and regret optimisation for the
analytical cost function

J(θ, u) =
(
1 + u(θ + 0.1)2

) (
1 + (θ − u)2

)
(2.25)
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We can see how the worst-case minimisation (in blue) and Savage’s maximin regret
(in green) compare in this example. Maximin regret will favour values of θ giving an
objective that is never too far from the optimal value available, in contrast to the
worst-case that focuses on the absolute objective.
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Figure 2.3 – Illustration of global optimisation, worst-case, and regret worst-case. The
red points on the contour of the cost function correspond to the minimisers of J at each
u fixed

So far, we did not use the fact that u was a realisation of a random variable, and did
not take advantage of the knowledge we have upon it. In the next sections, we will see
how to incorporate the knowledge of the distribution of U in the estimations.

2.3.2 Robustness based on the moments of an objective function

In the presence of uncertainties, choosing a parameter value θ can also be seen as
making a choice under risk. Let J : Θ× U→ R+ be an objective function, and assume
that for all θ ∈ Θ, J(θ, ·) is a measurable function. J can be seen as the opposite of
the utility function, often encountered in game theory or econometrics. Because of the
random nature of U , we can define a family of real random variables {J(θ, U) | θ ∈ Θ},
indexed by θ ∈ Θ. In Beyer and Sendhoff (2007), the authors define an aggregation
approach, based on the integration with respect to the uncertain variable, in order to
get an aggregated objective, which is a deterministic function that depends only on θ.
An example of this aggregation is the integration of the successive powers of the cost
function, in order to get the moments of the associated random variable, that we will
detail in Sections 2.3.2.a, 2.3.2.c and 2.3.2.d. The aggregated objective is then minimised
with respect to the control variable.
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2.3.2.a Expected loss minimisation, central tendency

One of the simplest approach when facing such a problem is to look to optimise a
central tendency of those random variables. The mean value being an obvious candidate,
we define the expected objective (or expected loss) as

µ(θ) = EU [J(θ, U)] =

∫

U
J(θ, u)pU (u) du (2.26)

The expected objective µ(θ) is sometimes called the conditional mean given θ. Taking the
expectation of the objective function is very common in many problems of classification
and regression (Bishop, 2006).

The conditional mean is minimised, giving θmean. Assuming that J(θ, u) ∝ − logL(θ, u; y),
we have

θmean = arg min
θ∈Θ

µ(θ) = arg min
θ∈Θ

∫

U
J(θ, u)pU (u) du (2.27)

= arg min
θ∈Θ

−
∫

U
logL(θ, u; y)pU (u) du (2.28)

= arg min
θ∈Θ

−
∫

U
log
(
pY |θ,U (y | θ, u)

)
pU (u) du (2.29)

Taking the average of an objective function is the basis of stochastic programming.
However, the integral of Eq. (2.26) is often intractable analytically, so instead of computing
it exactly, one usually resorts to minimising the empirical mean risk. For 1 ≤ i ≤ nU ,
let ui be i.i.d. samples from U . We can then use those samples to approximate µ: the
empirical mean is

µemp(θ) =
1

nU

nU∑

i=1

J(θ, ui) (2.30)

and the minimisation problem defined as

min
θ∈Θ

1

nU

nU∑

i=1

J(θ, ui) (2.31)

is called the sample average problem (Juditsky et al., 2009), or empirical risk minimisation
problem in Machine Learning (see e.g. Vapnik (1992)) Other indicators of central tendency
can be considered for optimisation, such as the mode or the median of the cost function.

Despite some similarities with the integrated likelihood introduced Eq. (2.5), θmean

and θintMLE are not equal in general, as shown Fig. 2.4 for the likelihood introduced
in Example 2.2.1 and Fig. 2.2.

A low expected value is to be taken with caution, as it refers to a behaviour in the
long run. Indeed, the mean value is equivalent to averaging over all the outcomes, but
there can be a compensation effect, where “good surprises” balance the “bad surprises”.
An example is the following problem:

J(θ1, U) ∼ N (2, 22) (2.32)

J(θ2, U) ∼ N (3, 12) (2.33)
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Figure 2.4 – Difference between the negative logarithm of the integrated likelihood
defined in Eq. (2.5), and the mean loss of J = − logL defined in Eq. (2.26) and the
subsequent difference in estimators

and we have to choose either θ = θ1 or θ = θ2. It is clear that EU [J(θ1, U)] < EU [J(θ2, U)].
However, making the decision θ = θ2 leads to less extreme values:

PU [J(θ1, U) > 5] = 0.06681 > PU [J(θ2, U) > 5] = 0.02275 (2.34)

Depending on the application, such a behaviour could be prohibitive. The difference
in these probabilities is explained by the difference in the variance of the random
variable J(θ, U). Accounting for the variance in the objective function is discussed
in Section 2.3.2.c.

2.3.2.b Variance optimisation

In Section 2.3.2.a, we used the mean as a measure of the central tendency that we
want to minimise. Jointly with the central tendency, information about the dispersion of
the random variable may also be relevant, in order to predict how much deviation should
be expected around the mean. Let us define the variance of the objective function:

σ2(θ) = Var [J(θ, U)] (2.35)

and minimising this variance yields

θvar = min
θ∈Θ

σ2(θ) = min
θ∈Θ

σ(θ) (2.36)

Depending on the application, the equivalent formulation using the standard deviation
may be used instead of the variance. In both formulations, such a computation requires the
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evaluation of an expensive integral, this problem can be tackled using sample averaging,
and the minimisation problem becomes

min
θ∈Θ

1

nU − 1

nU∑

i=1

(J(θ, ui)− µemp(θ))2 (2.37)

Figure 2.5 shows the conditional mean and conditional standard deviation for the
objective function J defined Eq. (2.25).
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Figure 2.5 – Illustration of conditional mean and conditional standard deviation, as a
function of θ. Those quantities have been rescaled to share the same range on the right
plot.

2.3.2.c Multiobjective optimisation

Minimising the variance is often irrelevant without additional constraints, as it could
just point toward really high values of the objective function, but steady with respect to
θ. Taking both objectives: low mean value and low variance together to the following
multiobjective optimisation problem:

min
θ∈Θ

(µ(θ), σ(θ)) (2.38)

This problem can be tackled in different ways using multiobjective optimisation. To
compare θ1 and θ2, we can compare component-wise the objective vectors (µ(θi), σ(θi))
for i = 1, 2. If µ(θ1) ≤ µ(θ2) and σ(θ1) ≤ σ(θ2), θ2 is said to be dominated by θ1. The
Pareto frontier is defined as the set of points in Θ that cannot be dominated by any other
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points. For points on this front, one cannot decrease further one of the objective without
increasing the other. On Fig. 2.6 is illustrated the Pareto frontier for the multiobjective
problem of Eq. (2.38). The red point corresponding to θ1 is dominated by the green point
θ0 on the frontier, but not by the green point of θ2. A solution of the multiobjective
problem can then be chosen within the Pareto frontier.

µ(θ)

σ
(θ

)

θ0

θ2

θ1

Pareto frontier for
the multiobjective optimisation problem (µ, σ)

Pareto frontier
(µ(θ0), σ(θ0))

(µ(θ1), σ(θ1))

(µ(θ2), σ(θ2))

Figure 2.6 – Illustration of the Pareto frontier for the multiobjective problem of Eq. (2.38).
The shaded regions corresponds to the domain dominated by each points

Instead of finding the Pareto frontier, the multiobjective problem is often “scalarized”
by summing the weighted objectives (Marler and Arora, 2010), provided that such an
operation makes sense with regards to the units of the quantities, justifying the use of
the standard deviation instead of the variance.

min
θ∈Θ

λµ(θ) + (1− λ)σ(θ) = min
θ∈Θ

λEU [J(θ, U)] + (1− λ)
√
Var[J(θ, U)] (2.39)

where λ ∈ [0, 1] is chosen to reflect the preference toward one or another objective.

2.3.2.d Higher moments in optimisation

Higher moments can also be considered as additional criteria, especially in Portfolio
optimisation (Lai et al., 2006; Briec et al., 2007). For a real random variable X ∈ L3 (with
respect to Lebesgue’s measure on R), the skewness coefficient measures the asymmetry
in the distribution, and is the (normalized) centered moment of order 3:

sk [X] = E

[(
X − µ
σ

)3
]

(2.40)
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where µ = E[X] and σ =
√
Var[X].

Adding the skewness in the optimisation translates to a preference toward a risk-averse
or a risk-seeking approach. Indeed, as the main goal is the optimisation of an objective
function, deviations of the value of the random variable toward lower values is more
desirable than deviations toward larger values.

This is illustrated Fig. 2.7: all three of the random variables displayed have the same
mean and variance. If the skewness coefficient is negative, the distribution presents a
heavier left tail than right. In other words, a sample taken from this distribution has
a higher probability of being a “good surprise”. On the other hand, if a big deviation
occurs for a sample from a right-skewed distribution, it is more probable to be a large
deviation toward large values of the sample space, hence the term “bad surprise”.
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Figure 2.7 – Pdf and cdf of random variables with same mean, variance but different
skewness

Other extensions have been developed around the cdf of the random variable, es-
pecially in portfolio optimisation. Indeed, integrating and comparing the cdf allows to
introduce a domination order between random variables. These concepts of Stochastic
Dominance (Ogryczak and Ruszczynski, 1997) are then used to take decisions under
uncertainties.

2.4 Regret-based families of estimators

All the methods introduced above required first to eliminate in some sense the
dependency on the environmental parameter, in order to transform the random variable
J(θ, U) into an objective that depends solely on θ, and to optimise this deterministic
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counterpart. For a given θ ∈ Θ, this elimination is done by aggregating all the possible
outcomes J(θ, u) when u is a sample of U .

We propose now to reverse these steps, by first optimising the objective function
with respect to θ, and, from the set of minimisers that depend on u obtained, derive
an estimator. The rationale behind this permutation is that every situation induced by
a realisation u is to be taken separately, quite similarly as Savage’s regret introduced
Section 2.3.1.c. In turn, this avoids aggregation (and in a sense compensation) between
the different u.

The work detailed in this section is largely based on Trappler et al. (2020).

2.4.1 Conditional minimum and minimiser

We assume that U is a continuous random variable, with a compact support.

Definition 2.4.1 – Conditional minimum, minimiser: Let J : Θ × U be an
objective function, and let us assume that for each u ∈ U, minθ∈Θ J(θ, u) exists and is
attained at a unique point. We denote

J∗(u) = min
θ∈Θ

J(θ, u) (2.41)

the conditional minimum of J given u, and

θ∗(u) = arg min
θ∈Θ

J(θ, u) (2.42)

is defined as the conditional minimiser

As u is thought to be a realization of a random variable U , we can consider the two
random variables θ∗(U) and J∗(U). The conditional minimum J∗(U) is then a random
variable describing the best performances of the calibration, if we could optimise the
objective function for each realization of U .

Similarly, let us assume that the conditional minimiser is well defined for all u ∈ U.
We can study the image of the random variable through this mapping, that we will denote
θ∗(U). This random variable in itself gives already information on the “identifiability” of
a robust estimate, depending on the information carried by its distribution.

Example 2.4.2: Let Θ = U = [0, 1], and U ∼ Unif(U), and the following objective
functions:

J1(θ, u) = (1 + u) + (θ − 0.5)2 (2.43)

J2(θ, u) = (θ − u)2 + 1 (2.44)
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We have

θ∗1(u) = arg min
θ∈Θ

J1(θ, u) = 0.5 (2.45)

θ∗2(u) = arg min
θ∈Θ

J2(θ, u) = u (2.46)

In the first case, θ0 = arg min θ J(θ, U), so θ∗1(U) is a degenerate random variable
almost surely equals to θ0. In other words, the minimiser is not dependent on the
value taken by the environmental parameter. The minimal value attained J∗ might be
dependent though. On the other hand, for J2, as Θ = U and U ∼ Unif(U), θ∗2(U) is
uniformly distributed on Θ, no value shows a better affinity of being a minimiser than
the other.

In general, this random variable cannot be classified as continuous or discrete without
further study. However, in the following, we are going to assume that it is a continuous
random variable. The entropy of the random variable θ∗(U) (see Definition 1.2.14) can
be seen as a measure of the sensitivity of the calibration when the environmental variable
varies. If the support of the random variable θ∗(U) is bounded, the distribution with the
highest entropy on this support is a uniform distribution. Per the continuity assumption,
this entropy can be estimated by various methods (see for instance Beirlant et al. (1997)).

This distribution of the minimisers and its entropy can be used for global optimisation,
as outlined in Hennig and Schuler (2011). Furthermore, the authors provide an analytical
expression of the pdf of the minimisers, and the nature of the infinite product is discussed:

pθ∗(θ) =

∫

U
pU (u)

∏

θ̃∈Θ
θ̃ 6=θ

1{J(θ̃,u)>J(θ,u)} du (2.47)

However, except for simple analytical problems, the pdf pθ∗ cannot be obtained
analytically, and needs to be estimated. This can be done by different methods, depending
on the assumptions we can make upon θ∗(U). Let {ui}1≤i≤nU be nU i.i.d. samples of
U , and {θ∗(ui)}1≤i≤nU the corresponding minimisers, as defined Eq. (2.42). Among the
methods of density estimation, one of the easiest to implement and widespread method
is Kernel Density Estimation (KDE). Given the samples ui and the minimisers θ∗(ui)
for 1 ≤ i ≤ nU , the isotropic KDE is given by

p̂θ∗(θ
∗) =

1

nUhdim Θ

nU∑

i=1

K
(
θ∗ − θ∗(ui)

h

)
(2.48)

where h > 0 is the bandwidth (that measures the influence of each sample), and K is a
kernel of dimension p = dim Θ, usually defined as the product of one-dimensional kernels
K1D: K(θ) =

∏dim Θ
j=1 K1D(θj). Several choices of 1D kernels are available, and one of the

most common one is the Gaussian Kernel: K1D(θj) = (2π)−1/2 exp(−θ2
j/2). Figure 2.8

shows the estimated density p̂θ∗ using KDE and Scott’s rule for the bandwidth (Scott,
1979), along with the histogram of the minimisers.
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Figure 2.8 – Density estimation of the minimisers of J

Finally, when we have an estimation of the density of θ∗, and if it exists, we can
compute its mode, that we are going to call the Most Probable estimator :

θMPE = arg max
θ∈Θ

pθ∗(θ) (2.49)

This mode can be sought directly using appropriate algorithms, such as the Mean-shift
algorithm (Yizong Cheng, 1995), based on the KDE, or clustering methods, such as the
Expectation-Maximisation algorithm introduced in Dempster et al. (1977).

Choosing θMPE means to select the value that is “most often” the minimiser of the
objective function. However, we have no indication on its performances when it is not
optimal, and how often this non-optimality happens. In Section 2.4.2, we are going to
introduce the notions of regret (additive and relative), in order to try to be “almost
optimal” with high probability.

2.4.2 Regret and model selection

In this section, we will first focus on objective functions defined as the negative
log-likelihood in order to link the additive regret and the likelihood ratio test.

2.4.2.a Objective as the negative log-likelihood

Let the objective function be the negative log-likelihood:

J(θ, u) = − log pY |θ,U (y | θ, u) = − logL(θ, u) (2.50)
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We can then link the notion of Wald’s regret introduced earlier in Eq. (2.23) to the
likelihood-ratio test:

r(θ, u0) = J(θ, u0)− min
θ′∈Θ

J(θ′, u0) = J(θ, u0)− J∗(u0) (2.51)

= max
θ′∈Θ

logL(θ′, u0)− logL(θ, u0) (2.52)

= − log
L(θ, u0)

maxθ′∈Θ L(θ′, u0)
= − log

maxθ′∈{θ} L(θ′, u0)

maxθ′∈Θ L(θ′, u0)
(2.53)

As the model (M(·, u0),Θ) is misspecified, we can apply the misspecified likelihood-
ratio test, and for a candidate θ ∈ Θ we can test for the following hypotheses:

• H0: the model (M(·, u0), {θ}) is statistically equivalent to {M(·, u0),Θ}
• H1: the models are statistically different

The statistic of the test, i.e. the regret r is to be compared with half the quantile of the
r.v. X(u0) defined as

X(u0) =
dim Θ∑

i=1

ci(u0)Ξi with Ξi ∼ χ2
1 i.i.d. (2.54)

where {ci(u0)}1≤i≤dim Θ are coefficients linked to the eigenvalues of the Fisher information
matrix as evoked in Section 1.6.

The null hypothesis H0 is rejected at a level η ∈]0; 1[ if

r(θ, u0) = J(θ, u0)− J∗(u0) > β (2.55)

Where β is half the 1− η quantile of the random variable X(u0) defined Eq. (2.54).

Using this rejection region, we can construct a likelihood interval (as defined Eq. (1.73)),
which depends on u0:

ILik(u0;β) = {θ ∈ Θ | J(θ, u0)− J∗(u0) ≤ β} (2.56)

So, for θ ∈ ILik(u0;β), the model (M(·, u0), {θ}) is acceptable at the η-level, per the
likelihood-ratio test.

From a computational point of view, the coefficients {ci(u0)} are hard to obtain, and
depend on u0. A first approximation would be to suppose that X(u0) ∼ χ2

dim Θ, i.e. to
apply the “well-specified” likelihood-ratio test. In the more general case, we can choose
β > 0 in a more arbitrary way in order to avoid the computations of the coefficients
{ci(u0)}i, as we are going to see Section 2.4.2.b.

2.4.2.b Interval and probability of acceptability

We assumed before that J was the negative log-likelihood. In the more general case,
J represents a loss function, that we want to minimise. The generalization of Eq. (2.56)
is what we are calling the interval of acceptability.
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Definition 2.4.3 – Interval of acceptability: By analogy with the likelihood
interval defined Eq. (1.73) and Eq. (2.56), we can construct a set for an arbitrary
threshold β ≥ 0 such that

Iβ(u) = {θ ∈ θ | J(θ, u) ≤ J∗(u) + β} (2.57)

As J may not stem from a likelihood, we call Iβ(u) the interval of acceptability. In
other words, we say that θ ∈ Θ is β-acceptable for U = u if θ ∈ Iβ(u).

Figure 2.9 shows an objective function evaluated for different fixed ui. The β-
acceptable intervals for those environmental variables are plotted below the curves.
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Figure 2.9 – Different acceptable regions corresponding to different u ∈ U

Now, for a given θ ∈ Θ, we can define the set of u ∈ U such that θ ∈ Iβ(u), i.e.

Rβ(θ) = {u ∈ U | θ ∈ Iβ(u)} (2.58)
= {u ∈ U | J(θ, u) ≤ J∗(u) + β} (2.59)

This set is measurable, and by measuring this subset of U with respect to the distribution
of U , we get

Γβ(θ) = PU [Rβ(θ)] (2.60)

Loosely speaking, for a given θ, Γβ(θ) is the probability that the model (M(·, U), {θ})
is “statistically equivalent” to the “full model” (M(·, U),Θ)), at a certain level linked to
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Figure 2.10 – Boundaries of regions of acceptability for increasing β, and Γβ. The
coloured lines on the left plot are the boundaries of those regions

the value of β. Figure 2.10 shows the regions of acceptability for different β, and the
associated Γβ .

Γβ is then maximised with respect to its argument, in order to get the value θ which
has the highest probability of being acceptable at the level β. For different β ≥ 0, we
can define the family of additive-regret estimators.

Definition 2.4.4 – Additive-regret family of estimators: For β ≥ 0, we define
the family of robust estimators as the maximisers of Eq. (2.60):

{
θAR,β = arg max

θ∈Θ
Γβ(θ) | β > 0

}
(2.61)

Among this family of estimators, we can then choose a particular value, either by setting
a threshold β arbitrarily, or by choosing it so that the probability of being acceptable
max Γβ reaches a particular value. This will be discussed later in Section 2.4.4.

2.4.3 Relative-regret

2.4.3.a Absolute and relative error

We examined before regret that can be qualified as additive as this is the difference
between J and J∗ that is compared to fixed thresholds. However, we can argue that the
relative magnitude of the objective function has an importance in the comparison. For
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illustration purposes, let us consider the situation described Table 2.2, with Θ = {θ1, θ2}
and U = {u1, u2}, and P[U = u1] = P[U = u2] = 1/2.

