Convergence bounds for nonlinear least squares approximation

Workshop on Optimal Sampling for Approximation

Philipp Trunschke March 10, 2022

Overview

1. Setting

- 2. The sample complexity of tensor networks
- 3. The local sample complexity

4. Numerical experiments

Setting

The best approximation in a nonlinear model class is given by

$$u_{\mathcal{M}} \in \underset{v \in \mathcal{M}}{\operatorname{arg\,min}} \|u - v\|_{L^{2}(Y,\rho)},$$

- where $\mathcal{V} = L^{\infty}(Y, \rho)$ for a probability measure ρ ,
- $u \in \mathcal{V}$ is the function to be approximated,
- and $\mathcal{M} \subseteq \mathcal{V}$ is the (nonlinear) *model class*.

The best approximation in a nonlinear model class is given by

$$u_{\mathcal{M}} \in \underset{v \in \mathcal{M}}{\operatorname{arg\,min}} \|u - v\|_{L^{2}(Y,\rho)},$$

- where $\mathcal{V} = L^{\infty}(Y, \rho)$ for a probability measure ρ ,
- $u \in \mathcal{V}$ is the function to be approximated,
- and $\mathcal{M} \subseteq \mathcal{V}$ is the (nonlinear) *model class*.

In general, this problem can only be solved empirically

• Given i.i.d. samples $y_i \sim \rho$ for $i = 1, ..., n \in \mathbb{N}$, we can estimate $||u - v||_{L^2(Y,\rho)}$ by

$$||u - v||_n := \left(\frac{1}{n}\sum_{i=1}^n |u(y_i) - v(y_i)|^2\right)^{1/2}$$

• The empirical best approximation of u in \mathcal{M} is given by

$$u_{\mathcal{M},n} \in \underset{v \in \mathcal{M}}{\operatorname{arg\,min}} \|u - v\|_n.$$

$u_{\mathcal{M},n}$ approximates u almost as well as $u_{\mathcal{M}}$

Definition

For any set $A \subseteq \mathcal{V}$ and any $\delta \in (0, 1)$ define the *restricted isometry property*

$$\mathsf{RIP}_{\mathcal{A}}(\delta) \quad :\Leftrightarrow \quad \forall u \in \mathcal{A} \, : \, (1-\delta) \|u\|_{L^{2}(Y,\rho)}^{2} \leq \|u\|_{n}^{2} \leq (1+\delta) \|u\|_{L^{2}(Y,\rho)}^{2}.$$

$u_{\mathcal{M},n}$ approximates u almost as well as $u_{\mathcal{M}}$

Definition

For any set $A \subseteq \mathcal{V}$ and any $\delta \in (0, 1)$ define the *restricted isometry property*

$$\mathsf{RIP}_{\mathcal{A}}(\delta) \quad :\Leftrightarrow \quad \forall u \in \mathcal{A} \, : \, (1-\delta) \|u\|_{L^{2}(Y,\rho)}^{2} \leq \|u\|_{n}^{2} \leq (1+\delta) \|u\|_{L^{2}(Y,\rho)}^{2}.$$

Theorem (Eigel, Schneider, T – 2021)

If $\operatorname{RIP}_{\{u_{\mathcal{M}}\}-\mathcal{M}\cup\{u\}}(\delta)$ holds, then

$$\|u - u_{\mathcal{M}}\|_{L^{2}(Y,\rho)} \leq \|u - u_{\mathcal{M},n}\|_{L^{2}(Y,\rho)} \leq \left(1 + 2\sqrt{\frac{1+\delta}{1-\delta}}\right) \|u - u_{\mathcal{M}}\|_{L^{2}(Y,\rho)}$$

$u_{\mathcal{M},n}$ approximates u almost as well as $u_{\mathcal{M}}$

Definition

For any set $A \subseteq \mathcal{V}$ and any $\delta \in (0, 1)$ define the *restricted isometry property*

$$\mathsf{RIP}_{\mathcal{A}}(\delta) \quad :\Leftrightarrow \quad \forall u \in \mathcal{A} \, : \, (1-\delta) \|u\|_{L^{2}(Y,\rho)}^{2} \leq \|u\|_{n}^{2} \leq (1+\delta) \|u\|_{L^{2}(Y,\rho)}^{2}.$$