J u1 u2 E[J(·, U)]

θ1 10000 110 5055
θ2 10100 10 5055

J − J∗ u1 u2

θ1 0 100
θ2 100 0

J−J∗
J∗ u1 u2

θ1 0 10
θ2 0.01 0

Table 2.2 – Illustration of an objective function, expected loss, additive regret and
relative error

In this situation, for both u1 and u2, the maximal additive regret is maxθ J(θ, u)−
J∗(u) = 100, so no clear preference could be inferred toward one or another value.
However, choosing θ1 over θ2 means to choose to improve the performance of an already
pretty bad situation (10000 instead of 10100), while increasing tenfold the loss for the
situation U = u2.

From the example developed Table 2.2, an alternative to the additive regret may be
considered, as the difference in magnitude of the objective function between U = u1 and
U = u2 is probably due to the effect of a misspecification. So to take into account this
difference, we are now going to consider the relative regret J/J∗, instead of the absolute
regret J − J∗, and derive a family of estimators in a similar fashion.

2.4.3.b Relative-regret estimators family

Analogously as the additive regret defined before, we are going first to define the
notions of acceptability in the case of the relative regret.

Definition 2.4.5 – α-acceptability: Let α ≥ 1. A point (θ, u) is said to be α-
acceptable if J(θ, u) ≤ αJ∗(u). We define the α-acceptable interval as

Iα(u) = {θ ∈ Θ | J(θ, u) ≤ αJ∗(u)} (2.62)

Then, for a given α and θ, we can define the set of u ∈ U such that θ is α-acceptable:

Rα(θ) = {u ∈ U | θ ∈ Iα(u)} = {u ∈ U | J(θ, u) ≤ αJ∗(u)} (2.63)

Rα(θ) is a measurable subset of U, and by integrating this set with respect to PU , we get

Γα(θ) = PU [Rα(θ)] (2.64)

the probability of being α-acceptable. Using this function, we can define an estimator as
the value which maximises this probability. And by varying the threshold α, we get the
family of relative-regret estimators.

Definition 2.4.6 – Relative-regret family of estimators: Given α, the value of
θ that maximises the probability of being α-acceptable is called the relative-regret
(RR) estimator θRR,α.
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We define the family of relative regret estimators as the set of those estimators:
{
θRR,α = arg max

θ∈Θ
Γα(θ) | α > 1

}
(2.65)

For different increasing α, the corresponding regions of acceptability are represented
in Fig. 2.11, along with the functions Γα.

Among those estimators and the associated quantities, two limiting cases appear.
One particular choice is to set α to 1. In this case, we have

I1(u) = {θ∗(u)} (2.66)
R1(θ) = {u ∈ U | J(θ, u) = J∗(u)} = {u ∈ U | θ = θ∗(u)} (2.67)

We have then that Γ1(θ) is non-zero if the set R1(θ) has non-zero measure with respect
to PU . In other words, Γ1(θ) is non-zero if θ is the minimiser of J(·, u) for a non-negligible
subset of U. If we consider that Θ is a discrete space (due to a discretization for instance),
θ∗(U) is a discrete random variable. Γ1(θ) is then the probability mass function (discrete
parallel of the pdf) of the discrete r.v. θ∗(U). In this case, θRR,α=1 = θMPE. A similar
argument can be made for the additive regret and β = 0.

We can see that the thresholds act like a relaxation of the optimality condition, as
for α = 1 and β = 0, we are measuring the probability of being optimal, while increasing
those values means to measure the probability of being nearly optimal.

Another choice is to set the threshold large enough so that the probability of being
acceptable reaches a unique maximum, being 1. In this situation, the regret is bounded
almost surely. Let βinf and αinf , which verify

βinf = inf {β ≥ 0 | max Γβ = 1} and αinf = inf {α ≥ 1 | max Γα = 1} (2.68)

To put it differently, αinf and βinf are the smallest thresholds where there exists a value in
Θ acceptable almost surely. This value shares similarities with the minimiser of Savage’s
regret: θrWC introduced Section 2.3.1.c, as it minimises almost surely (i.e. for all u in a
non-negligible set) the regret, either additive or relative.

For both regret-based approaches, the interval of acceptability at a fixed u ∈ U grows
with the threshold, and the sharper the minimum is (in the sense of a large curvature),
the faster it grows. A more telling illustration of the differences between relative and
additive regret is shown Fig. 2.12. The regions of acceptability of an objective function
J have been plotted, along with an interval I(u) and the region R for a given θ for both
regrets. For u around 0, J is quite flat, but also has very low values. In this case, the
interval Iβ(u) is also large. But for u around 1, the objective function presents higher
values, and a sharper minimum (i.e. a higher curvature). Additive regret in this case puts
stronger confidence on the value of the parameter as indicated by the smaller interval of
acceptability.

For the relative regret, the situation is reversed. Although sharp, the large value
attained by the minimum J∗(u), for u around 1 leads to a large interval of acceptability,
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Figure 2.11 – Regions of acceptability for relative regret and increasing α. The coloured
lines on the left plot are the boundaries of those regions

meaning that we can deviate a bit more from this minimum, as the situation u ≈ 1 is
already pretty bad. For u ≈ 0, which is close to the global minimum of J , the interval is
smaller, as this criterion does not favour a large deviation from this global minimum.

2.4.4 The choice of the threshold

We are now going to focus exclusively on the relative-regret, and the associated
treshold α, but similar arguments can be made for the absolute regret and the threshold
β.

In order to have an insight on the potential robustness of an estimator θRR,α both
values can be studied together: the threshold α and the maximal probability reached
max Γα. Finding a relevant threshold can be a thorny issue, especially with no further
information on J . Setting it too large will lead to large α-acceptable intervals, and Γα
may reach 1 for several different values. On the other hand, choosing a threshold too
small may give a maximal acceptability probability too low to assess the robustness of
the chosen solution. We can contemplate three starting points:

• Set a relaxation parameter α > 1. From this, the maximal probability is pα =
maxθ∈Θ Γα = maxθ∈Θ PU [J(θ, U) ≤ αJ∗(U)]. This task can be seen as the estima-
tion and optimisation of a specific probability.

• Set a probability 0 < p ≤ 1 we want to reach, and define αp = infα≥1{maxθ∈Θ Γα(θ) ≥
p}, so the problem can be thought as the estimation and the optimisation of quantile
of a particular random variable: we can define αp as the solution of the following
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Figure 2.12 – Comparison of the regions of acceptability for additive and relative regret

chance constrained problem:
{

minθ∈Θ q(θ)
such that PU [r(θ, U) ≤ q(θ)] ≥ p (2.69)

where r(θ, u) = J(θ, u)/J∗(u) or r(θ, u) = J(θ, u)−J∗(u) depending on the context,
and q(θ) is the quantile of order p of the r.v. r(θ, U).

• Study the evolution of one quantity with respect to the other, in order to find a
balance between the probability of being acceptable, and the relaxation needed to
reach it.

Specific techniques may be applied in order to perform the first two approaches
efficiently, which will be introduced in the next chapter. The third one however requires
the knowledge of the objective function on the whole joint space Θ × U, in order to
compute max Γα for a various number of thresholds, thus may not be adapted for costly
computer simulations.

2.5 Partial Conclusion

As shown throughout this chapter, when optimising under uncertainties, a lot of
criteria can be defined in order to satisfy the idea of robustness, depending on the
interpretation of this term. A summary of those introduced here can be found Table 2.3.
Some criteria are commonly encountered in optimisation under uncertainty, such as
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expected loss minimisation. We introduced also new families of estimators, which aim at
maximising a probability based on the regret, either additive or relative.

Objective name Objective to minimise with respect to θ

Profile Likelihood − log
(
maxu∈U pY |θ,U (y | θ, u)

)

Integrated Likelihood − log
∫
U pY |θ,U (y | θ, u)pU (u) du = − log pY |θ(y | θ)

Marginal maximum a posteriori − log pθ|Y (θ | y)

Global Optimum minu∈U J(θ, u)
Worst-case maxu∈U J(θ, u)
Regret worst-case maxu∈U {J(θ, u)−minθ′∈Θ J(θ′, u)}
Mean EU [J(θ, U)]

Mean and variance λEU [J(θ, U)] + (1− λ)
√
VarU [J(θ, U)]

Most Probable Estimate − log pθ∗(θ)
Additive-regret −PU [J(θ, U) ≤ J∗(U) + β] = −Γβ(θ)
Relative-regret −PU [J(θ, U) ≤ αJ∗(U)] = −Γα(θ)

Table 2.3 – Summary of single objective robust estimators

Obviously, other criteria can be defined, that satisfy other robustness requirements.
Furthermore, we did not treat the possibility of combining some of those objectives by
using them to set constraints. An example is the minimisation of the variance, under the
constraint that the mean value does not exceed a certain threshold T as in Lehman et al.
(2004):

minVarU [J(θ, U)]

s.t. EU [J(θ, U)] ≤ T

All of the criteria introduced above require costly numerical procedures, such as
integration and optimisation. Solving these robust estimation problems is then expensive
in term of computer resources, as one would need to run the forward model a very large
number of times in order to get accurate numerical integration or optimisation. In the
next chapter we will discuss methods based on surrogate modelling, that can be used
to solve efficiently such problems, in order to make the best of the evaluations of the
numerical modelM on the space Θ× U.

* * *
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3.1 Introduction

In the previous chapter, we introduced different notions of robustness for the estimation
of a calibration parameter. Those objectives usually require the evaluation of various
integrals, and to perform several optimisations. A large number of model evaluations
is then needed, but it may bring some practical issues, as numerical models are usually
very expensive to run in terms of computational resources. Indeed, for most realistic
physical simulations, systems of PDEs over large discretized domains have to be solved.
Even though the programs are optimised and parallelized to take best advantage of
high-performance computers, the time required to compute the quantities of interest may
range from a few seconds to days. Because of that, methods requiring a large number of
runs of the model for exhaustivity should be avoided.

In this chapter, we will focus on the use of surrogate models to solve robust optimisation
problems, according to some of the criteria introduced in the previous chapter.

Definition 3.1.1 – Surrogate function: Let f : X→ R be a function representing
the computation of a quantity of interest. A surrogate, or metamodel, or emulator of
f , say g, is a function from X to R which possesses two main properties:

• g is an approximation of f

• g is cheaper to evaluate than f

We will focus exclusively on kriging (Krige, 1951; Matheron, 1962), also called Gaussian
Process regression, but other methods can be used to solve such problems. Polynomial
Chaos regression for instance Wiener (1938); Xiu and Karniadakis (2002); Sudret (2015);
Miranda et al. (2016).

Those surrogates then be used directly instead of f in a plug-in approach.

Definition 3.1.2 – Plug-in method: In this work, we will use the term plug-in as
the fact of using directly an estimated quantity, such as a surrogate g instead of the
expensive-to-evaluate original function f in computations.

In this chapter, after defining the usual kriging equations in Section 3.2.2, we are
going to introduce a few classic and useful criteria in Section 3.3 for global optimisation
and/or exploration of an unknown function f . Finally, in Section 3.5, we are going to
focus on robust optimisation, by splitting the input space in Θ and U, and introduce
other strategies to take advantage of the nature of the surrogate in order to efficiently
compute the robust estimates introduced before, especially regret-based estimators.

3.2 Gaussian process regression

In the following, we will consider a generic function f , that maps a space X to R.
Depending on the application, X = Θ or X = Θ × U. This function is unknown, and
expensive to evaluate.
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3.2.1 Random processes

Let us assume that we have a map f from a p-dimensional space to R:

f : X ⊂ Rp −→ R
x 7−→ f(x)

(3.1)

This function is assumed to have been evaluated on a design of n points, X =
{(xi, f(xi))}1≤i≤n, called the initial design. For notational simplicity, we write x ∈ X if
(x, f(x)) ∈ X , i.e. if the point x has been evaluated by f . As this function is unknown,
there is uncertainty on the values outside the initial design, which can be classified as
epistemic since it can be reduced by directly evaluating the function (see Section 2.1).
This uncertainty on the value taken by the function leads us to the definition of random
processes:

Definition 3.2.1 – Random process: Let (Ω,F ,P) be a probability space, and
X ⊂ Rp. A random process Z is a collection of random variables indexed on X, so for
each x ∈ X, Z(x) is a real random variable (i.e. Z(x) : Ω→ R):

Z : X −→ (Ω→ R)
x 7−→ Z(x)

(3.2)

A sample from this random process, that is Z(·)(ω) for ω ∈ Ω will be shortened as
Z(·, ω) for notational purpose, and is called a sample trajectory, or a sample path.
When ω is omitted, Z(x) represents the random process at the point x ∈ X.

From a Bayesian point of view, such a random process can act as a prior on the function
f , or in other words, f can be thought as a particular sample path of Z. Evaluating the
function at an additional point x /∈ X provides new information on the random process,
and we can update our belief on f .

In this work, we are going to focus exclusively on a specific type of random process,
namely the Gaussian process (abbreviated as GP). Other types of random process can
be encountered in the literature: Student t-processes in Shah et al. (2014) are introduced
as alternatives to GP to account for larger tails, or various graphical models such as
Gaussian and Markov Random Fields in Bishop (2006); Li (2009) are used to model
images for instance.

Definition 3.2.2 – Gaussian process: Let Z be a random process on X, i.e. a
collection of random variables indexed by X. Z is a Gaussian process (GP) if any finite
number of those random variables have a multivariate joint Gaussian distribution. In
that case, Z is uniquely defined by its mean function mZ : X→ R and its covariance
function CZ : X× X→ R:

mZ(x) = E [Z(x)] (3.3)
CZ(x, x′) = Cov[Z(x), Z(x′)] (3.4)
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and we write Z ∼ GP(mZ , CZ). Due to the definition of a GP, we also have for all
x ∈ X

Z(x) ∼ N (mZ(x), σ2
Z(x)) (3.5)

with σ2
Z(x) = CZ(x, x)

A more thorough description of Gaussian processes and their applications can be found
in Rasmussen and Williams (2006).

Let Z be a GP with a known covariance function. The construction of a covariance
function will be discussed Section 3.2.3. Based on the initial design X , we can construct
a surrogate for the unknown function f by conditioning the GP on the design which
comprises some evaluations of f .

3.2.2 Kriging equations

Given a Gaussian process Z as a prior on f , and by conditioning it by the initial
design X = {(xi, f(xi)}1≤i≤n, the conditioned random process is still a GP:

Z | X ∼ GP(mZ|X , CZ|X ) (3.6)

Given the nature of Z and the initial design, we can derive the joint distribution of the
GP at the points of the design and the GP at an unobserved point x ∈ X:

(
Z(x)
Z(x)

)
∼ N

((
µZ

mZ(x)

)
;

(
KX KX (x)

KX (x)T CZ(x, x)

))
(3.7)

where x = (x1, . . . , xn), xi ∈ X , for 1 ≤ i ≤ n are the points of the design and

Z(x) = (Z(x1), . . . , Z(xn)) (3.8)

KX (x) = (CZ(x, x1), CZ(x, x2), . . . , CZ(x, xn))T (3.9)
KX = (CZ(xi, xj))1≤i,j≤n (3.10)

and µZ = E [Z(x)] is the mean of the unconditionned GP. When this mean is assumed
to be known, the kriging procedure is qualified of Simple Kriging, otherwise, we often
talk about Ordinary Kriging. Finally, when this mean is a deterministic function (that
may be estimated), we talk about Universal Kriging (Le Riche, 2014). In the following,
we consider Simple Kriging.

Using the properties of the multivariate distribution, the GP conditioned on the
observations of Eq. (3.6) has mean and covariance function defined by

mZ|X (x) = mZ(x) +KX (x)TK−1
X (f(x)− µZ) (3.11)

CZ|X (x, x′) = CZ(x, x′)−KX (x)TK−1
X KX (x′) (3.12)

These are called the kriging equations.

Given the fact that a conditioned GP is still a GP, at a point x ∈ X, we have

Z(x) | X ∼ N
(
mZ|X (x), σ2

Z|X (x)
)

with σ2
Z|X (x) = CZ|X (x, x) (3.13)
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The function mZ|X : X → R can then be defined as a surrogate for f . This surrogate
provides an interpolation of the unknown function f , since for x ∈ X , f(x) = mZ|X (x). In
addition to that interpolation property, for points not in the design, we have a measure of
the epistemic uncertainty modelled by the normal r.v. in Eq. (3.13). As an illustration, for
a few training points and their respective evaluations, we represented the GP regression
of an unknown function f Fig. 3.1.
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True function f
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Training points

Figure 3.1 – Example of a Gaussian Process, as a surrogate for a function f evaluated
at 4 inputs. The shaded regions correspond to the regions mZ ± i · σZ for i = 1, 2, 3.

From a computational point of view, GP are relatively cheap to handle:

• If the covariance function CZ is known, the most expensive step in the estimation
of mZ|X and CZ|X is the inversion of the matrix KX . This matrix does not depend
on the points x where we wish to evaluate mZ|X , thus its inversion needs only
to be performed once. However, if there is a very large number of points in the
design, and thus a very large matrix KX , this inversion can reveal itself numerically
complicated in practice. This renders GP suited for problems involving only a
moderate number of dimensions

• In order to get a sample path from this GP, one need to be able to sample from
a multivariate normal distribution, and thus only need to compute the Cholesky
decomposition of the conditioned covariance matrix.

However, if some points of the design are very close to each other, the covariance matrix
can be ill-conditioned. In this case, for numerical stability, we can add a nugget effect to
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KX , and Eq. (3.14) becomes:
(
Z(x)
Z(x)

)
∼ N

((
µZ

mZ(x)

)
;

(
KX + ς2Id KX (x)
KX (x)T CZ(x, x)

))
(3.14)

From a probabilistic point of view, we can see the nugget effect as an added Gaussian
noise when evaluating the function, i.e. that we are observing f(xi) + ε with ε ∼ N (0, ς2).
When ς2 6= 0, the GP is no longer interpolant, as Var [Z(x) | X ] 6= 0 for x ∈ X .

3.2.3 Covariance functions

In the previous section, we described the equations to solve to get the surrogate mZ|X
of f based on GP. The kriging equations are based on the covariance function CZ . A
covariance is said to be stationary, if for all x, x′ ∈ X, the covariance of the GP between
those two points depends only on the difference h = x− x′ = (h1, · · · , hp). In that case,
we will write CZ(x, x′) = CZ(h). For multidimensional problems, covariance functions
are usually chosen as the product of one dimensional covariance functions:

CZ(h) = s2
p∏

i=1

Ci(hi; li) (3.15)

These covariance functions introduce an additional parameter l = (l1, . . . , lp) of dimension
p = dimX, and a variance parameter s2. l is called the length scale and quantify the
radius of influence of an evaluation along the different input variables. If the length scales
are all equals, the covariance kernel is said isotropic. Otherwise, the kernel is anisotropic.
A few common stationary 1D-covariance functions are introduced Table 3.1.

Name C(h; l) Regularity of sample paths

Gaussian exp
(
− h2

2l2

)
C∞

Exponential exp
(
− |h|l

)
C0

Matérn 3/2
(
1 +
√

3hl
)

exp
(
−
√

3hl
)

C1

Matérn 5/2
(

1 +
√

5hl + 5
3
h2

l2

)
exp

(
−
√

5hl
)

C2

Table 3.1 – Common stationary covariance functions

The choice of a particular covariance function is usually motivated by the wanted
regularity of the sample paths. For example, if the unknown function f is assumed to
be infinitely differentiable, a Gaussian kernel is suited for the modelling. One common
choice is the Matérn kernel of order 5/2, so that the sample paths are twice-differentiable.
Figure 3.2 shows the shape of the different covariance functions introduced Table 3.1,
and also a few sample paths of an unconditioned Gaussian Process Z ∼ GP(0, C(·, ·))
for each of the covariance functions.

3.2.4 Initial design and validation

The (p+ 1) hyperparameters of the covariance, i.e. the length scales (l1, . . . , lp) and
the variance parameter s have to be estimated based on the training set X . This is

67



Chapter 3 Adaptive strategies for calibration using Gaussian Processes

0 1 2 3 4

h

0.0

0.2

0.4

0.6

0.8

1.0

C
Z

(h
)

Common covariance functions

Exponential
Matérn 3/2

Matérn 5/2

Gaussian

Exponential

Matérn 3/2

Matérn 5/2

Gaussian

Figure 3.2 – Common covariance functions for GP regression. The right plots show
(unconditioned) sample paths for those different covariance functions with same length
scale.

usually done by MLE (see for instance Ribaud et al. (2019)), or by cross-validation
(see Ginsbourger et al. (2009)).

In order to construct a Gaussian process, or a general metamodel for that matter,
the model must first be evaluated on the initial design X which should present good
space-filling properties. An usual choice is to use Latin Hypercube Sampling (LHS), and
a widespread rule of thumb for the initial number of points of X to be evaluated is about
10p. In order to validate the GP, i.e. to verify that the GP does not overfit the data,
one can use cross-validation as described in Dubrule (1983).

3.3 General enrichment strategies for Gaussian Processes

We detailed so far the construction of a GP on a unknown function f , based on an
initial design. However the surrogate is usually not an end in itself, as it may be used
afterward to replace the original function for expensive procedures in a plug-in approach
(see Definition 3.1.2). Obviously, if the surrogate is not accurate enough, the subsequent
computations can become meaningless, that is why we are going to see how one can
improve such surrogate.
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The approximation given by the metamodel can be improved by adding points to
the design, i.e. by evaluating some points in the input space. In order to incorporate
as most information on f as possible, choosing those points can be done sequentially,
by optimising a specified criterion, as described Section 3.3.1, or we can look to add a
batch of K points each iteration, as described in Section 3.3.2. Those procedures can be
performed until some specific stopping criterion is met. Alternatively, as the unknown
function f is expensive to evaluate, we can define a maximal number of calls allowed to
the function, and the procedures stop when the budget of evaluations is spent.

3.3.1 1-step lookahead strategies

For an unknown function f , a GP is initially constructed based on a design X0 =
{(x1, f(x1)) , . . . , (xn0 , f(xn0))}, that consists of n0 points of X, and their corresponding
evaluations. This GP is denoted Z | X0 and is defined as

Z | X0 ∼ N (mZ|X0
(x), σ2

Z|X0
(x)) (3.16)

For notational convenience, the conditioning with respect to X0 will be omitted if the
experimental design is clear from the context.

In order to enrich the design of experiments sequentially, we can adopt a Stepwise
Uncertainty Reduction strategy (Villemonteix et al., 2006), which is based on the definition
of a criterion (also called learning function), say κ, that measures the uncertainty upon
a certain objective associated with the GP and with f . This criterion implicitly depends
on the GP and thus the design used to construct it.

To select the next point to evaluate with f , this criterion is maximised on X. This
procedure is then repeated at each iteration: at the iteration n, with the set of evaluated
points Xn, the next point is then chosen as

xn+1 = arg max
x∈X

κ(x) = arg max
x∈X

κ(x;Z | Xn) (3.17)

The GP is updated according to the new evaluation which is added to the design. The
general principle of this strategy is summarized in Algorithm 1

Algorithm 1 SUR strategy: adaptive enrichment using a 1-step criterion
Require: Initial design X0, criterion function κ
Fit Z, a GP using the design X0

n← 0
while (stopping criterion not met) or (evaluation budget not reached) do
xn+1 ← arg max x∈X κ(x;Z | Xn)
Evaluate f(xn+1)
Xn+1 ← Xn ∪ {(xn+1, f(xn+1))}
Update the GP using Xn+1

n← n+ 1
end while

69



Chapter 3 Adaptive strategies for calibration using Gaussian Processes

3.3.2 Batch selection of points: sampling-based methods

Due to the structure of many computer codes, it may sometimes be beneficial to
evaluate a batch of K points instead of selecting a unique point at each step of the
procedure. SUR strategies as introduced before require the optimisation of a criterion
function to select a single point, but in Ginsbourger et al. (2010), the authors introduce
a few ways to transform the criterion in order to be able to select K points that will be
evaluated by the true function.

Instead of adapting a 1-step criterion, we can rely on sampling in order to get K points
of X to evaluate. This technique, named AK-MCS in Echard et al. (2011), which stands
for Adaptive-Kriging Monte-Carlo Sampling is described in Dubourg et al. (2011), and has
been applied and refined more recently in Schöbi et al. (2017); Razaaly (2019); Razaaly
et al. (2020) for the estimation of extreme quantiles and small probabilities. Those are
qualified as Monte-Carlo sampling methods, as they rely on obtaining samples drawn
from a given distribution which represent points whose evaluation could be interesting
with regards to the problem at stake.

Let κ be a 1-step criterion, and let κ̄(x) = κ(x)∫
X κ(u) du

be the normalized criterion, so
that

∫
X κ̄ = 1. In this case, κ̄ can be seen as a density. Using an appropriate sampler, we

can generate N i.i.d. samples S = {xsj}1≤j≤N from this criterion.

However, as N should be large, there is no point in evaluating all the samples in S:
using statistical reduction of the samples, we can find a reduced number of points, which
are the most representative of the N samples. This is usually done by means of clustering
algorithms, especially those who can take a fixed number of clusters such as the KMeans
algorithm (MacQueen, 1967), in order to select precisely K points, number chosen in
compliance with the wanted batch size. For each one of those centroids, we then look for
the closest sampled point as the centroid can be located in a region of low or even zero κ̄.
Finally, the closest sampled points can then be considered to be evaluated. Additional
filtering can then be performed in order to avoid numerical issues, if the chosen points
are too close to each other or to points of the design. The principle of AK-MCS (using
KMeans) is described Algorithm 2.

3.4 Criteria of enrichment

We are now going to introduce a few criteria which are used for three different
problems involving an unknown function f :

• The exploration of the input space will be addressed Section 3.4.1, in order to
target regions where the kriging prediction may differ significantly from the true
function;

• the global optimisation of the function f in Section 3.4.2, to focus the exploration
of the input space X in the regions where f is minimal;

• the estimation of different level sets f−1({T}) and/or excursion sets in the form
f−1(]−∞, T ]) for T ∈ R in Section 3.4.3.
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Algorithm 2 AK-MCS: enrichment of the design using sampling
Require: Initial design X0, Sampler according to κ̄
Require: Batch size K, number of samples N
Fit Z, a GP using the design X0

n← 0
while (stopping criterion not met) or (evaluation budget not reached) do
Sample N points S = {xsj}1≤j≤N according to the distribution with pdf κ̄
Get the K centroids {xcenter

j }1≤j≤K using KMeans on S
for j = 1 to K do
xn+j = arg min x∈S\{xn+1,...,xn+j−1} ‖x− xcenter

j ‖
end for
Evaluate f(xn+1), . . . , f(xn+K)
Xn+K ← Xn ∪ {(xn+1, f(xn+1)) , . . . , (xn+K , f(xn+K))}
Condition the GP according to Xn+K

n← n+K
end while

3.4.1 Criteria for exploration of the input space

We are going to introduce first some common criteria of enrichment, that aim at
exploring the input space X. We suppose that the current GP has been conditioned with
the design Xn, composed of the points xi and their evaluations f(xi) for 1 ≤ i ≤ n.

Maximum of variance

A measure of uncertainty on the GP is maxx∈X σ2
Z|Xn(x), the maximum value of the

prediction variance on the space. A simple criterion is to select and evaluate the point
corresponding to this maximum of variance:

xn+1 = arg max
x∈X

σ2
Z|Xn(x) (3.18)

This criterion by its simplicity is easy to implement, as the prediction variance is cheap
to compute given a GP. It does not depend directly on the evaluations of the function at
xi for 1 ≤ i ≤ n, uniquely on the distance between the candidate point x and the points
of the design Xn and the covariance parameters.

Integrated Mean Square Error

The prediction variance is directly given by σ2
Z|Xn and represents the uncertainty on

the Gaussian regression. To summarize this uncertainty on the whole space X, we define
the Integrated Mean Square Error (IMSE) (Sacks et al., 1989) as

IMSE(Z | Xn) =

∫

X
σ2
Z|Xn(x) dx (3.19)

For practical reasons, we can consider to integrate the MSE only on a subset X ⊂ Xn
that yields

IMSEX (Z | Xn) =

∫

X
σ2
Z|Xn(x)1X(x) dx =

∫

X
σ2
Z|Xn(x) dx (3.20)
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For notational convenience, when the GP considered is clear from the context, only the
design used to fit it will be an argument: IMSE(Z | Xn) = IMSE(Xn). Unfortunatley,
exact evaluation of this integral is impossible, so it needs to be approximated using
numerical integration, such as Monte-carlo or quadrature rules such as Gaussian, or
Hermite rule to cite a few.

We can then study how adding a certain point would affect the IMSE. For a given
x ∈ X and an outcome z = f(x) ∈ R, the augmented design is defined as Xn ∪ {(x, z)},
and the IMSE of the augmented design is IMSE (Xn ∪ {(x, z)}). Before the actual
experiment though, z is unknown, but we can model it by its distribution given by the
GP (per Eq. (3.16)). So for a given candidate x, the IMSE when evaluating the point x
will be on average

EZ(x)

[
IMSE

(
Xn ∪ {(x, Z(x))}

)]
(3.21)

where the expectation is to be taken with respect to the random variable Z(x). The
expression of Eq. (3.21) requires then the evaluation of an integral in dimension 1+dimX.
We then use the term augmented to signal that a quantity has been evaluated with an
augmented design, and the output have been averaged in this fashion.

As each outcome of Z(x) requires to fit a GP and to compute the IMSE, a precise
evaluation is quite expensive. A strategy found for instance in Villemonteix et al. (2006)
is to take M possible outcomes for Z(x), corresponding to evenly spaced quantiles of
its distribution, or using Gauss-Hermite quadratures (Bernard, 2019) in order to take
advantage of the Gaussian nature of Z(x). The hyperparameters of the GP should not
be reevaluated when augmenting the design, in order to get comparable values for the
IMSE.

Finally, we can maximise a criterion which is the opposite of the expression in Eq. (3.21)
to enrich the design:

xn+1 = arg max
x∈X

−EZ(x)

[
IMSE

(
Xn ∪ {(x, Z(x))}

)]
(3.22)

3.4.2 Criteria for optimisation of the objective function

The criteria detailed above aim at reducing the epistemic uncertainty modelled
through the Gaussian Process. In other words, we try to improve our knowledge on the
unknown function globally. We are now going to evoke a few criteria which are driven by
the global optimisation of the function.

Those methods usually aim at striking a balance between the exploration of the
whole space X and intensification, i.e. evaluating the function near its optimum. Let
f be the unknown function, and Z be a GP constructed based on an initial design
X0 = {(xi, f(xi))}.

Probability of improvement

We are first going to introduce the probability of improvement PI, which is the
probability that the GP is smaller than a threshold fmin. Due to the Gaussian nature
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of Z(x), this probability can be written in closed form using Φ = FN (0,1) the cdf of a
centered standard Gaussian r.v.

PI(x) = P [Z(x) < fmin] (3.23)

= Φ

(
mZ(x)− fmin

σZ(x)

)
(3.24)

This threshold can have different forms

• fmin = mini f(xi): the GP is compared with the current minimal value reached by
the function

• fmin = mini f(xi) + ε: by introducing a small tolerance ε, we encourage exploration
instead of intensification.

Using the probability of improvement tends to select points quite close to the point
evaluated so far, thus does favor intensification at the expense of exploration.

xn+1 = arg max
x∈X

PI(x) (3.25)

Expected improvement and EGO

One of the most common criteria for global optimisation is the Expected Improvement
(EI) (Močkus, 1974), and the SUR strategy using it as an enrichment criterion is called
Efficient Global Optimisation (EGO) (Jones et al., 1998). Analogously to the probability
of improvement, we define the improvement I(x) as the random variable defined as

I(x) = [fmin − Z(x)]+ (3.26)

where [y]+ = max(y, 0). The Expected Improvement EI is

EI(x) = EZ(x)[I(x)] = EZ(x)

[
[fmin − Z(x)]+

]
(3.27)

Again, a closed form is available to compute the expected improvement, that does not
require the direct evaluation of the expectation Eq. (3.27).

EI(x) = (fmin −mZ(x)) Φ

(
fmin −mZ(x)

σZ(x)

)
+ σZ(x)φ

(
fmin −mZ(x)

σZ(x)

)
(3.28)

The EI is then quite easy to evaluate and furthermore it is possible to compute the
gradient of the EI and use it for the optimisation as done in Marmin et al. (2015).

xn+1 = arg max
x∈X

EI(x) (3.29)

IAGO

Another criterion worth mentioning is a criterion based on the distribution of the min-
imisers (Villemonteix et al., 2006; Hennig and Schuler, 2011), called IAGO (Informational
Approach to Global Optimisation) Let zi be a sample path of Z, and let x∗i the global
minimiser of zi. We denote then X∗ the random variable corresponding to the global
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minimiser of Z. We consider the differential entropy of X∗ introduced Definition 1.2.14,
given the augmented design Xn ∪{(x, Z(x))}: H[X∗ | Xn ∪{(x, Z(x))}]. So at each step,
we choose the point that gives the smallest expected uncertainty on the location of the
global minimisers of the sample paths. The criterion can then be written as

xn+1 = arg max
x∈X

−EZ(x)

[
H [X∗ | Xn ∪ {(x, Z(x))}]

]
(3.30)

Figure 3.3 shows different criteria introduced before for an unknown function.
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Figure 3.3 – Example of optimisation criteria. At this iteration, EI and PI aim toward
intensification, while IAGO and the maximum of variance favorize exploration
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3.4.3 Contour and volume estimation

In this section, we are interested in the estimation of the inverse image of sets:
{x ∈ X | f(x) = T} = f−1({T}) for level sets, or {x ∈ X | f(x) ≤ T} = f−1(]−∞, T ])
called excursion sets. An exemple of this estimation is illustrated Fig. 3.4, where the
focus is on the estimation of the set f−1(]−∞, T ]). For that, we are going to introduce
enrichment strategies which rely on the evalution of the function around the level set
{f = T}.

3.4.3.a Reduction of the augmented IVPC

For a function f , let us assume that we are interested in the estimation of the set
f−1(B) = {x ∈ X | f(x) ≤ T}, with B =]−∞, T ]. Given PX a probability measure on
X, and B ⊂ R, we can compute V = PX

[
f−1(B)

]
. For B = ]−∞, T ], it is equivalent to

compute the volume of the excursion set of f below T : V = PX [f(X) ≤ T ]. Such an
example is illustrated Fig. 3.4.
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Figure 3.4 – Estimation of f−1(]∞, T ]) using GP and probability of coverage associated

Let Z be a GP, indexed by X with continuous sample paths. For a measurable set
B ⊂ R, A = Z−1(B) is a random closed set. We define πA its probability of coverage:

πA(x) = PZ(x) [x ∈ A] = PZ(x)[Z(x) ∈ B] (3.31)

Figure 3.4 shows the probability of coverage of the set A, the true set f−1(B), and the
plug-in estimation of this set: m−1

Z (B) = {x ∈ X | mZ(x) ≤ T}.
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For a given x ∈ X, the event “x belongs to A” is Bernoulli random variable, with
probability πA(x), thus has variance

VA(x) = πA(x)(1− πA(x)) (3.32)

We can also define the probability of missclassification. If πA(x) > 0.5, x is classified in A
so the probability of misclassification is 1−πA(x), and on the other hand, if πA(x) < 0.5,
x is classified in AC , and the probability of missclassification is πA(x). This can be
condensed as

Pmis(x) = min(πA(x), 1− πA(x)) (3.33)

For both Pmis and VA, the maximum is reached for πA(x) = 1/2.

As we want to classify each point either in A or out of A, we can look for the different
level-sets of the probability of coverage: for η ∈ [0, 1], we define the η-level set of πA, also
called Vorob’ev quantiles (see Vorobyev and Vorobyev (2003))

Qη = {x ∈ X | πA(x) ≥ η} (3.34)

Those sets are decreasing (with respect to the inclusion) when η increases:

0 ≤ η ≤ ξ ≤ 1 =⇒ Qξ ⊆ Qη (3.35)

Using the properties of the GP stating that x ∈ X, Z(x) ∼ N
(
mZ(x), σ2

Z(x)
)
, we

can express the probability of coverage of the random set A using FZ(x), the cdf of the
r.v. Z(x), or Φ, the cdf of the centered standard Gaussian distribution:

πA(x) = PZ(x) [Z(x) ≤ T ] = FZ(x)(T ) = Φ

(
−mZ(x)− T

σZ(x)

)
(3.36)

VA(x) = πA(x)(1− πA(x)) (3.37)
Pmis(x) = min

(
FZ(x)(T ), 1− FZ(x)(T )

)
= min

(
FZ(x)(T ), F−Z(x)(−T )

)
(3.38)

= Φ

(
−|mZ(x)− T |

σZ(x)

)
(3.39)

Echard et al. (2011) defines the argument of the cdf Eq. (3.39) as the reliability index ρ
(denoted U in its original definition Echard et al. (2011))):

ρ(x) =
|mZ(x)− T |

σZ(x)
(3.40)

Based on those quantities, we will introduce two criteria which aim at improving the
classification problem of x ∈ A = f−1(B).

First, we can choose to evaluate the point which has the maximal probability of
misclassification, or equivalently since Φ is monotonously increasing, maximise the
criterion given by

xn+1 = arg max
θ∈Θ

−|mZ(x)− T |
σZ(x)

(3.41)
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This criteria will be maximal when either the kriging prediction is close to the level set
T (intensification aspect), or if there is a large prediction variance (exploration aspect).

Alternatively, we can also use the variance of the probability of coverage VA as an
indication of the uncertainty of the classification problem. As the maximum of variance
will be obtained for points having a probability of coverage πA(x) = 0.5, looking and
evaluating the maximiser of this criterion is not really relevant: any point verifying
mZ(x) = T would be suited, without taking into account its prediction error σ2

Z(x), and
a point already well predicted (i.e. close to other points already in the design) could be
evaluated, incorporating little new knowledge.

Instead, by integrating VA over the whole space X, we get a measure of the uncertainty
in the classification problem associated with the design Xn, which we will denote IVPC(Xn)
(Integrated Variance of the Probability of Coverage).

IVPC(Xn) =

∫

X
VA(x) dx (3.42)

A similar function has been introduced in Bect et al. (2012). We can finally introduce a
criterion based on the augmented design, as done for the IMSE.

xn+1 = arg min
x∈X

EZ(x)

[
IVPC(Xn ∪ {(x, Z(x))})

]
(3.43)

Other criteria have also been developed, such as the use of the theory of random
sets (El Amri et al., 2019), in order to define a measure of uncertainty based on Vorob’ev
mean and deviation (Vorobyev and Vorobyev, 2003).

3.4.3.b Sampling in the Margin of uncertainty

Using the level sets, we can construct the η-margin of uncertainty, as introduced
in Dubourg et al. (2011), that is the set of points x ∈ X that we cannot classify in or
out of A with high enough probability. Setting the classical level η = 0.05 for instance,
Q1− η

2
= Q0.975 is the set of points whose probability of coverage is higher than 0.975,

while Q η
2

= Q0.025 is the set of points whose probability of coverage is higher than
0.025, thus its complement in X, denoted by QCη

2
is the set of points whose probability of

coverage is lower than 0.025. Obviously, Q1− η
2
⊂ Q η

2
.

The η-margin of uncertainty Mη for η = 0.05 is then defined as the sets of points
whose coverage probability is between 0.025 and 0.975:

Mη =
(
Q1− η

2
∪QCη

2

)C
= QC1− η

2
∩Q η

2
= Q η

2
\Q1− η

2
(3.44)

=
{
x ∈ X | η

2
≤ πA(x) ≤ 1− η

2

}
(3.45)

Based on this set, we can construct easily a sampling criterion by using the indicator
function of the margin of uncertainty: 1Mη(x) = κM(x) = κ̄M(x) ·Vol(Mη). Evaluating
points in this region allows to reduce the uncertainty at x (completely if the GP is
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interpolant, as σZ(x) becomes 0 after evaluating f(x)) on the classification of the point
x.