Theorem (Eigel, Schneider, T – 2021)

If $\operatorname{RIP}_{\{u_{\mathcal{M}}\}-\mathcal{M}\cup\{u\}}(\delta)$ holds, then

$$\|u - u_{\mathcal{M}}\|_{L^{2}(Y,\rho)} \leq \|u - u_{\mathcal{M},n}\|_{L^{2}(Y,\rho)} \leq \left(1 + 2\sqrt{\frac{1+\delta}{1-\delta}}\right) \|u - u_{\mathcal{M}}\|_{L^{2}(Y,\rho)}$$

Since $\|\cdot\|_n$ is a random variable, $\operatorname{RIP}_{\{u, M\} - \mathcal{M} \cup \{u\}}(\delta)$ is a random event.

Philipp Trunschke

BIMoS

The probability of $RIP_A(\delta)$ can be bounded by standard concentration inequalities

Definition

For any set $A \subseteq \mathcal{V}$, define the variation function $\mathfrak{K}_A(y) := \sup_{a \in A} \frac{|a(y)|^2}{\|a\|_{L^2(Y,\rho)}^2}$.

The probability of $RIP_A(\delta)$ can be bounded by standard concentration inequalities

Definition

For any set $A \subseteq \mathcal{V}$, define the variation function $\mathfrak{K}_A(y) := \sup_{a \in A} \frac{|a(y)|^2}{\|a\|_{L^2(Y,\rho)}^2}$.

Theorem (Eigel, Schneider, T – 2021)

For any set $A \subseteq \mathcal{V}$ with dim $(\langle A \rangle) < \infty$ and any $\delta \in (0, 1)$ there exists C such that

$$\mathbb{P}[\neg \operatorname{RIP}_{\mathcal{A}}(\delta)] \leq C \exp\left(-\frac{n}{2} \left(\frac{\delta}{\|\mathfrak{K}_{\mathcal{A}}\|_{L^{\infty}(Y,\rho)}}\right)^{2}\right).$$

The constant C is independent of n and depends polynomially on δ and $\|\mathfrak{K}_A\|_{L^{\infty}(Y,\rho)}^{-1}$.

The probability of $RIP_A(\delta)$ can be bounded by standard concentration inequalities

Definition

For any set $A \subseteq \mathcal{V}$, define the variation function $\mathfrak{K}_A(y) := \sup_{a \in A} \frac{|a(y)|^2}{\|a\|_{L^2(Y,\rho)}^2}$.

Theorem (Eigel, Schneider, T – 2021)

For any set $A \subseteq \mathcal{V}$ with dim $(\langle A \rangle) < \infty$ and any $\delta \in (0, 1)$ there exists C such that

$$\mathbb{P}[\neg \operatorname{RIP}_{\mathcal{A}}(\delta)] \leq C \exp\left(-\frac{n}{2} \left(\frac{\delta}{\|\mathfrak{K}_{\mathcal{A}}\|_{L^{\infty}(Y,\rho)}}\right)^{2}\right).$$

The constant C is independent of n and depends polynomially on δ and $\|\mathfrak{K}_A\|_{L^{\infty}(Y,\rho)}^{-1}$.

Empirical best approximation requires a "small" $\Re_{\{u_{\mathcal{M}}\}-\mathcal{M}\cup\{u\}}$.

BIMoS

The sample complexity of tensor networks

Approximation by tensor networks

- Tensor networks are multilinear approximations that can break the curse of dimensionality.
- They can be interpreted as a subclass of neural networks.
- But they form manifolds and varieties.
- They are a popular tool in the numerics of parametric PDEs.

Approximation by tensor networks may not be feasible

- Tensor networks are multilinear approximations that can break the curse of dimensionality.
- They can be interpreted as a subclass of neural networks.
- But they form manifolds and varieties.
- They are a popular tool in the numerics of parametric PDEs.