Finally, using this indicator function, Algorithm 2 can be applied to enrich the design,
by adding a batch of K points at each iterations. Using an acceptance-rejection method
(since the pdf of the sampling distribution is an indicator function), we can easily obtain
samples within the margin of uncertainty: they are shown on the right plot of Fig. 3.5,
with the frontiers of the margin. Using the KMeans algorithm, we can compute K = 10
centroids, which represent statistically the samples (red stars on the figure). We can
then see that they are located close to the true leve-set of the function in this case.
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3.5 Adaptive strategies for robust optimisation using GP

In the previous section, we introduced enrichment strategies to solve different problems
for a generic function f : X → R. Before introducing specific strategies for robust
calibration (as defined in Chapter 2), we are first going to recall briefly the setting and
corresponding problems of robust calibration. Let J be an objective function taking two
inputs:

J : Θ× U −→ R
(θ, u) 7−→ J(θ, u)

(3.46)

In a context of calibration, this function measures the misfit between the output of the
numerical model and the observations.

The first input of the function, θ ∈ Θ, is the calibration parameter which we wish to
control and u ∈ U is the environmental parameter. We model this intrinsic variability
of the environmental parameter with a random variable U . In this context, different
objectives can be derived in order to get a satisfying robust estimate θ̂. Robustness here
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is to be understood as the ability to get satisfying performances of the objective function
J(θ̂, u) for any u ∈ U, realisation of U .

Based on an initial design X0 = {((θi, ui), J(θi, ui))}1≤i≤n0
of n0 points in Θ×U, we

assume that we constructed a GP, say Z, on Θ× U. In the following, if the design used
to construct the GP is clear from the context, it will be omitted in the notation.

As a GP, Z is described by its mean function mZ : Θ × U → R and a covariance
function C : (Θ× U)2 → R, and the prediction variance is σ2

Z(θ, u) = C ((θ, u), (θ, u)).

As a GP, for any (θ, u) ∈ Θ× U, Z(θ, u) is normally distributed:

Z(θ, u) ∼ N
(
mZ(θ, u), σ2

Z(θ, u)
)

(3.47)

A surrogate of J , constructed using the GP Z is then mZ , which will be used to
compute the different estimates. However, the initial design X0 is probably too sparse
to get mZ accurately enough to compute the wanted estimates. For that purpose, we
propose enrichment strategies in order to add relevant points to the design X0.

One main challenge for this problem lies in the decomposition of the input space, (X
previously) into Θ × U. The objective on each of these spaces is different: one needs
to explore sufficiently the space U according to the distribution of U , in order to be
able to compute PU and EU , while Θ does not need to be explored as much because the
objective function is supposed to be optimised with respect to θ.

In what follows, we are going to focus on the estimation of the conditional minimisers
θ∗ : u 7→ θ∗(u), which can be used to estimate the mode of the distribution of the
conditional minimisers θMPE, and on the estimators which satisfy properties based
on regret. For that purpose, the methods introduced here will usually involve the
computation and the optimisation of a criterion on the joint space directly, following the
method of Algorithm 1 on Page 69, and sampling in regions of large uncertainties, as
detailed in Algorithm 2 Page 71.

For other robust estimators, such as the minimum of the expectation θmean, other
strategies have been derived, which consist first in removing the dependency on U . For
instance in Janusevskis and Le Riche (2010), the authors integrate directly the GP with
respect to U in order to get another GP, which models the function θ 7→ EU [J(θ, U)]. This
integrated GP will then be used to select a point θ̃, and then a couple of points (θn+1, un+1)
is chosen in order to reduce a measure of uncertainty on the space {θ̃}×U. Alternatively,
when introducing the variance in a multiobjective optimisation problem, Miranda et al.
(2016) proposes a method based on polynomial chaos expansion in order to get both the
value and the gradient of the expected value and the variance.

3.5.1 PEI for the conditional minimisers

In the previous chapter, we introduced the conditional minimums u 7→ J∗(u) and the
conditional minimisers u 7→ θ∗(u). Each evaluation of these functions require an optimi-
sation procedure, thus can be expensive from a computational point of view. Ginsbourger
et al. (2014) proposes a criterion, adapted from the EI, which aims at solving such a
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problem: the Profile Expected Improvement PEI is defined as

PEI(θ, u) = E
[
[fmin(u)− Z(θ, u)]+

]
(3.48)

with fmin(u) = max(min
x∈X

f(x),min
θ∈Θ

mZ(θ, u)) (3.49)

for the design X = {(xi, f(xi)}1≤i≤n with the slight abuse of notation J(θ, u) = f(x) for
x = (θ, u).

This allows us to see the similarity with the EI criterion: instead of having a fixed
threshold, the PEI introduces a criterion that depends on u. Figure 3.6 shows an example
of GP enriched using the PEI criterion. The criterion can then be used in a classical
SUR strategy introduced in Algorithm 1, where at each iteration, the PEI is maximised
over Θ× U:

xn+1 = (θn+1, un+1) = arg max
(θ,u)∈Θ×U

PEI(θ, u) (3.50)

and the maximiser is evaluated by f and added to the design. Once a stopping criterion
is met, such as the maximal variance attained at the conditional minimum is below a
specified threshold εstop,

max
u∈U

σ2
Z(mZ∗(u), u) ≤ εstop (3.51)

we can construct accurate surrogates of J∗(u) and θ∗(u), using the GP in a plug-in
approach:

mZ∗(u) = min
θ∈Θ

mZ(θ, u) and θ∗Z(u) = arg min
θ∈Θ

mZ(θ, u) (3.52)

and with a set of i.i.d. samples {ui}i of U , use the surrogates to find the MPE, based on
the distribution of {θ∗Z(ui)}.

3.5.2 Gaussian formulations for the relative and additive regret fami-
lies of estimators

We are now going to detail how Gaussian processes can be used to estimate regret-
based estimators. Recalling the previous chapter, the family of regret-based estimators
are defined as

{θAR,β = arg max
θ∈Θ

Γβ(θ) = arg max
θ∈Θ

PU [J(θ, U) ≤ J∗(U) + β] | β ≥ 0} (3.53)

in the case of additive-regret, and

{θRR,α = arg max
θ∈Θ

Γα(θ) = arg max
θ∈Θ

PU [J(θ, U) ≤ αJ∗(U)] | α ≥ 1} (3.54)

for the relative-regret.

As explained Section 2.4, in order to get an estimator, two starting points can be
considered: either fixing the threshold α (or β), and computing the associated estimator
θRR,α (or θAR,β), or instead, looking to get a probability of acceptability of level p, and
then compute the associated estimator and threshold. For the first alternative, we are
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Figure 3.6 – GP after 30 additional iterations chosen using PEI. The GP prediction
using the initial design is represented on the top left plot. The PEI criterion for this
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prediction after 30 iterations. Bottom right is the surrogate estimation of the conditional
minimum. The shaded region corresponds to the initial surrogate conditional minimum,
± one standard deviation. After the iterations, the surrogate estimate and the true value
coincide.

going to focus on improving the estimation of Γ using GP in Section 3.5.3, while for the
second, we will try to improve the estimation of the quantile of the ratio in Section 3.5.4.

We first need to detail some notations with respect to the conditional minimum and
conditional minimisers, and their equivalent for the GP.

We define Z∗ as
Z∗(u) ∼ N

(
mZ∗(u), σ2

Z∗(u)
)

(3.55)
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where

mZ∗(u) = min
θ∈Θ

mZ(θ, u) (3.56)

θ∗Z(u) = arg min
θ∈Θ

mZ(θ, u) (3.57)

σ2
Z∗(u) = σ2

Z(θ∗Z(u), u) (3.58)

We use then the minimiser and the minimum of the GP prediction as estimates of
the conditional minimum and minimiser, similarly as in Ginsbourger et al. (2014). To
generalize notions of the additive- and relative-regret, we can define ∆α,β = Z −αZ∗− β.
This difference ∆α,β is a linear combination of correlated Gaussian processes, thus is a
GP as well and its distribution can be derived by first considering the joint distribution
of Z(θ, u) and Z∗(u) = Z(θ∗Z(u), u):
[
Z(θ, u)
Z∗(u)

]
∼ N

([
mZ(θ, u)
mZ∗(u)

]
;

[
C ((θ, u), (θ, u)) C ((θ, u), (θ∗Z(u), u))

C ((θ, u), (θ∗Z(u), u)) C ((θ∗Z(u), u), (θ∗Z(u), u))

])

(3.59)

Multiplying by the 1× 2 matrix
[
1 −α

]
and translating by −β yields

∆α,β(θ, u) ∼ N
(
m∆(θ, u);σ2

∆(θ, u)
)

(3.60)
m∆(θ, u) = mZ(θ, u)− αmZ∗(u)− β (3.61)

σ2
∆(θ, u) = σ2

Z(θ, u) + α2σ2
Z∗(u)− 2αC ((θ, u), (θ∗Z(u), u)) (3.62)

We are then interested in the random set {(θ, u) | ∆α,β(θ, u) ≤ 0}. The different
combinations of α and β dictate if we are either interested in the additive or the relative
regret:

• (α, β) = (1, β) corresponds to the additive regret

• (α, β) = (α, 0) corresponds to the relative regret

Decomposing the variance σ2
∆ in Eq. (3.62), 3 sources of uncertainty appear:

• σ2
Z is the prediction variance of the GP on J , that is directly reduced when

additional points are evaluated

• σ2
Z∗ is the variance of the predicted value of the minimisers.

• Assuming a stationary form of the covariance, the third term is dependent only
on the distance between θ and θZ∗(u), (the estimated conditional minimiser).
By separating the θ and u components, the covariance term can be written
C((θ, u), (θ′, u′)) = sKθ(‖θ − θ′‖)Ku(‖u− u′‖), and substituting θ∗Z(u) for θ′ gives

C ((θ, u), (θ∗Z(u), u)) = sKθ(‖θ − θ∗Z(u)‖)Ku(0) (3.63)
= sKθ(‖θ − θ∗Z(u)‖) (3.64)

This decomposition highlights the fact that the prediction error σ2
∆ of the difference ∆α,β

measured at a point (θ, u) will not be reduced completely by evaluating the function J
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at this point, as only the prediction variance σ2
Z will be significantly affected in general.

In other words, reducing the uncertainty at a point (θ, u) may require the evaluation of
another point (θ̃, ũ) 6= (θ, u).

In the following, unless explicitly stated, we will focus on the relative-regret family
of estimators, so β = 0 and α ≥ 1, thus only keeping α in the subscript. The strategies
introduced hereafter can be easily be adapted for the additive-regret, by setting α = 1,
and translating the mean functions accordingly, thus defining {∆α=1 ≤ β}.

3.5.3 GP-based methods for the estimation of Γα

Let consider α ≥ 1 fixed. In order to compute θRR,α, we need to estimate and optimise
the function Γα. For that purpose, we are going to explore the space to improve the
estimation of Γα, and once sufficient knowledge is acquired, use the plug-in estimate Γ̂α
(i.e. the one obtained by replacing J by mZ) for the optimisation, to get θ̂RR,α.

3.5.3.a Estimation of Γα

For a given θ ∈ Θ, the coverage probability of the α-acceptable region, i.e. the
probability for θ to be α-acceptable is

Γα(θ) = PU [J(θ, U) ≤ αJ∗(U)] (3.65)
= EU

[
1J(θ,U)≤αJ∗(U)

]
(3.66)

As J is not known perfectly, it can be seen as a classification problem. This classification
problem can be approached with a plug-in approach, that is to consider mZ instead of J :

1J(θ,u)≤αJ∗(u) ≈ 1mZ(θ,u)≤αmZ∗ (u) (3.67)

Alternatively we can also approximate this indicator function by consider the probability
of the random variable ∆ to be less than 0:

1J(θ,u)≤αJ∗(u) ≈ PZ [∆α(θ, u) ≤ 0] = πα(θ, u) (3.68)

Based on those two approximation, we can define two different estimations of Γα,
namely Γ̂PI

α with the plug-in approach of Eq. (3.67), and Γ̂πα for the probabilistic one
in Eq. (3.68), that we will detail shortly after. Based on those estimations, two strategies
emerge:

• For Γ̂PI
α , we are going to reduce the expected augmented IMSE of the GP Z −αZ∗.

• For Γ̂πα, we are going to reduce the expected augmented integrated variance of
probability of coverage IVPC.

3.5.3.b Reduction of the augmented IMSE

For the plug-in approach, the chosen estimator is defined by:

ΓPI
α (θ) = PU [mZ(θ, u) ≤ αmZ∗(u)] (3.69)
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The outer expectation operator is to be computed numerically, using quadrature rule, or
Monte-Carlo methods. In general, from a set of i.i.d. samples {ui}1≤i≤nu sampled from
U , we define

Γ̂α(θ) =
1

nu

nu∑

i=1

1mZ(θ,ui)−αmZ∗ (ui)≤0 (3.70)

Due to the fact that the GP surrogate is cheap to evaluate, the computation of
the outer expectation with respect to U is assumed to be performed without too much
problems.

In order to improve the accuracy of this estimator, one need to improve the GP
prediction mZ of the objective function J . In this case, we propose to use the augmented
IMSE of the GP Z − αZ∗ = ∆α as a learning function. The choice of the IMSE (instead
of choosing the point of maximal variance for instance) comes from the decomposition of
the variance Eq. (3.62).

Let Γ̂PI
α,n be the plug-in approximation of Γα, constructed using the Gaussian Process

surrogate with n points added according to the augmented IMSE criterion. Figure 3.7
illustrates the L2 and L∞ between the truth Γα and the estimation Γ̂α,n. In this figure,
and in what follows, the error of two different estimations of Γα are considered: the
plug-in estimate of Eq. (3.70) with the label PI, and the probabilistic one with the label
π, which will be introduced in the next section. Finally, the subscript n will indicate a
quantity computed with n additional evaluations of the function.

3.5.3.c Reduction of the augmented IVPC

Recalling the definition of the probabilistic approach Eq. (3.68), given the GP Z, we
can write an estimator of Γα:

Γπα(θ) = EU [PZ [∆α(θ, U) ≤ 0]] = EU [PZ [Z(θ, U)− αZ∗(U) ≤ 0]] (3.71)
= EU [πα(θ, U)] (3.72)

The set {(θ, u) | Z(θ, u)− αZ∗(u) ≤ 0} has a probability of coverage written πα, which
can be computed using the CDF of the standard normal distribution Φ, because ∆α is a
GP with parameters described Eqs. (3.60) to (3.62):

πα(θ, u) = Φ

(
−m∆α(θ, u)

σ∆α(θ, u)

)
(3.73)

Finally, the outer expectation can be computed in a similar fashion as in Eq. (3.70);
given a set of i.i.d. samples {ui}1≤i≤nu from U , we define the probabilistic estimation of
Γα as

Γ̂πα(θ) =
1

nu

nu∑

i=1

πα(θ, ui) (3.74)

Recalling Eq. (3.32), the variance of the probability of coverage is πα(θ, u) (1− πα(θ, u)),
and by integrating this variance over the whole space Θ× U, similarly as in Bect et al.
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Figure 3.7 – Evolution of the L2 and L∞ error of the estimation of Γα and IMSE of
the successive constructed GP. The points added are chosen by the augmented expected
IMSE. The curve labelled PI refers to the plug-in estimation of Eq. (3.70), while the one
labelled π refers to the probabilistic estimation, defined later in Eq. (3.74)

(2012), we can definethe integrated variance of the probability of coverage IVPC.

IVPC(Xn) =

∫

Θ×U
πα(θ, u) (1− πα(θ, u)) pU (u) dθ du (3.75)

The IVPC is a measure of the uncertainty on the global coverage of the set {Z − αZ∗ ≤
0}, where Z is conditioned by the design Xn. Instead of evaluating this integrated
variance directly on the current design Xn, we can once again augment the design at an
(unevaluated) point (θ, u), assuming that its evaluation is the random variable Z(θ, u):

IVPC(Xn ∪ {((θ, u), Z(θ, u))} (3.76)

Finally, we can define a new learning function, which is the expected IVPC with
respect to the random variable Z(θ, u):

(θn+1, un+1) = arg min
(θ,u)∈Θ×U

EZ(θ,u)

[
IVPC(Xn ∪ {((θ, u) , Z(θ, u))})

]
(3.77)

Figure 3.8 shows the evolution of the error in the estimation of Γα, with respect to the
L2 and L∞ norm.
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Figure 3.8 – Enriching the design according to the criterion of Eq. (3.77)

3.5.3.d Sampling in the margin of uncertainty

Sampling and translating to the source of uncertainties

We can also enrich the design by means of sampling within the margin of uncertainty
defined Section 3.4.3.b Page 77, introduced in Echard et al. (2011); Schöbi et al. (2017);
Razaaly (2019); Razaaly and Congedo (2020). The probability of coverage, defined using
∆α is

πα(θ, u) = PZ [∆α ≤ 0] = Φ

(
−m∆α(θ, u)

σ∆α(θ, u)

)
(3.78)

the margin of uncertainty of level η is by definition

Mη =
{

(θ, u) | η
2
≤ πα(θ, u) ≤ 1− η

2

}
(3.79)

The margin of uncertainty of the random set {∆α ≤ 0} has been represented Fig. 3.9.

Sampling in this margin of uncertainty and evaluating some of those points makes
sense if the points selected help reduce the margin of uncertainty. Let us assume that the
current design used to construct Z comprises n points, and let us assume that we obtained
K points which represent statistically the margin of uncertainty: x̃n+i for 1 ≤ i ≤ K.
Those points being in our case the centroids produced by the KMeans algorithms.

As mentioned before in Eq. (3.62) on Page 82, the uncertainty on the acceptability of
those points can be reduced either by evaluating the function at this point (thus reducing
σ2
Z), or by improving the knowledge of the conditional minimiser (reducing α2σ2

Z∗). For
each centroid x̃n+i = (θ̃n+i, ũn+i), we can then adjust its θ-component if the uncertainty
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η = 0.05. The variance of the probability of coverage is integrated on U, giving the IVPC
at constant θ

on the conditional minimiser is large in order to reduce α2σ2
Z∗ (instead of σ2

Z). This is
done by introducing an adjustment function:

adjust(θ, u) =

{
(θ, u) if σ2

Z(θ, u) ≥ α2σ2
Z∗(u)(

maxθ∈Θ EZ
[
[Z(θ, u)−mZ∗(u)]+

]
, u
)

otherwise
(3.80)

where mZ∗(u) = minθ∈ΘmZ(θ, u) as defined Eq. (3.56). In this case, the adjusted value
can be seen as an EGO iteration on Θ× U. The adjusted centroids are then expected to
reduce the most the uncertainty at the original centroids, given by the KMeans algorithm.

Hierarchical clustering for a second adjustment

However, as we can see on the left plot of Fig. 3.11, all centroids are adjusted
independently, and since only their θ component is changed, the adjusted centroids may
end up very close to each other. The issue is twofold: the evaluation of those points
brings redundant information to the problem, and thus we do not take fully advantage of
the batch evaluations. Moreover when adding close points to the design, the proximity
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can lead to an ill-conditioned covariance matrix of the GP and in turn to numerical
problems in the estimation of its hyperparameters.

In order to identify the nearby points, we can perform once again a clustering
procedure such as Hierarchical clustering (Nielsen, 2016), as the number of points to
consider is much more limited, and only a labelling is needed.

θ

u

Computed centroids

θ

u

Adjustment

θ

u

Hierarchical clustering
and readjustment

θ

u
Final points to evaluate

(J∗(u), u)

Centroids
Adj. centroids
Adj. centroids 2

Figure 3.10 – Principle of the two consecutive adjustments: The first adjustment is done
in order to reduce the most the uncertainty, and the second to select points far enough
from each other

For each point in each cluster, as they are in close vicinity, we can assume that their
uncertainties on the conditional minimiser α2σ2

Z∗ are sensibly the same. So instead,
we are going to make the adjustment described Eq. (3.80) only for the point which
presents the smallest σ2

Z . The whole algorithm is described Algorithm 3, and the double
adjustment is described schematically in Fig. 3.10. In the end, the points added to the
design are those labeled “Adjusted centroids 2”.

We apply an iteration of this method on the real function, in Fig. 3.11. At first,
the K = 10 centroids obtained by KMeans are represented with the red stars. As
the measured uncertainty is due to the conditional minimisers, all the centroids are
adjusted, yielding the blue stars near the locus of the conditional minimisers. At u ≈ 0.6,
u ≈ 0.4 and u ≈ 0.15, the hierarchical clustering step detects close points, and a second
adjustment is made, giving (back) the point at approximatively (0.8, 0.6), and (0.95, 0.15)
for instance.

On Fig. 3.12 is shown the evolution of the norm of the difference between the estimated
Γ̂α,n (after having added n points to the design) and the true value Γα, when adding
simultaneously K = 5 and K = 10 points.
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Algorithm 3 Enrichment of the design using sampling to reduce the margin of uncertainty
of {∆α ≤ 0}
Require: Initial design X0,
Require: number of points to evaluate each iterations K, number of samples N
Require: Z, a GP using the design X0

Require: Probability of coverage πα, and sampling pdf κM = 1Mη

n← 0
while (stopping criterion not met) or (evaluation budget not reached) do
Sample N points S = {xsi}1≤i≤N in Mη ⊂ Θ× U using κM
Get the K centroids {xcenter

i }1≤i≤K using KMeans on S
for i = 1 to K do
x̃n+i = (θn+i, un+i) = arg min x∈S\{x̃n+1,...,x̃n+i−1} ‖x− xcenter

i ‖
end for
Hierarchical clustering of {adjust(x̃n+i)} for 1 ≤ i ≤ K
Define {xn+i}1≤i≤K as the readjusted clusters using hierarchical clustering
Evaluate f(xn+i) = J(θn+i, un+i) for 1 ≤ i ≤ K
Xn+K ← Xn ∪ {(xn+1, f(xn+1)) , . . . , (xn+K , f(xn+K))}
Condition the GP according to Xn+K

n← n+K
end while

The added points are shown Fig. 3.13, and the margin of uncertainty Mη after the
n = 70 evaluations. We can see that the added point are distributed either toward the
conditional minimisers, or toward the frontier of {(θ, u) | J(θ, u) = αJ∗(u)}, as expected.
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3.5.4 Optimisation of the quantile of the relative regret

In the previous section, we introduced methods in order to improve the estimation of
Γα(θ) = PU [J(θ, U) ≤ αJ∗(U)], the probability of exceeding a threshold α ≥ 1 chosen
and fixed beforehand. However, once properly estimated and optimised, the maximal
probability max Γα may not ensure a large enough reliability in terms of relative-regret,
especially if the threshold has been chosen arbitrarily.

As mentioned in Section 2.4.4, we can instead look to tune α such that max Γα is
large enough, i.e. exceeds a specified level of confidence p. Let us recall Eq. (2.69) which
defines αp as the smallest threshold giving a maximal probability of atleast p:

αp = inf
α≥1
{max
θ∈Θ

Γα(θ) ≥ p} (3.81)

As J∗(u) > 0 for all u, we can define qp(θ) as the quantile of level p of the ratio
J(θ, U)/J∗(U):

qp(θ) = QU

(
J(θ, U)

J∗(U)
; p

)
⇐⇒ p = PU

[
J(θ, U)

J∗(U)
≤ qp(θ)

]
= Γqp(θ)(θ) (3.82)

where QU (· ; p) is the quantile function of order p with respect to the random variable U .
αp verifies then

αp = min
θ∈Θ

qp(θ) (3.83)

The relation between Γαp and qp is illustrated Fig. 3.14.
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Figure 3.14 – Relation between the probability Γα and its maximum, and the quantile
function of the ratio qp

Given Eq. (3.83), we are going to focus on the estimation of the quantiles of order p
of the ratio J/J∗ defined Eq. (3.82) as qp(θ) for θ ∈ Θ.
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Numerically speaking and given N i.i.d. samples xi ∼ X, where X is a real-valued
random variable, the estimation of a quantile is quite easy. A common estimation of the
quantile of order p of X is x([Np]), where x(i) is the ith order statistic of samples (i.e. the
ith smallest value of the set of samples), and [·] is the rounding operator.

As done for ∆α = Z − αZ∗, and the estimation of Γα, using the GP Z constructed
on J , we are going to approximate the ratio J/J∗, in order to have an estimation which
depends on the properties of the surrogate Z. In Section 3.5.4.a, we are going to derive
some properties of the ratio Z/Z∗, before introducing a 1-step criterion in Section 3.5.4.b,
and a sampling method in Section 3.5.4.c.

3.5.4.a Lognormal approximation of the ratio

Let θ ∈ Θ and u ∈ U. The true value of the ratio J(θ, u)/J∗(u) is modelled as the
random variable Z(θ, u)/Z∗(u), where the joint distribution of Z(θ, u) and Z∗(u) is

[
Z(θ, u)
Z∗(u)

]
∼ N

([
mZ(θ, u)
mZ∗(u)

]
;

[
σ2
Z(θ, u) ρσZ(θ, u)σZ∗(u)

ρσZ(θ, u)σZ∗(u) σ2
Z∗(u)

])
(3.84)

where ρ is the correlation coefficient ρ = Cov(Z(θ,u),Z∗(u))
σZ(θ,u)σZ∗ (u) . Under the condition that

mZ∗(u)/σZ∗(u) is large, i.e. that Z∗(u) ≥ 0 with high probability, we can make the
approximation that at each (θ, u), the ratio is lognormally distributed (see Section A.1):

Z(θ, u)

Z∗(u)
∼ logN

(
log

mZ(θ, u)

m∗Z(u)
;
σ2
Z(θ, u)

mZ(θ, u)2
+

σ2
Z∗(u)

mZ∗(u)2
− 2ρ

σZ(θ, u)σZ∗(u)

mZ(θ, u)mZ∗(u)

)
(3.85)

∼ logN (mΞ(θ, u), σ2
Ξ(θ, u)) (3.86)

By definition of the lognormal distribution, the logarithm of Z/Z∗ can then be approxi-
mated by a normally distributed random variable, denoted Ξ(θ, u):

Ξ(θ, u) = log

(
Z(θ, u)

Z∗(u)

)
∼ N

(
mΞ(θ, u), σ2

Ξ(θ, u)
)

(3.87)

The mean value of the lognormally distributed random variable is used as an estimate
of the ratio:

EZ
[
Z(θ, u)

Z∗(u)

]
=
mZ(θ, u)

mZ∗(u)
exp

(
1

2
σ2

Ξ(θ, u)

)
(3.88)

and then the plug-in estimation of the quantile of order p is:

qPI
p (θ) = QU

(
mZ(θ, U)

mZ∗(U)
exp

(
1

2
σ2

Ξ(θ, U)

)
, p

)
(3.89)

= QU

(
exp

(
mΞ(θ, u) +

1

2
σ2

Ξ(θ, U)

)
, p

)
(3.90)

And based on a set of samples {ui}1≤i≤nu , the estimated quantile becomes

q̂PI
p (θ) =

(
exp

(
mΞ(θ, u) +

1

2
σ2

Ξ(θ, u)

))

([nup])

(3.91)

We can use directly the Gaussian formulation of Ξ in order to derive strategies of
enrichment. In the following, we will set the confidence level to p = 0.95.
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3.5.4.b Reduction of the IMSE

As previously done for the random process Z − αZ∗, we can look to reduce at each
iteration the integrated prediction variance of the ratio, which is σ2

Ξ by defining the IMSE

IMSE(Xn) =

∫

Θ×U
σ2

Ξ(θ, u) dθ du (3.92)

where σ2
Ξ is constructed using Z/Z∗ and the design Xn.

We can then look to improve the expected prediction error on the log-ratio described
Eq. (3.87), by minimising the augmented IMSE:

(θn+1, un+1) = arg min
(θ,u)∈Θ×U

EZ(θ,u) [IMSE(Xn ∪ {((θ, u), Z(θ, u))}] (3.93)

meaning that σΞ is computed using Eq. (3.85), and the GP augmented by the couple
((θ, u), Z(θ, u)). The result of this adaptive strategy is illustrated Fig. 3.15. Along with
q̂PI
p,n, we plotted Monte-Carlo estimation of the quantile: q̂MC

p,n , which has been obtained

as a Monte-Carlo estimation of EZ
[
QU

(
Z(θ,u)
Z∗(u) ; p

)]
for comparison. We can see that

this method is able to reduce steadily the error on the estimation of the quantile of order
p = 0.95 in this case. The large discontinuities in the error are probably due to the
evaluation of points in regions previously unexplored, and/or the effect of a significant
change in the hyperparameters of the GP.
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Figure 3.15 – Evolution of the error of the estimation when reducing the augmented
IMSE of the log-ratio Ξ
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Each step of this method requires the optimisation of the expected IMSE de-
scribed Eq. (3.93), which can become expensive. We can also define a sampling-based
method, which is based on plausible values of the quantile of order p.

3.5.4.c Sampling-based method, adaptation of the QeAK-MCS

We introduced previously a 1-step strategy, which looks to reduce the prediction
error of the ratio Z/Z∗. In Razaaly (2019); Razaaly et al. (2020), the author introduce
a sampling-based method, named QeAK-MCS, for the estimation of extreme quantiles,
that we can adapt for the estimation of the quantiles of the ratio. Recalling that

Ξ(θ, u) = log
Z(θ, u)

Z∗(u)
∼ N

(
mΞ(θ, u), σ2

Ξ(θ, u)
)

(3.94)

we can get bounds of the true value of the quantile of order p at a given θ ∈ Θ by using
the quantiles of Ξ(θ, u):

log q+
p (θ) = QU (mΞ(θ, U) + kσΞ(θ, U), p) (3.95)

log q−p (θ) = QU (mΞ(θ, U)− kσΞ(θ, U), p) (3.96)

where k is a quantile of the standard Gaussian random variable. Let us define θ̃ =
arg min θ∈Θ q̂p(θ), that is the value that minimises the quantile of order p of the plug-in
estimate of the ratio, and α̂p = q̂p(θ̃).

By linearly discretizing the interval [q−p (θ̃), q+
p (θ̃)], we can define ql for 1 ≤ l ≤ Kq,

with q1 = q−p and qKq = q+
p . The {ql}1≤l≤Kq are then expected to cover the plausible

range of values that the sought quantile αp = min qp(θ) may take.

For each of those Kq quantiles, we can look to sample KM points in the margin of
uncertainty of the log-ratio, which is defined as

Mη(ql) =

{
(θ, u) | mΞ(θ, u)− log ql

σΞ(θ, u)
< k and − mΞ(θ, u)− log ql

σΞ(θ, u)
< k

}
(3.97)

= {(θ, u) | mΞ(θ, u)− kσΞ(θ, u) < log ql < mΞ(θ, u) + kσΞ(θ, u)} (3.98)

with k an appropriate quantile of the standard Gaussian random variable. Equivalently,
by defining the coverage probability of the set {log Z(θ,u)

Z∗(u) ≤ log ql}, which is πΞ,l(θ, u) =

Φ
(
−mΞ(θ,u)−log ql

σΞ(θ,u)

)
,

Mη(ql) =
{

(θ, u) | η
2
≤ πΞ,l(θ, u) ≤ 1− η

2

}
(3.99)

In other words, this margin of uncertainty is the set of points whose confidence
interval of level η of the log-ratio comprises the targeted value log ql.

In the end, we have K = KqKM points to add to the design, that we can adjust
as in Algorithm 3, in order to reduce the uncertainty on the value of the conditional
minimum when required. This procedure is illustrated Fig. 3.16, while on Fig. 3.17, the
evolution of the error on the estimation of qp is shown.
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Figure 3.16 – One iteration of the QeAK-MCS procedure, with Kq = 3 and KM = 4

We can see that we can reduce globally the estimation error, but it seems slower than
the augmented IMSE, as shown Fig. 3.15.

An issue that may arise is that when the GP is accurate enough, q−p and q+
p become

close, hence the different margin of uncertainties produce centroids close to each others,
which may lead to numerical difficulties. A crude way to deal with this technical issue is
to discard randomly all but one point when some are close to each other, as done with
hierarchical clustering.

3.6 Partial conclusion

In this chapter, we introduced Gaussian Processes as surrogates for the expensive-
to-evaluate objective function J . This metamodel, once constructed using an initial
design of points on Θ×U, can then be used to compute the robust estimators introduced
in Chapter 2.

However, due to the limited size of the initial design, and the impossibility to perform
exhaustive computations of the objective function, this surrogate can be inaccurate in
some regions, leading to a bad estimation, and thus a questionable calibration. Using the
properties of the GP, we can construct adaptive strategies in order to enrich the design
of experiment sequentially, where the points chosen improve significantly the various
estimations, and in this thesis, the estimation of the regret-based estimators.
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Several improvements can be considered. First, all the methods introduced here focus
on the improvement of the estimation of a function, which will be optimised in order
to get the estimator. The adaptive strategy could be adapted to take into account the
subsequent optimisation. Similarly as in Janusevskis and Le Riche (2010), we could
develop strategies in two parts: first, identify the point in Θ which has the most potential
to be the wanted estimator, and second, find the point in the joint space Θ× U which
reduces the most the uncertainty on the candidate.

Another issue encountered is that Gaussian Processes are suited to approximate
functions of a moderate number of variables, because the optimisation of the hyper-
parameters becomes increasingly difficult. In order to apply the algorithms based on
GP, the dimension may first have to be reduced. Moreover, we did not take advantage
of the gradient information, which may be available through the adjoint method and
automatic differentation tools, as has been done in Bouhlel and Martins (2019); Laurent
et al. (2019); Miranda et al. (2016); Marmin et al. (2015).

In the next chapter, we will study the problem of robust calibration of a realistic
numerical model, using some of the methods we introduced in this chapter.

* * *
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4.1 Introduction

In this chapter, we will study the problem of calibration under uncertainties of the
bottom friction of the ocean bed off the coast of France, from the English Channel to the
Bay of Biscay. This will be realised using a realistic numerical model based on CROCO1

(Coastal and Regional Ocean COmmunity model).

Since the bottom friction depends directly on the size of the asperities on the ocean
bed, the length scales involved in this process are way smaller than the scales of the
computational grid. In consequence, the numerical model does not solve the equations of
motions of the fluid around those asperities. Instead, the dissipation coming from the
associated rugosity is parametrized at every cell of the mesh.

The bottom friction has been identified as a crucial parameter that, if ill-specified,
limits the accuracy of the predictions (Sinha and Pingree, 1997; Kreitmair et al., 2019),
especially in shallow regions; consequently, there has been an effort to control this
parameter in various studies, for instance in Das and Lardner (1992, 1991); Boutet (2015).
We will detail how bottom friction affects the oceanic circulation in Section 4.2.2, in
order to get a first insight on the regions that may influence the most the calibration.

The deterministic problem of calibration will then be addressed in Section 4.3, by first
defining the objective function and the input space. We will then calibrate the model
without external uncertainties using adjoint-based gradient, in high-dimension (≈15 000).

However for such problems, as the parameter may be spatially distributed and
thus high-dimensional, any estimation procedure may become quickly expensive. In
consequence, instead of considering each grid cell individually, we will segment the
geographical input space in different independent regions, which are based on the type of
sediments listed at the bottom of the water.

In this problem of calibration we will assume that the uncertainties take the form of
an environmental parameter which perturbates the amplitude of some tidal constituents.
In order to quantify the influence of each of the sediment-based regions and the influence
of each of the components of the environmental variable, we will carry a global sensitivity
analysis in Section 4.4.

Finally based on this study, we will reduce significantly the input space, and then
apply some of the methods proposed in the previous chapter, in order to get a robust
estimation of the bottom friction using Gaussian processes in Section 4.5.

4.2 CROCO and bottom friction modelling

CROCO1 (Coastal and Regional Ocean COmmunity model) is a numerical model that
describes the motion of the ocean by solving the primitive equations, which are simplified
versions of the Navier-Stokes equations, taking into account the particular scales at play
at the surface of the Earth. CROCO has been developed upon ROMS_AGRIF (Regional
Ocean Modeling System, Adaptive Grid Refinement in Fortran Debreu et al. (2012)), and

1CROCO and CROCO_TOOLS are provided by https://www.croco-ocean.org
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is designed to be coupled with other modelling systems, such as atmospheric, biological
or ecosystem models.

4.2.1 Parameters and configuration of the model

The configuration used in this thesis is based on the one used in Boutet (2015). The
spatial domain ranges from 9◦W to 1◦E (comprising 139 internal points in this direction)
and from 43◦N to 51◦N (164 in this direction), and spans most of the Bay of Biscay,
the English Channel and the eastern part of the Celtic Sea. The resolution is 1/14◦,
which leads to a mesh size between 5 km and 6 km. The bathymetry map and the spatial
domain is shown Fig. 4.1. The ocean can be split roughly in two regions, based on its
depth : the region near the coasts which corresponds to the continental shelf, where the
water depth is less than 200 m, and the offshore region of the Bay of Biscay, where the
depth is closer to 5000 m.

Figure 4.1 – Bathymetry used in CROCO, and geographical landmarks. The continental
shelf corresponds roughly to the area with depth less than 200 m (green hue), while the
abyssal plain has a depth larger than 4000 m (blue hue)

CROCO can solve the fluid motion equations in 3D, but in this configuration, solves
the rotating shallow water equations instead, which are obtained by vertically averaging
the primitive equations, leading to:

{
∂v
∂t + (v · ∇)v + 2Ω ∧ v = −g∇H + τb

ρH + F
∂ζ
∂t +∇(H · v) = 0

(4.1)

where v = (vx, vy) is the velocity field of the fluid, Ω is the rotational angular vector of
Earth. H, the total water column height and ζ, the free-surface height (relative to the
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geoid) satisfy the relation H = ζ + b where b is the bathymetry. The effect of the bottom
topography and the friction are modelled using g the gravitational constant, ρ the fluid
density, and τb the shear stress at the bottom. Finally, F represents the external forcing
of the model. The forcing due to the tides is done at the boundaries. The bottom friction
affects the circulation through τb, and different parameterizations of this stress can be
derived.

4.2.2 Modelling of the bottom friction

In CROCO, the shear stress at the bottom is modelled using a quadratic drag
coefficient Cd:

τb = −Cd‖vb‖vb (4.2)

where vb is the velocity at the bottom, so in the case of the Shallow Water equations,
vb = v. The drag coefficient can in turn be formulated as a function of the water column
height and the bottom roughness zb by assuming a logarithmic profile of the velocity at
bottom (a derivation can be found in Le Bars et al. (2010) for instance)

Cd =


 κ

log
(
H
zb

)
− 1




2

(4.3)

where κ is the Von Kármán constant, usually taken equal to 0.41. The bottom roughness
zb, or rugosity in this document, can be interpreted as the size of the turbulent layer at
the bottom, induced by the asperities of the sediments. Boutet (2015) shows that in a
calibration context, controlling the rugosity zb yields better result than controlling the
drag coefficient Cd due to the influence of the water column height H. On Fig. 4.2 is
shown the drag coefficient Cd as a function of the roughness zb of the ocean floor, for
different heights of the water column H.

We can see that the higher the water column height, the less variation appears when
adjusting the bottom roughness zb. Considering the physical properties of the bottom
friction and the types of sediments, it can be expected that the English Channel, and at a
lesser extent the rest of the continental shelf are the areas which are the most influential
for the calibration.

We are now going to develop more precisely which inputs we are going to consider
for the numerical problem of calibration.

4.2.3 Definition of the control and environmental parameters

4.2.3.a Bottom roughness and sediments size

In this work, we are going to use a twin experiment setup: the calibration will be
performed with respect to some observation generated using CROCO. This observation
y ∈ RNobs is computed using a specific configuration of the forward model, meaning that
we are going to define a truth value for the bottom friction.

To do so, we are going to make the assumption that the size of the turbulent layer at
the bottom is equal to the size of the sediments there, so the rugosity is directly linked to
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Figure 4.2 – Drag coefficient Cd as a function of the column water height and the
roughness at the bottom

the type of sediment found on the ocean bed. Table 4.1 presents a coarse classification,
along with the typical size of the sediments that can be found, that will serve as truth
value: ztruth

b .

Code Description Size of the majority of particles ztruth
b

R Rock Larger 50 mm
C Pebble >20 mm 25 mm
G Gravel [20 mm, 2 mm] 7 mm
S Sand [2 mm, 0.5 mm] 1 mm

SF Fine Sand [0.5 mm, 0.05 mm] 1.5× 10−1 mm
Si Silt [0.05 mm, 0.01 mm] 2× 10−2 mm
V Muds < 0.05 mm 2× 10−2 mm

Table 4.1 – Type of sediments and size of the majority of particles for each type of
sediment. Data source: SHOM, used under CC BY-SA 4.0 license

Based on the documentation of the SHOM2, Fig. 4.3 shows a map of the repartition
of the different types of sediments introduced there. A more complete chart with a finer
classification of the types of sediments can be found in the appendix, on Fig. A.1.

Based on this classification, we can see that most of the ocean floor of the studied
domain is composed of sand. Even though siltic soil is listed, it is only scarcely present.

2Service hydrographique et océanographique de la Marine, https://www.shom.fr/fr
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Figure 4.3 – Repartition of the sediments on the ocean floor. Data source: SHOM, used
under CC BY-SA 4.0 license

The figure also shows that the largest sediments are rocks but are mostly located in
the Bay of Biscay, near the boundary of the continental shelf. Pebbles however are
mostly located in the shallow region in the English Channel, thus it may be expected
that controlling the roughness in the regions listed as pebbles will affect significantly the
water circulation, and thus the sea surface height. Incidentally, we can notice the inverse
correlation between the size of the sediments, and the depth at which they are found.

According to Table 4.1, the rugosity zb spans multiple orders of magnitude, so we are
then going to define the control variable θ as

θ = log zb ∈ Θ = [θmin, θmax]p (4.4)

where θmin = log(10−5) ≈ −11.5, and θmax = log(5 · 10−2) ≈ −3. The dimension of Θ is
noted p, and will be specified later depending on the chosen segmentation.

4.2.3.b Tidal modelling and uncertainties

The ocean, especially near the English Channel is driven by tidal forces that produce
currents at the surface. As a periodic signal, the tidal forcing is usually analysed
harmonically, in order to separate its influence by frequency. In CROCO, this forcing
can come from the TPXO model of tides (Egbert and Erofeeva, 2002), and in our
configuration, we use the 5 primary harmonic constituents as described Table 4.2.

By perturbating some properties of those tide components, we can artificially introduce
some error in the numerical model, i.e. a parametric misspecification that we will
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Darwin Symbol Period (h) Species

M2 12.4206 Principal Lunar Semidiurnal
S2 12 Principal Solar Semidiurnal
N2 12.65834751 Larger Lunar Elliptic Semidiurnal
K2 11.96723606 Lunisolar Semidiurnal
K1 23.93447213 Lunar Diurnal

Table 4.2 – Harmonic constituents used in the configuration

define as the environmental variable. In this work, this takes the form of a small
multiplicative error on the amplitude of the different components of the tide. Let
u = (u1, . . . , u5) ∈ U = [0, 1]5 be the environmental variable, that will be considered as a
random variable later, and let Ak be the amplitude of the kth component of the tide.
The perturbated amplitude Ãk is defined as

Ãk(uk) = Ak(1 + 0.01(2uk − 1)) (4.5)

for 1 ≤ k ≤ 5. Based on this definition, the perturbated amplitude varies from Ãk(0) =
0.99Ak to Ãk(1) = 1.01Ak, for every 1 ≤ k ≤ 5. We define also utruth as the vector whose
all its components are set to 0.5, so when no amplitude is perturbated: Ãk(utruth

k ) = Ak
for 1 ≤ k ≤ 5.

In the next section, we are going to estimate the parameter θ by minimising the
objective function using a gradient-descent algorithm.

4.3 Deterministic calibration of the bottom friction

The calibration of the bottom friction will first be studied without external un-
certainties, which corresponds to an unperturbated tidal forcing. In consequence, the
environmental variable is set to utruth.

In ocean modelling, the free-surface height ζ is often used as an observable quantity,
because it can be measured using satellites or tide gauges near the coasts. We consider
then ζ ∈ RNobs as the output of the numerical model.

Following the notations introduced in Chapter 1 for the model, let us define (M(·, utruth),Θ)
as the numerical model to calibrate. The forward operatorM(·, utruth) is defined by

M : Θ −→ RNobs

θ 7−→ M(θ, utruth) =
(
ζt,i(θ, u

truth)
)

1≤i≤Nmesh
1≤t≤Ntime

(4.6)

where ζt,i(θ, u) is the free-surface height of the ocean at the mesh point i, and at the
time-step t, obtained using the model and the bottom friction associated with θ and the
environmental variable u, and Nmesh ·Ntime = Nobs. In this configuration, Ntime = 49,
and corresponds to the number of records saved, while Nmesh = 15 684 is the number
of cells of the computational grid not located on land. The time step of the simulation
in itself is 10 s, and its total duration is 24 h, meaning that the water height ζ is saved
every 30 min.
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4.3.1 Twin experiment setup

Recalling the definition of a twin experiment setup, the observation y is generated
using the numerical model, and a predefined truth value θtruth. This means that the
“physical model” is defined using the forward operator M , based on the forward numerical
model, evaluated with the environmental parameter utruth.

M : Θ −→ RNobs

θ 7−→ M (θ) =M(θ, utruth)
(4.7)

Based on the forward operator M , we can generate the observations y ∈ Y = RNobs

using the truth value θtruth = log ztruth
b , as defined Table 4.1:

y = M (θtruth) =M(θtruth, utruth) (4.8)

In the following, if the u argument is omitted, it means that the model, or subsequent
functions are evaluated with utruth.

4.3.2 Cost function definition

Once the observation y ∈ RNobs has been generated, we can define the objective
function J :

J(θ) =

Ntime∑

t=1

Nmesh∑

i=1

(
ζt,i(θ, u

truth)− yt,i
)2

(4.9)

= ‖M(θ, utruth)− y‖22 (4.10)

Equivalently, as mentioned in Chapter 1, by assuming that the distribution of the
(random) observation vector is known and Y | θ ∼ N (M(θ), I) (with I being the identity
matrix of dimension p), J is proportional to the negative log-likelihood of the data.

4.3.3 Gradient-descent optimisation

The optimisation is carried using M1QN3, a version of a gradient-descent procedure,
as described in Gilbert and Lemaréchal (1989). We can first look to control zb at every
cell of the mesh: θ = (θ1, · · · , θp) where θi = log zib and p = 15 684.

Due to the large number of points whose friction can be controlled, a finite-difference
method to get the gradient is unfeasible. Instead, Tapenade (Hascoet and Pascual, 2013),
an Automatic Differentiation tool has been used in order to get the gradient (with respect
to θ) of the cost function J using the adjoint method, as described Section 1.4. The
starting point of the optimisation is θ = log 5× 10−3, and the procedure is stopped
after 400 iterations. The estimated control parameter (i.e. the minimiser found) is
shown Fig. 4.4a. The evolution of the cost function and the squared norm of the gradient
during the optimisation procedure is shown Fig. 4.4b.

By comparing the result of the optimisation Fig. 4.4a with the sediment chart Fig. 4.3
and the bathymetry map Fig. 4.1, we can have a first overview on which regions of the
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domain are properly estimated (i.e. where the estimation is close to the truth value).
On a first look, we can see that the abyssal plain (the deep region off the Bay of Biscay)
remains mostly unaffected by the optimisation, while the continental shelf, except for
some parts of the English Channel, is well retrieved.

On Fig. 4.5 is shown the value of the optimised rugosity zb, depending on the type of
sediment associated. Each point on this figure corresponds then to a mesh point. We can
see that indeed, as Fig. 4.4a shows, points of the mesh corresponding to sand, i.e. most
of the continental shelf, tends to get closer to the truth value ztruth

b . For silts and muds
however, the procedure did not change significantly their roughness, and thus stays close
to the initial value.

This can be probably explained by the great depth at which those sediments lay, and
thus it mitigates their influence on the drag coefficient per Eq. (4.3). In the English
Channel, the size of the pebbles is quite well retrieved albeit a bit underestimated, but
the points mapped to gravel do seem to compensate: on the northern part of the channel
the size of the gravel is overestimated, while it is underestimated on the southern part.
Finally the rocks appear to be hard to estimate properly, as only about 3% of the domain
is listed as rocks, and their corresponding zb is quite large in contrast to the other
sediments.
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(a) Optimisation of zb on the whole space using gradient obtained via adjoint method, after 400
iterations.
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(b) Evolution of the cost function and the squared norm of the gradient

Figure 4.4 – Calibration of the bottom friction using gradient-descent with well-specified
environmental variables
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Rocks Pebbles Gravels Sands Fine
Sands

Silts Muds

10−4

10−3

10−2

z b
(i

n
m

)

Optimisation result per type of sediments

Truth

Initial value

Figure 4.5 – Results of the optimisation procedure, depending on the type of sediments.
The starting value in the optimisation procedure for zb is 5× 10−3 m
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The optimisation procedure has been done also in the misspecified case, i.e. ub 6=
utruth = (0.5, 0.5) where the first component refers to the error on M2, and the second
on S2 (the others are supposed to be well-specified).

Figure 4.6 shows the resulting optimisation for ub = (0, 0) and for ub = (1, 1).

(a) ub = (0, 0)

(b) ub = (1, 1)

Figure 4.6 – Optimisation of zb on the whole space, with a misspecification of the
environmental variable

We can see that while the Bay of Biscay is left unaffected by the optimisation
procedure, the values in the English Channel seem be well estimated, no matter the
misspecification. However, the bottom friction near the Celtic Sea seems to compensate
the error due to the misspecification. In the appendix Section A.3 is presented the
result of the optimisation over the whole domain, for other choices of the environmental
parameter.
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This optimisation showed that all the regions are not crucial for a significant reduction
of the objective. So, in order to clarify this, we are now going to study the influence of
the different inputs of the objective function. More specifically, we are going to quantify
the influence of each region defined by its sediment type, and quantify the influence of
the uncertainties defined in Section 4.2.3.b on the output of the objective function, by
means of sensitivity analysis.

4.4 Sensitivity analysis of the objective function

Sensitivity analysis (often abbreviated as SA), aims at quantifying the effect of
the variation of some input variable to the output of the model (Iooss, 2011; Janon,
2012). Intuitively, SA aims at understanding how much the variations of each input or
combination of inputs explain the variations of the output.

It can then be approached at two different scales: around a nominal value, using the
gradient, and at a global scale, by considering the inputs as random variables, and by
measuring the variance of the output. In this work, we are going to focus exclusively on
global sensitivity analysis.

Here, sensitivity analysis is performed as a dimension-reduction method, because it
will be used to reduce the input space, based on the prior assumption that the rugosity zb
is considered constant for each regions. Indeed, we will make the link between sensitivity
and identifiability (Dobre et al., 2010). If a parameter shows a very small influence on
the output of the objective function, any choice of its value will yield sensibly the same
output of the objective, provided that the other input parameters are the same, justifying
their overlook.

4.4.1 Global Sensitivity Analysis: Sobol’ indices

As global SA calls for a probabilistic framework, we are going to consider a real-
valued random vector X = (X1, · · ·Xp), whose components are assumed independent, to
represent the inputs (i.e. θ and u) of a real function f : Rp → R (the objective function
in this thesis). As X is a random vector, we can introduce Y , the real-valued random
variable defined as Y = f(X).

The i-th Sobol’ indice of order 1 is defined as (Sobol, 1993, 2001)

Si =
VarXi [EY [Y | Xi]]

VarY [Y ]
(4.11)

and can be interpreted as the fraction of variance of the output Y explained by the
variation of Xi alone. Indices of order 2 are defined as

Si×j =
VarXi,Xj [EY [Y | Xi, Xj ]]

VarY [Y ]
− Si − Sj (4.12)

and account for the interactions of the inputs labelled i and j. Higher-order Sobol’ indices
can then be defined sequentially. Total-effect indices are also central in global sensitivity
analysis: those indices measure the contributions of a single input Xi through all its
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possible interactions, i.e. by considering the effect of its own variability (as the order 1)
and the effect of all its interactions (order 2 and above). Those total-effect indices can
be expressed as

STi = 1− VarX−i [EY [Y | X−i]]
VarY [Y ]

(4.13)

where X−i = (X1, . . . Xi−1, Xi+1, . . . , Xp) is a random vector of p− 1 components.

In our study, the Sobol’ indices of order 1, 2 and total ones are computed using a
replicated method (Gilquin et al., 2019; Gilquin, 2016), allowing for bootstrap confidence
intervals for the first and second order effects.

4.4.2 SA of the objective function for the calibration of CROCO

4.4.2.a SA on the regions defined by the sediments

The drag coefficient, which affects the ocean circulation, is the result of two factors
as shown in Eq. (4.3): the bottom roughness zb and the ocean depth H. So depending
on the depth, the influence of the rugosity at the bottom on the objective function may
change.

We are first going to perform a sensitivity analysis in order to quantify the role of
each sediment-based region, without incorporating the knowledge on the typical size of
the sediment there. Considering the similar expected size of silts (Si) and muds particles
(V) in Table 4.1, and the limited amount of silts, we will merge those regions, and label
the result with the code Si,V. Finally, the function which will be analyzed is

θ 7→ ‖M(θ, utruth)− y‖22 (4.14)

with
θ = (θR, θC, θG, θS, θSF, θSi,V) ∈ Θ, with Θ = [θmin, θmax]6 (4.15)

In the context of the sensitivity analysis, all the inputs are assumed to be independent,
and to be uniformly distributed on their support [θmin, θmax] ≈ [−11.5,−3]. The first,
second and total-order effects are displayed Fig. 4.7, where the regions defined by each
sediment is Fig. 4.3. The experimental design used here comprises 7888 points.

We can see that the most influential region is the one defined by the pebbles (with
code C). More generally, except for the rocks, we can see that the sediments that lies in
shallower regions have a larger impact on the objective function. Based on geographic
considerations and the result of this sensitivity analysis, we can adopt a new segmentation:
the regions of Pebbles (C), and Gravel (G) will be kept intact, but the remaining regions
(R, S, SF, Si, V) will be bundled together.

4.4.2.b SA on the tide components

As introduced Section 4.2.3.b, CROCO incorporates different tide constituents that
we perturbate through the uncertain variable u ∈ U. In order to quantify the influence of
each component of the environmental parameter, we performed also a sensitivity analysis.
As before, the SA is performed on the sum of squares of the difference between the
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Figure 4.7 – Global SA on the regions defined by the sediment type, and bootstrap
confidence intervals

forward operator and the observations. This time however, the control parameter θ is set
to its truth value, and the sum of squares depends only on u:

u 7→ ‖M(θtruth, u)− y‖22 (4.16)

for u = (u1, · · · , u5), and U = [0, 1]5. Once again, in the SA context, every component
is assumed to be uniformly distributed on [0, 1] and independent. Figure 4.8 shows the
Sobol’ indices of first order (left), second (right), and the total effect indices, along with
bootstrap confidence intervals, obtained with a design of experiments of 2888 points.

We can see that the component of the vector affecting the amplitude of the M2

component of the tide has the most impact on the cost function, and the S2 component
seems to have a non negligible effect as well. For the other tide constituents, the SA
reveals that perturbating their amplitude has little to no-effect in this configuration, and
thus those variables will be discarded in further analysis. The uncertain variable can
then be redefined in what follows as

U = (U1, U2) (4.17)

where U1 is the error on the M2 amplitude, and U2 is the error on the S2 amplitude, U1

and U2 are independent, and U ∼ U (U) with U = [0, 1]2.

4.5 Robust Calibration of the bottom friction

In this section, we are going to study the robust calibration of the numerical model, on
the space defined according to the sensitivity analysis performed before. On this reduced
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Figure 4.8 – Global SA on the different components of the tide, and bootstrap confidence
intervals

space, the objective function J will first be optimised globally on Θ× U in Section 4.5.1,
and its results will be compared with the true value (used to generate the observations).

Afterwards, we are going to estimate relative-regret based estimates of the bottom
friction as described in the previous chapters. The general approach is summarised Fig. 4.9.
We are first going to define and fit a Gaussian Process Z with respect to an initial design
evaluated by the objective function J , as introduced in Chapter 3. As J is supposed to
be positive, we are first going to ensure that the surrogate constructed using J , namely
mZ is positive as well, by enriching the design using the PEI criterion in Section 4.5.2.
This will allow us to estimate the conditional minimums and conditional minimisers.
This initialisation step is represented as the top row of Fig. 4.9.

The second row of the figure represents the enrichment step, which consists in
adding points to the design according to some adaptive strategies. These strategies are
implemented in order to improve the estimation of some quantities of interest linked to the
relative-regret estimates: estimation of Γα using the augmented IMSE in Section 4.5.3.a,
and sampling in the margins of uncertainty for qp in Section 4.5.3.b.

Finally, using the Gaussian Process Z fitted based on this final enriched design, we
then construct the associated surrogate mZ to emulate J and to compute the estimations
of Γα or qp, and optimise them to get the members of the relative-regret family of
estimators (as summarised in the last row of Fig. 4.9).
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Figure 4.9 – Representation of the different steps for the robust calibration of the
numerical model using relative-regret estimates

4.5.1 Objective function and global minimum

Based on the sensitivity analysis carried in the previous section, we are going to
consider the following setting for robust calibration. The control variable is defined as

θ =
(
θ(1), θ(2), θ(3)

)
∈ Θ Θ = [θmin, θmax]3 (4.18)

where the superscript (1) corresponds to the region defined as Pebbles, (2) is for the
regions defined as Gravel, and (3) corresponds to the merged regions of Rocks, Sand,
Silts, Mud, and Fine Sands.

Following the SA on the tide constituents, the uncertain variable is a random vector
with two components, representing the error on amplitude of the M2 and the S2 tide
constituents:

U = (U1, U2), Ui ∼ U([0, 1]) for i = 1, 2 (4.19)

As previously, the forward operator of the numerical model yields the sea-surface height
ζ:

M : Θ× U −→ RNobs

(θ, u) 7−→ M(θ, u) = (ζt,i(θ, u))1≤i≤Nmesh
1≤t≤Ntime

(4.20)
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and the objective function J is the squared difference between the observations y and
the forward operator.

J : Θ× U −→ R
(θ, u) 7−→ ‖M(θ, u)− y‖22

(4.21)

For the sake of the study, we can optimise the original function J over Θ × U =
[θmin, θmax]3 × [0, 1]2. Because we are controlling the calibration parameter on a space of
dimension 3 while the observation y has been generated without the dimension reduction,
the result of the optimisation can be different from the truth values. We obtain:

min
(θ,u)∈Θ×U

J(θ, u) = J(θ̂global, ûglobal) = 29.749 (4.22)

for

θ̂global = (−3.5162,−5.0776,−6.3459) (4.23)
ûglobal = (0.6348, 0.2989) (4.24)

We can then indeed notice that utruth = (0.5, 0.5) 6= ûglobal. The difference in the
environmental variables ûglobal and utruth compensates for the difference of dimensionality
between θ ∈ Θ, the control variable, and θtruth.

In order to compare the result of this optimisation with the truth value, Table 4.3
shows the different values of the different components of θtruth and θ̂global.

Component θtruth Component θ̂global

θC −3.6889 θ(1) −3.5162

θG −4.9618 θ(2) −5.0776
θR −2.9957




θ(3) −6.3459

θS −6.9078
θSF −8.8049
θSi,V −10.8198

Table 4.3 – Values of the θ component of the global optimiser, and truth value. The
region associated with θ(3) is the union of the regions defined with code R, S, SF, Si and
V.

As mentioned in the previous chapter, J can be expensive to evaluate computational-
wise, so we propose to use GP in order to model it, and to enrich its design for the
computation of members of the relative-regret family of estimators.

We will first define the initial design, which will be evaluated by J . A Latin Hyper-
square of 100 points on Θ× U is first sampled in order to construct a GP that can be
used as a surrogate. In this work, the GP will be constructed using the Python module
Scikit-learn (Pedregosa et al., 2011).

We denote XLHS the initial LHS, and Z the Gaussian Process constructed and fitted
using XLHS. We will write

Z ∼ GP (mZ , CZ) and CZ((θ, u), (θ, u)) = σ2
Z(θ, u) (4.25)
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We then have, for any (θ, u) ∈ Θ× U,

Z(θ, u) ∼ N
(
mZ(θ, u), σ2

Z(θ, u)
)

(4.26)

By definition, for any θ ∈ Θ and any u ∈ U, we have J(θ, u) ≥ 0. However, the
positivity of the objective function is not necessarily verified by the surrogate mZ , and
thus the notion of relative-regret is not defined. We have to first ensure that the GP
Z (and consequently Z∗) is positive with large enough probability. To do so, we are
first going to enrich the design near the conditional minimisers, using the PEI criterion.
Alternatively, one could have added points to the design according to the reliability index,
defined Eq. (3.40), and thus look and evaluate points having the largest probability of
being negative.

4.5.2 Conditional minimums and conditional minimisers

In the previous chapter, we defined the conditional minimum as the minimum of the
objective function at a given u ∈ U:

J∗ : u 7→ J∗(u) = min
θ∈Θ

J(θ, u) (4.27)

The conditional minimisers function is defined as

θ∗ : u 7→ θ∗(u) = arg min
θ∈Θ

J(θ, u) (4.28)

Since both of these functions require an optimisation of the objective function, they are
quite expensive to compute, so, as done before, we use the GP prediction of Z in order
to approximate them:

mZ∗ : u 7→min
θ∈Θ

mZ(θ, u) (4.29)

θ∗Z : u 7→ arg min
θ∈Θ

mZ∗(u) (4.30)

As mentioned before, in order to improve the accuracy of those two functions and
to ensure the positivity of mZ , we are first going to enrich the design using the PEI
criterion (Ginsbourger et al., 2014), as introduced Section 3.5.1. Choosing 200 additional
points this way, the new obtained design is denoted X0, that will serve as the “initial”
design for the enrichment procedures described later.

For the sake of this work, we are going to estimate the conditional minimisers as
accurately as possible, using in total 750 evaluations of the objective function J . By
sampling ui from U for 1 ≤ i ≤ nu = 2000, we can first estimate mZ∗(u) using this set of
samples, as shown in Fig. 4.10. As expected from the result of the optimisation carried
in Section 4.5.1, we can see that the minimum of mZ∗(u) (i.e. the global minimum) is
not attained at (0.5, 0.5) = utruth but rather at approximatively (0.6, 0.3).

Based on these samples, we can also approximate the distribution of the random
variable θ∗(U) by θ∗Z(U) = (θ

(1)∗
Z (U), θ

(2)∗
Z (U), θ

(3)∗
Z (U)). Figure 4.11 shows the pairwise

relations between the components of the random variable θ∗Z(U), based on the samples
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Figure 4.10 – Conditional minimum mZ∗(u) estimated using the GP Z

θ∗Z(ui) for 1 ≤ i ≤ nu. On the diagonal plots are shown the Kernel Density Estimation
of the marginal distributions of θ∗(U), and the corresponding samples from mZ∗(U).
The off-diagonal plots show the relations between the components. We can then observe
a negative correlation between θ

(1)∗
Z (U) and θ

(2)∗
Z (U) for instance, indicating that an

increase in one of those value of the friction is compensated by the decrease in the other
component. We can also notice that the marginal distribution of the first component
θ

(1)∗
Z (U) seems to exhibit two modes: one at −3.6, and one at around −3.45, and both
are quite close to the value found when optimising globally: θ̂(1)

global ≈ −3.5, which makes
it a clear candidate for robust optimisation. For the two other components, we can
observe that the range of values taken by the samples θ∗Z(ui) for 1 ≤ i ≤ nu is larger,
indicating that for these components, a robust candidate may be less identifiable, as
discussed Section 2.4.1, Page 49, but then also less influential.
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Figure 4.11 – Estimated distribution of the minimisers θ∗Z(U). The diagonal plots show
the KDE of the marginal distributions of the minimisers. Each point represents a sample,
and its vertical component is the conditional minimum associated. The non-diagonal
plots show the pairwise relation between the different components of the minimisers
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4.5.3 Relative-regret based estimators

We are now going to estimate members of the relative-regret family of estimators as
introduced Definition 2.4.6, on Page 55:

{
θRR,α = arg max

θ∈Θ
Γα(θ) | α ≥ 1

}
(4.31)

where the function to be maximised,

Γα(θ) = PU [J(θ, U) ≤ αJ∗(U)] (4.32)

is the probability that θ is α-acceptable. In the following, we will assume also that we
have at disposal a budget of 500 runs of the forward model, so after the initial design
and the initial iterations of the PEI criterion, we assume available 200 additional runs.

4.5.3.a Optimisation of the probability of exceeding a threshold

Plug-in approximation of the probability of acceptability

Let α > 1. The Γα function is quite expensive to compute, so we are going to use
a plug-in approach (see Definition 3.1.2) in order to avoid exhaustive computations of
the objective function J . Instead, we will use mZ and mZ∗ as surrogates of J and
J∗. For the approximation of the probability, we are going to use a Sample Average
Approximation (SAA) approach, by using a set of nu i.i.d. samples {ui}1≤i≤nu . All in
all, both approximations leads to

Γ̂PI
α (θ) =

1

nu

nu∑

i=1

1{mZ(θ,ui)≤αmZ∗ (ui)} (4.33)

Maximising this expression yields

θ̂RR,α = arg max
θ∈Θ

Γ̂PI
α (θ) = (θ̂

(1)
RR,α, θ̂

(2)
RR,α, θ̂

(3)
RR,α) (4.34)

In order to get a relevant value of θ̂RR,α, we are going to reduce sequentially the augmented
IMSE, as introduced in Section 3.5.3.

Stepwise reduction of the augmented IMSE

We will first look to improve the estimation of Γα, by improving the plug-in ap-
proximation. We define ∆α = Z − αZ∗ ∼ GP(m∆α , C∆α), which is a GP as de-
fined in the previous chapter. The prediction variance, or mean square error, is
σ2

∆α
: (θ, u) 7→ C∆α

(
(θ, u), (θ, u)

)
. In the following, we are going to estimate the

relative-regret, associated with the value α = 1.3, meaning that we are looking to max-
imise the probability of being within 30% of the optimal value. Such a value has been
chosen based on a preliminary analysis, using the GP constructed on the initial design.

We are then going to reduce the augmented IMSE of the random process ∆α. Recalling
that the IMSE associated with the GP ∆α = Z − αZ∗ constructed using the design Xn
is defined as

IMSE(Xn) =

∫

Θ×U
σ2

∆α
(x) dx (4.35)
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we select the next point to evaluate as:

(θn+1, un+1) = arg min
(θ,u)∈Θ×U

EZ(θ,u) [IMSE(Xn ∪ ((θ, u), Z(θ, u)))] (4.36)

In practice, we will choose the new point (θn+1, un+1) in a stochastic manner, as the
augmented IMSE will be estimated using a Monte-Carlo method. Let us consider
the design augmented with the point ((θ, u), z(θ, u)), which is equivalent to making the
assumption that the function takes the value z(θ, u) > 0 at the point (θ, u), we note σ2

∆α|z
the prediction variance associated with this design. The estimation of the augmented
IMSE is then

IMSE(Xn ∪ ((θ, u), z(θ, u))) ≈ 1

nIMSE

nIMSE∑

i=1

σ2
∆α|z(θi, ui) (4.37)

where the points (θi, ui) for 1 ≤ i ≤ nIMSE are resampled each iteration using a LHS on
Θ× U for nIMSE = 150.

The expectation operator of Eq. (4.36) is also approximated by choosing zj(θ, u) for
1 ≤ j ≤ nZ as different quantiles of Z(θ, u) (which is normally distributed). Finally, we
have

EZ(θ,u) [IMSE(Xn ∪ ((θ, u), Z(θ, u)))] ≈ 1

nZ

nZ∑

j=1

1

nIMSE

nIMSE∑

i=1

σ2
∆α|zj (θi, ui) (4.38)

∝
nZ∑

j=1

nIMSE∑

i=1

σ2
∆α|zj (θi, ui) (4.39)

and finally we choose the point with the lowest augmented IMSE among 100 randomly
sampled points in Θ× U.

Figure 4.12 shows the reduction of the augmented-IMSE with the number of additional
iterations, until reaching a number of 500 evaluations of the model in total. Abrupt
changes in the IMSE can be explained by a significant changes in the hyperparameters
of the GP.

Based on the enriched GP, we can maximise the plug-in approximation Γ̂PI
α . We

chose here nu = 500, and the maximum found is

max
θ∈Θ

Γ̂PI
α (θ) = 0.9300± 0.0224 (4.40)

where the given confidence interval is computed using the normal approximation of
the binomial proportion, at a 95% level. As we are using a plug-in approximation, we
overlook the intrinsic uncertainty which is represented by the GP, and thus use directly
mZ instead of J .

Even though the design has been enriched for α = 1.3, the resulting GP can be used
to evaluate quantities associated with other thresholds. Figure 4.14 shows the maximal
probability reached by Γ̂PI

α as a function of α, and the different components of the
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Figure 4.12 – Evolution of the IMSE during the enrichment strategy

control variable θ̂RR,α, all these quantities computed using the metamodel mZ after the
additional iterations.

We can see that the estimated components of θ̂RR,α(U) stay in a rather small range
for all α > 1. Recalling the the global optimiser whose values are introduced Ta-
ble 4.3 Page 117, θ̂global = (−3.516,−5.078,−6.3459), we can observe that θ̂(1)

RR,α is

slightly higher than θ̂(1)
global for all α > 1. Globally however, we can see that the different

values of the components do not seem to change a lot for different α.
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Figure 4.13 – Evolution of the maximal probability of acceptablility max ΓPI
α , and 95%

CI interval associated with the SAA approximation of the estimation of the probability.

Figure 4.14 – Components of θ̂RR,α, using the GP enriched with 200 additional points
minimising the augmented IMSE.
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4.5.3.b Optimisation of the quantile of the relative-regret

Plug-in approximation of the quantile

Alternatively, for a level of confidence p ∈ [0, 1], we can define the quantile function
of the ratio:

qp(θ) = QU (RR(θ, U); p) (4.41)

where RR(θ, U) = J(θ,U)
J∗(U) is the relative-regret, that we introduce for notational con-

venience. As RR is unknown directly, we can also apply the plug-in approach, and
define

RRPI(θ, u) = exp

[
mΞ(θ, u) +

1

2
σ2

Ξ(θ, u)

]
(4.42)

where Ξ is the lognormal approximation as defined in Eq. (3.87), Page 93. Once again,
the estimation of the quantile of order p of RR is done using a set of i.i.d. samples of U :
{ui}1≤i≤nu

q̂PI
p (θ) = RRPI(θ, u)([nup]) (4.43)

where the subscript indicates the order statistic, i.e. the [nup] smallest value of
{RRPI(θ, ui)}1≤i≤nu (with [·] as the rounding operator).

As defined in the previous chapter, the minimiser of q̂PI
p is the estimated member of

the relative-regret family associated with αp:

θ̂RR,αp = arg min
θ∈Θ

q̂PI
p (θ) = (θ̂

(1)
RR,αp

, θ̂
(2)
RR,αp

, θ̂
(3)
RR,αp

) (4.44)

Sampling-based method for the estimation of the quantile: QeAK-MCS

We are now going to treat this problem using a sampling-based method, as intro-
duced Section 3.5.4.c, which is derived from Razaaly (2019). The log-normal approxima-
tion of the relative-regret, as introduced Section 3.5.4.a, allows us to define the random
process Ξ as

log
Z(θ, u)

Z∗(u)
≈ Ξ(θ, u) ∼ N

(
mΞ(θ, u), σ2

Ξ(θ, u)
)

(4.45)

Using the Gaussian nature of Ξ, we define q1, q2 and q3, as a lower bound, a central
estimate and an upper bound respectively, of the value minθ q̂p(θ) = α̂p, minimum which
is attained at θ̂ = arg min θ∈Θ q̂p(θ). Following the notation introduced in the previous
chapter, we chose Kq = 3. With k = Φ−1(1− 0.025) the quantile of order 0.975 of the
standard normal distribution, we define

log q1 =
(
mΞ(θ̃, u)− kσΞ(θ̃, u)

)
([nup])

≈ QU (mΞ(θ̃, U)− kσΞ(θ̃, U); p) (4.46)

log q2 = log

(
min
θ∈Θ

q̂PI
p (θ)

)
= log q̂PI

p (θ̃) = log α̂p (4.47)

log q3 =
(
mΞ(θ̃, u) + kσΞ(θ̃, u)

)
([nup])

≈ QU (mΞ(θ̃, U) + kσΞ(θ̃, U); p) (4.48)
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We can then define the margins of uncertainty of the relative-regret of level η, for
each of the values ql:

Mη(ql) =

{
(θ, u) | η

2
≤ Φ

(
−mΞ(θ, u)− log ql

σΞ(θ, u)

)
≤ 1− η

2

}
(4.49)

We can then sample points in each of those margins, perform a statistical reduction
method in order to get KM points for each margin, adjust them and finally evaluate the
Kq ·KM = 3 ·KM points by the objective function.

Numerically speaking, the margins revealed themselves quite small, so we chose a level
η = 0.0005 in order to increase their volume, and thus facilitate the sampling procedure.

After the sampling of 2000 points in those margins Mη(ql) for 1 ≤ l ≤ 3 , we use the
KMeans clustering algorithm in order to select KM representative points among those
samples. This number of points selected in each margin KM changes along the iterations:
it starts with a small number of points, KM = 3, and increases until KM = 10.

We can see on Fig. 4.15 the estimated volume of the margin of uncertainty (i.e. its
measure according to Lebesgue’s measure on Θ× U), using Monte-Carlo method, along
with the 95% confidence intervals associated with the Monte-Carlo estimation (Wilson’s
score method as introduced Wilson (1927) to account for the small relative volume
of the margin of uncertainty). We can notice that first, its volume increases slightly.
This can be seen as an exploration phase, where the additional evaluations change the
hyperparameters of the GP, which affects the estimation of the conditional minimums,
and the candidate quantiles ql, for 1 ≤ l ≤ 3. After enough additional points, the volume
of the margin decreases, as points are added that do not change significantly the other
estimations.

Figure 4.15 – Volume of the margin of uncertainty associated with q2 = α̂p, and 95%
confidence intervals of its estimation
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Using the GP conditioned on the final design, for p = 0.95 we can compute

α̂p = 1.3791 (4.50)
[q1, q3] = [1.36618, 1.391868]

and using the same GP, Fig. 4.16 shows the estimation of the threshold for other values
of p. One main difference between the confidence interval given there by q1 and q3,
and the one given Eq. (4.40) is that the former translates the uncertainty originating
from the Gaussian Process, while the latter accounts for the error in the sample average
approximation of the probability Γ̂PI

α .

Figure 4.16 – Estimation of the threshold αp, depending on the level p. The lower and
upper bounds q1 and q3 are also displayed

Finally, Fig. 4.17 shows the different components of θ̂RR,αp for different p > 0.5. We
can notice that similarly as in Fig. 4.14, the range of values taken by each component is
rather small. We can however notice that the first component of θ̂RR,αp is again slightly
larger than the one the global optimum θ̂global.

All in all, this study suggests that choosing a value slightly higher than the global
optimiser for the first component (which corresponds to Pebbles) would be more robust
than choosing the global minimiser. Regarding the other components, their respective
influence (given by the SA) and the relative-regret estimates would point toward a value
close or equal to the global optimiser.

A comparison of the two methods is summarised in Table 4.4.
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Figure 4.17 – Relative-regret based estimates θ̂RR,αp , depending on the level p

Method augmented IMSE Qe-AK MCS

Quantity of interest EZ [
∫

Θ×U σ
2
∆α|Z ] Mη(ql)

Type 1-step K-step

Main Bottleneck Evaluate and optimise integral in
(1 + dim(Θ× U)) dimensions

Sampling in unknown
regions in dim(Θ× U)

Advantage Optimal criterion of enrichment K chosen arbitrary

θ̂RR,α α = 1.3 (−3.43,−5.2,−6.48) (−3.375,−5.05,−6.61)

θ̂RR,αp p = 0.95 (−3.39,−5.28,−6.5) (−3.36,−5.10,−6.63)

θ̂global (−3.516,−5.078,−6.3459)

Table 4.4 – Comparison of methods and numerical results for the robust calibration of
CROCO

4.6 Partial conclusion

In this chapter, we addressed the problem of calibration under uncertainties of the
numerical model CROCO. After having defined the control and environmental parameters,
we performed different studies, in order to have a better understanding of the behaviour
of the model at stake.

First, we optimised the objective function on a high-dimensional input space, but
without external uncertainties. We chose then to segment the domain according to the
type of sediments that can be found at the bottom, and by performing a sensitivity
analysis, we could reduce further the dimension of the input space. A similar study has
been done in order to reduce the dimension of the environmental parameter as well.

Finally, we applied some of the methods that rely on GP as introduced in Chapter 3,
in order to explore further the behaviour of the numerical model under uncertainties.
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First, to have a better estimation of the conditional minimum and minimisers we enriched
the design using the PEI criterion. Then, in order to get robust estimators of the bottom
friction, we used two different approaches to enrich the GP. In the first one, we reduced
iteratively the augmented IMSE in order to improve the plug-in approximation of the
probability of exceeding a threshold. For the other one, in order to minimise a specific
quantile of the relative-regret, we defined and sampled in the margin of uncertainty in
order to add points by batches.

This finally leads to relative-regret estimates of the bottom friction, which differ
from the global minimiser: according to this study, taking a value slightly larger for the
first component of the bottom friction leads seemingly to a more robust solution. The
small variations in the values of θ̂RR for the different levels of confidence also suggest
that a compromise between performances and robustness is easily reachable. Indeed,
in this configuration, we can see that the calibration problem behaves “nicely” under
uncertainties: the environmental parameters seem to only have a limited impact on the
estimation of the bottom friction.

From a performance point of view, GP can indeed reduce the computational require-
ments needed to compute relative-regret estimates. However as mentioned before, GP do
not scale particularly well for problems of more than a dozen input variables, rendering a
dimension reduction almost mandatory for tractability.

The computational cost of the enrichment process, either using stepwise or sampling
procedures, can quickly become non-negligible. Indeed, the estimation of the parameters of
the distributions of ∆α(θ, u) and Ξ(θ, u) require at each point (θ, u) a global optimisation
of mZ , which can amount to a few hundreds of calls to the surrogate mZ . In itself, this
procedure is not that expensive. However, it needs to be performed a large number of
times: for a single evaluation of the augmented IMSE for instance, estimation of nested
integrals are needed, thus the number of computations of the parameters of ∆α grows
quite large, even more when considering an optimisation of the augmented IMSE on
Θ× U. Similarly, the volume of the margin of uncertainty can be very small compared
of the volume of the whole space Θ× U, thus without specific sampling schemes, it can
quickly become a computational bottleneck as well, even more so when the prediction
variance becomes small.

Some improvements can be considered in order to perform more efficiently those
estimations. A two-stage approach could be derived, in order to first identify a value θ̃ for
which we want to reduce the augmented IMSE, and secondly to integrate the augmented
IMSE over θ̃ × U. By doing so, each iteration would instead require the optimisation of
an integral of dimension 1 + dimU, while at the same time focus some computational
effort toward the estimation of θ̂RR,α, by correctly choosing a candidate θ̃. Also, instead
of considering the augmented IMSE, we could instead look for the point maximising the
prediction variance of ∆α, and “adjust” its θ component, similarly as proposed for the
sampling based scheme, bypassing completely the evaluation of the integral.

A better sampling scheme for Monte-Carlo based methods can also be imagined:
the margin of uncertainty comprises points (θ, u) for which Ξ(θ, u) is “close” to log ql
(for 1 ≤ l ≤ Kq), thus for importance sampling, we could construct a proposal density
which consists in first sampling u ∼ U , then sampling θ “close” to θ∗Z(u), for instance by
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choosing θ ∼ N (θ∗Z(u), γ2I), where I is the identity matrix in dimension dim Θ, and γ is
chosen with respect to the target quantiles ql.

Both methods introduced in this chapter rely on the ability to compute quickly
the conditional minimum mZ∗ and the conditional minimiser θ∗Z in order to get the
mean and variance of the processes ∆α and Ξ. For each of this optimisation, we used a
gradient-descent methods, where the starting point is selected randomly in the search
space each restart, in order to avoid getting stuck in a local minimiser. This step could
be improved as well, by using directly a global optimisation method.

Finally, aside from those technical details of implementation, a similar study could
be derived on slightly different configurations, by increasing for instance the assimilation
window, in order to increase the observable interactions in the tide constituents, or by
considering a different segmentation with more sediment types, or a segmentation based
on the depth for instance.

* * *
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PERSPECTIVES

Summary

Numerical models are ubiquitous nowadays for the prediction of various phenomena,
which have a large impact especially for policy- and decision-making. Due to the increase
in computing power and to the various advances in research that allow the quantification
of additional effects or interactions that were overlooked until then, realistic models may
become increasingly complex, as additional parameters are taken into account. In order
to get a meaningful representation of the reality, those parameters have to be chosen
accordingly. Furthermore, the numerical model studied may also be affected by some
random inputs, making the calibration more difficult. In this thesis, we tackled the
estimation problem of parameters under uncertainty. More precisely, we studied the
notion of robustness of a calibrated model when a random variable which represents
some uncontrollable environmental conditions is taken into account.

In Chapter 1, after having covered common notions of probability and aspects of
statistical inference, we described the calibration problem as an optimisation problem by
introducing an objective function, that we wish to minimise with respect to the control
parameter θ.

However, due to the presence of some random environmental variable U in the study,
a plain minimisation of the objective function is not completely relevant, as its result will
depend on the value taken by this random variable. Considering the random nature of
the environmental parameters, the calibration can be seen as a problem of optimisation
under uncertainties, and many specific methods and criteria can be defined to treat
accordingly this new problem of robust calibration.

Some classical criteria are first introduced in Chapter 2. Depending on the framework
used to describe the quantities involved, we can define Bayesian or frequentist estimates
by keeping a fully probabilistic inference framework. On the other hand, when considering
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a variational approach, estimates such as the minimiser of the mean value of the objective
function, i.e. the minimiser of the expected loss, are often used.

In this thesis, we focused on estimates based on the notion of regret: instead of
comparing directly the values taken by the objective function for different configurations
given by u, the regret allows the modeller to compare the value of the objective with the
best attainable performance given this specific environmental variable. This allows to
put less emphasis on configurations which lead to bad performances, and to focus more
on “salveagable” situations.

Moreover, the user can adjust a parameter in order to reflect either a risk-adverse
behaviour, by favourising a control of the regret with high probability, or a risk-seeking
one, by favourising an estimate that will yield values of the regret closer to its optimum,
albeit with lower probability.

In general, criteria of robust optimisation require a global knowledge of the function,
since they often involve several evaluations of expectations and probabilities with respect
to U . In addition to that, the family of regret-based estimates we introduced depends
directly on the conditional minimum and minimiser. In Chapter 3, we proposed to use
Gaussian Processes (GP) in order to compute the quantities associated with regret-based
estimators. More precisely, we proposed a few methods which aim at improving this
estimation by choosing iteratively a new, or a batch of new points to evaluate and to
add to the design.

Finally in Chapter 4, we studied an academic problem of calibration of a coastal model
based on CROCO. After having reduced the dimension of the input space based on the
sediment type at the bottom, we enriched the design in order to improve the estimation
of the functions that define the regret-based estimates, which are then optimised.

Limitations and perspectives

Throughout this thesis, we assumed that the forward operator was a deterministic
black-box, or deterministic simulator, in the sense that the uncertainties in the modelling
are “controlled” by the modeller. A stochastic simulator in contrast does not take an
environmental parameter as input, so each evaluation of the forward operator can be seen
as sampling a specific random variable. This may be the case when the environmental
variables are not easily parametrised, such as in the presence of functional inputs (El Amri,
2019). In this case, it is not possible to control the value of u chosen for an enrichment
strategies for instance. An alternative strategy would be to consider this uncertainty as
noise in the output of the simulator, leading to noisy kriging and/or or noisy optimisation
methods (Picheny and Ginsbourger, 2014).

Based on the assumption that the environmental parameter u was indeed controllable,
using the properties of the Gaussian processes we developed criteria which aim at
improving the estimations of the functions Γα and qp. In order to get the regret-based
estimators, those functions had to be optimised, using a set of samples of U to approximate
expectations and quantiles, in a sample average approximation (SAA) fashion. Because
of this, for levels of confidence very close to 1, the estimation of quantities in such
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high probabilities can be difficult, and usually needs specific methods instead of simple
Monte-Carlo sampling in order to get accurate enough results, as in Razaaly (2019).

Also, instead of improving the estimation of Γα and of qp on the whole space, we could
develop methods in order to optimise directly those functions, and thus combine the
estimation and the optimisation. This could for instance be done in a 2-stage enrichment
strategy, as in Janusevskis and Le Riche (2010). First, a value θ̃ ∈ Θ is chosen, with a
“high” potential to be the optimiser (quite similarly as the EI criterion), and then the
couple (θn+1, un+1) to evaluate is chosen in order to reduce a measure of uncertainty
associated with the space {θ̃}×U (e.g. the IMSE integrated over this space). This would
focus the enrichment in regions of interest, and also reduce the dimension of the integral
to evaluate.

We introduced also a few sampling methods, that rely on efficient sampling in different
margin of uncertainties. Depending on the problem, this task can reveal itself quite
challenging: the more accurate the GP is, the less prediction variance it shows, and thus
the margin of uncertainty can become very thin. Simple sampling schemes such as the
acceptance-rejection method can become inefficient, even more so when the dimension of
the problem increases. Refinement such as importance sampling can be considered such
as in Razaaly (2019).

Once set aside potential technical improvements in the methods proposed, we can
propose a few other possibilities that may warrant further investigations.

In this thesis we focused on the variational formulation of the calibration problem,
i.e. by defining an objective function, akin to the log-likelihood, or to the log-posterior
density that is then optimised. A Bayesian method could be performed in order to
estimate the posterior distribution of the parameter θ given the observations. Moreover,
this task could be performed using adapted sampling schemes, such as Hamiltonian
Monte-Carlo (Betancourt, 2017), in order to use the gradient that may be available using
adjoint method.

This gradient, taken with respect to the control parameter, may be useful at different
stages: we can incorporate this additional knowledge in the modelling of the GP, so
that the predictions are improved, as done in Bouhlel and Martins (2019); Laurent et al.
(2019). However, GP are flexible and useful tools but are not well suited for modelling
problems with dimensions higher than about 10: when the designs considered are too
large, fitting the GP can also be problematic, as large matrices have to be inverted, and
the optimisation of the hyperparameters can become difficult. Reducing the dimension of
the input spaces is then often necessary. The segmentation we performed in Chapter 4 for
instance is rather coarse and based on external information. A finer dimension reduction
method could be done, without prior information, using the gradient for instance, as
done in Benameur et al. (2002) or in Zahm et al. (2018).

Finally, in this work, the random variables J∗(U) and θ∗(U) which represent the
conditional minimums and minimisers respectively, play a central role in our definitions of
robustness, and further developements could be imagined around those random variables.
The distribution of the conditional minimum J∗(U) can be seen as an “ideal” distribution
for the objective (i.e. the distribution that one could get if the calibrated parameter
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had always been chosen optimally for all realisations of the uncertain variable). The
minimisation of a measure of misfit between the distribution of J∗(U) and the distribution
of J(θ̂, U) (the objective function of the model calibrated with θ̂) may be worth exploring.
Horsetail matching for instance (Cook et al., 2017; Cook and Jarrett, 2018) could be
used so that the a metric between cdf of the two distributions is minimised.

* * *
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A.1 Lognormal approximation of the ratio of normal ran-
dom variables

Let X and Y be two correlated normal random variables:

X ∼ N (µX , σ
2
X) (A.1)

Y ∼ N (µY , σ
2
Y ) (A.2)

ρ =
Cov[X,Y ]

σXσY
(A.3)

[
X
Y

]
∼ N

([
µX
µY

]
;

[
σ2
X ρσXσY

ρσXσY σ2
Y

])
(A.4)

Let us assume that both random variable are positive with high probability, so that the
ratio T = X/Y is defined and positive with high probability. We will first rewrite T
using the centered random variables X0 = X − µX and Y0 = Y − µY :

T =
µX
µY

1 + X0
µX

1 + Y0
µY

(A.5)

and we can then take its logarithm

log T = log

(
µX
µY

)
+ log

(
1 +

X0

µX

)
− log

(
1 +

Y0

µY

)
(A.6)
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So if X0/µX and Y0/µY are small, i.e. if µX � σX and µY � σY , by Taylor’s
expansion of the log, we have

log T ≈ log

(
µX
µY

)
+
X0

µX
− Y0

µY
(A.7)

The joint distribution of X0 and Y0 is known:
[
X − µX
Y − µY

]
=

[
X0

Y0

]
∼ N

([
0
0

]
;

[
σ2
X ρσXσY

ρσXσY σ2
Y

])
(A.8)

and by scaling by 1/µX and 1/µY , we have

[
1
µX

0

0 1
µY

] [
X0

Y0

]
=

[
X0/µX
Y0/µY

]
∼ N



[
0
0

]
;




σ2
X

µ2
X

ρσXσYµXµY

ρσXσYµXµY

σ2
Y

µ2
Y




 (A.9)

Thus
X0

µX
− Y0

µY
∼ N

(
0;
σ2
X

µ2
X

+
σ2
Y

µ2
Y

− 2ρ
σXσY
µXµY

)
(A.10)

A first approximation is then to consider the ratio to be log-normally distributed, and

log T ∼ N
(

log

(
µX
µY

)
;
σ2
X

µ2
X

+
σ2
Y

µ2
Y

− 2ρ
σXσY
µXµY

)
(A.11)

The correlation term can also be possibly dropped from the approximation, as ρσXσYµXµY
can be very close to zero. Moreover, as this term is positive, if omitted, this would
increase slightly the variance of the log-ratio and thus increase a bit the uncertainty
which can be beneficial in some applications.
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A.2 Full sediment repartition in the Bay of Biscay and the
English Channel

In Chapter 4, we used the data from the SHOM in order to derive a reduced sediment
repartition in Fig. 4.3. The original repartition is reproduced here in Fig. A.1, and the
correspondence table between the reduced and full repartition is given Table A.1.

Figure A.1 – Full sediments repartition. Source: SHOM, under CC BY-SA-4.0 license

A.3 Misspecified deterministic calibration

In the next pages are shown the results of different optimisation procedures on the
whole domain, similarly as in Section 4.3.3. However, the optimisation will be carried
using the objective function defined as

θ 7→ J(θ, ub) = ‖M(θ, ub)− y‖22 = ‖M(θ, ub)−M(θtruth, utruth)‖22 (A.12)

and on 200 iterations. ub ∈ [0, 1]2 represents the environmental conditions, which can
be misspecified, while utruth = (0.5, 0.5) is the value used to generate the observations.
The top figures show the estimated roughness zb, and the relative difference of the
control variable θ with the truth value θtruth. The bottom plots show the evolution of
the objective function and the squared norm of the gradient of the objective function
depending on the iteration during the optimisation.
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Full repartition Reduced repartition

Rocks Rocks

Grits PebblesGrits and gravel

Gravel
GravelsGravel and grits

Sandy gravels

Sands

Sands
Sands and grits
Gravely sand
Gravely muddy sand
Muddy sands

Full repartition Reduced repartition

Fine sands Fine SandsFine and muddy sands

Silts Silts

Muds

MudsSandy mud
Mud and fine sand

Table A.1 – Correspondence between the full sediments repartition classes and the
segmentation used in Chapter 4
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Misspecified environmental parameter: ub = (0, 0)

(a) Estimated θ and relative-error

0 50 100 150 200

Iterations

102

J

Cost function: J(θ) = 70.53

0 50 100 150 200

Iterations

100

101

102

‖∇
J
‖2

Norm of the gradient: ‖∇J(θ)‖2

(b) Objective function evolution along the iterations

Figure A.2 – Optimisation on the whole space, ub = (0, 0)
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Misspecified environmental parameter: ub = (0, 0.5)

(a) Estimated θ and relative-error

0 100 200

Iterations

102

J

Cost function: J(θ) = 43.90

0 100 200

Iterations

10−1

100

101

102

‖∇
J
‖2

Norm of the gradient: ‖∇J(θ)‖2

(b) Objective function evolution along the iterations

Figure A.3 – Optimisation on the whole space, ub = (0, 0.5)
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Misspecified environmental parameter: ub = (0, 1)

(a) Estimated θ and relative-error

0 100 200

Iterations

102J

Cost function: J(θ) = 27.87

0 100 200

Iterations

10−1

100

101

102

‖∇
J
‖2

Norm of the gradient: ‖∇J(θ)‖2

(b) Objective function evolution along the iterations

Figure A.4 – Optimisation on the whole space, ub = (0, 1)
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Misspecified environmental parameter: ub = (0.5, 0)

(a) Estimated θ and relative-error
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Cost function: J(θ) = 5.50
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Norm of the gradient: ‖∇J(θ)‖2

(b) Objective function evolution along the iterations

Figure A.5 – Optimisation on the whole space, ub = (0.5, 0)
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Well-specified environmental parameter ub = (0.5, 0.5) = utruth

(a) Estimated θ and relative-error
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Cost function: J(θ) = 0.64
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100
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Norm of the gradient: ‖∇J(θ)‖2

(b) Objective function evolution along the iterations

Figure A.6 – Optimisation on the whole space, ub = (0.5, 0.5) = utruth
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Misspecified environmental parameter: ub = (0.5, 1)

(a) Estimated θ and relative-error
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(b) Objective function evolution along the iterations

Figure A.7 – Optimisation on the whole space, ub = (0.5, 1)
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Misspecified environmental parameter: ub = (1, 0)

(a) Estimated θ and relative-error
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Cost function: J(θ) = 26.80
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Norm of the gradient: ‖∇J(θ)‖2

(b) Objective function evolution along the iterations

Figure A.8 – Optimisation on the whole space, ub = (1, 0)
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Misspecified environmental parameter: ub = (1, 0.5)

(a) Estimated θ and relative-error
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Cost function: J(θ) = 41.79
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(b) Objective function evolution along the iterations

Figure A.9 – Optimisation on the whole space, ub = (1, 0.5)
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Misspecified environmental parameter: ub = (1, 1)

(a) Estimated θ and relative-error
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(b) Objective function evolution along the iterations

Figure A.10 – Optimisation on the whole space, ub = (1, 1)

* * *
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Abstract

To understand and to be able to forecast natural phenomena is increasingly important nowadays, as those
predictions are often the basis of many decisions, whether economical or ecological. In order to do so, mathematical
models are introduced to represent the reality at a specific scale, and are then implemented numerically. However
in this process of modelling, many complex phenomena occurring at a smaller scale than the one studied have to
be simplified and quantified. This often leads to the introduction of additional parameters, which then need to
be properly estimated. Classical methods of estimation usually involve an objective function, that measures the
distance between the simulations and some observations, which is then optimised. Such an optimisation require
many runs of the numerical model and possibly the computation of its gradient, thus can be expensive to evaluate
computational-wise.

However, some other uncertainties can also be present, which represent some uncontrollable and external
factors that affect the modelling. Those variables will be qualified as environmental. By modelling them with a
random variable, the objective function is then a random variable as well, that we wish to minimise in some sense.
Omitting the random nature of the environmental variable can lead to localised optimisation, and thus a value of
the parameters that is optimal only for the fixed nominal value. To overcome this, the minimisation of the expected
value of the objective function is often considered in the field of optimisation under uncertainty for instance.

In this thesis, we focus instead on the notion of regret, that measures the deviation of the objective function
from its optimal value given a realisation of the environmental variable. This regret (either additive or relative)
translates a notion of robustness through its probability of exceeding a specified threshold. So, by either controlling
the threshold or the probability, we can define a family of estimators based on this regret.

The regret can quickly become expensive to evaluate since it requires an optimisation of the objective for every
realisation of the environmental variable. We then propose to use Gaussian Processes (GP) in order to reduce the
computational burden of this evaluation. In addition to that, we propose a few adaptive methods in order to improve
the estimation : the next points to evaluate are chosen sequentially according to a specific criterion, in a Stepwise
Uncertainty Reduction (SUR) strategy.

Finally, we will apply some of the methods introduced in this thesis on an academic problem of parameter
estimation. We will study the calibration of the bottom friction of a model of the Atlantic ocean near the French
coasts, while introducing some uncertainties in the forcing of the tide, and get a robust estimation of this friction
parameter in a twin experiment setting.

Keywords : Optimisation under uncertainties ; Robust calibration ; Gaussian Processes ; Ocean modelling ;
Regret

* * *

Résumé

De nombreux phénomènes physiques sont modélisés afin d’en mieux connaître les comportements ou de pouvoir
les prévoir. Cependant pour représenter la réalité, de nombreux processus doivent être simplifiés, car ils sont souvent
trop complexes, ou apparaissent à une échelle bien inférieure à celle de l’étude du phénomène. Au lieu de compléte-
ment les omettre, les effets de ces processus sont souvent retranscrits dans les modèles à l’aide de paramétrisations,
c’est-à-dire en introduisant des termes les quantifiant, et qui doivent être ensuite estimées. Les méthodes classiques
d’estimation se basent sur la définition d’une fonction objectif qui mesure l’écart entre le modèle numérique et la
réalité, qui est ensuite optimisée.

Cependant, au delà de l’incertitude sur la valeur du paramètre à estimer, un autre type d’incertitude peut aussi
être présent. Cela permet de représenter la variabilité intrinsèque de certains processus externes, qui vont avoir un
effet sur la modélisation. Ces variables vont être qualifiées d’environnementales. En les modélisant à l’aide d’une
variable aléatoire, la fonction objectif devient à son tour une variable aléatoire, que l’on va chercher à minimiser
dans un certain sens. Si on omet ce caractère aléatoire, on peut se retrouver avec un paramètre optimal uniquement
pour la valeur nominale du paramètre environnemental, et le modèle peut s’éloigner de la réalité pour d’autres
réalisations. Ce problème d’optimisation sous incertitudes est souvent abordé en optimisant les premiers moments
de la variable aléatoire, l’espérance en particulier.

Dans cette thèse, nous nous intéressons plutôt à la notion de regret, qui mesure l’écart entre la fonction objectif
et la valeur optimale qu’elle peut atteindre, pour la réalisation de la variable environnementale donnée. Cette idée de
regret (additif ou bien relatif) nous permet de proposer une notion de robustesse à travers l’étude de sa probabilité
de dépasser un certain seuil, ou inversement à travers le calcul de ses quantiles. À l’aide de ce seuil, ou de l’ordre
du quantile choisi, on peut donc définir une famille d’estimateurs basés sur le regret.

Néanmoins, le calcul du regret, et donc des quantités dérivées peut vite devenir très coûteux, car il nécessite
une optimisation par rapport au paramètre de contrôle. Nous proposons donc d’utiliser des processus Gaussiens
(GP) afin de construire un modèle de substitution, et donc de réduire cette contrainte en pratique. Nous proposons
aussi des méthodes itératives basées notamment sur la stratégie SUR (Stepwise Uncertainty Reduction, Réduction
d’incertitudes séquentielle) : le point à évaluer ensuite est choisi selon un critère permettant d’améliorer au mieux
des quantités associées au regret-relatif.

Enfin, nous appliquons les outils présentés dans cette thèse à un problème académique d’estimation de para-
mètre. Nous étudions ainsi la calibration sous incertitudes du paramètre de friction de fond d’un modèle océanique,
représentant la façade atlantique des côtes françaises, ainsi que la Manche dans un cadre d’expériences jumelles.

Mots-Clés : Optimisation sous incertitudes ; Calibration robuste ; Processus Gaussiens ; Modélisation de
l’océan ; Regret
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