Theorem (T – 2021)

- Let $\mathcal{V} := \mathcal{V}_1 \otimes \cdots \otimes \mathcal{V}_M$ with dim $(\mathcal{V}_m) = d_m$ for m = 1, ..., M.
- Consider a model class $\mathcal{M} \subseteq \mathcal{V}$ of tensor networks with $\langle \mathcal{M} \rangle = \mathcal{V}$.
- Then, for all $u \in \mathcal{V}$,

$$\|\mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{M}\cup\{u\}}\|_{L^{\infty}(Y,
ho)}\geq\prod_{m=1}^{M}d_{m}.$$

Approximation by tensor networks may not be feasible

- Tensor networks are multilinear approximations that can break the curse of dimensionality.
- They can be interpreted as a subclass of neural networks.
- But they form manifolds and varieties.
- They are a popular tool in the numerics of parametric PDEs.

Theorem (T – 2021)

- Let $\mathcal{V} := \mathcal{V}_1 \otimes \cdots \otimes \mathcal{V}_M$ with dim $(\mathcal{V}_m) = d_m$ for m = 1, ..., M.
- Consider a model class $\mathcal{M} \subseteq \mathcal{V}$ of tensor networks with $\langle \mathcal{M} \rangle = \mathcal{V}$.
- Then, for all $u \in \mathcal{V}$,

$$\|\mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{M}\cup\{u\}}\|_{L^{\infty}(Y,
ho)}\geq\prod_{m=1}^{M}d_{m}.$$

The curse persists with respect to the number of samples.

BIMoS

A phase diagram for rank 1 approximation of $exp(y_1 + \cdots + y_M)$

But approximation by tensor networks is feasible in practice!

Stationary diffusion

• Consider the random stationary diffusion equation

$$-\nabla_x \cdot (a(x, y)\nabla_x u(x, y)) = f(x) \quad \text{in } D$$
$$u(x, y) = 0 \quad \text{on } \partial D$$

- $x \in D$ for a bounded Lipschitz domain $D \subseteq \mathbb{R}^d$
- $y \sim \rho$ for a measure ρ on the probability space (Ω, Σ, ρ)

Goal: Approximate *u* from samples $u(\bullet, y_i)$ with $y_i \sim \rho$.

Stationary diffusion: Uniform diffusion coefficient

$$a(x,y) := 1 + \frac{6}{\pi^2} \sum_{m=1}^{20} m^{-2} \sin(\pi \lfloor \frac{m}{2} \rfloor x_1) \sin(\pi \lceil \frac{m}{2} \rceil x_2) y_m \quad \text{and} \quad y \sim \mathcal{U}([-1,1])^{\otimes 20}$$

Philipp Trunschke

9

Stationary diffusion: Log-normal diffusion coefficient

$$\mathsf{a}(\mathsf{x},\mathsf{y}) := \exp\left(rac{6}{\pi^2}\sum_{m=1}^{20}m^{-2}\sin(\pi\lfloorrac{m}{2}
floor \mathsf{x}_1)\sin(\pi\lceilrac{m}{2}
floor \mathsf{x}_2)\mathsf{y}_m
ight) \qquad ext{and} \qquad \mathsf{y} \sim \mathcal{N}(0,1)^{\otimes 20}$$

Philipp Trunschke

10

The local sample complexity

Consider $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}$ instead of $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}\cup\{u\}} = \max\{\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}, \Re_{\{u_{\mathcal{M}}-u\}}\}.$

Consider $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}$ instead of $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}\cup\{u\}} = \max\{\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}, \Re_{\{u_{\mathcal{M}}-u\}}\}.$

Proposition (T – 2021)

- \Re is continuous.
- \mathfrak{K}_{\bullet} is monotonic, i.e. $A \subseteq B$ implies $\mathfrak{K}_A \leq \mathfrak{K}_B$.

Consider $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}$ instead of $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}\cup\{u\}} = \max\{\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}, \Re_{\{u_{\mathcal{M}}-u\}}\}.$

Proposition (T – 2021)

- \Re is continuous.
- \mathfrak{K}_{\bullet} is monotonic, i.e. $A \subseteq B$ implies $\mathfrak{K}_A \leq \mathfrak{K}_B$.

Definition

Define the local variation function $\mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}} := \lim_{\mathsf{diam}(\mathcal{N}) \to 0} \mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}}.$

Consider $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}$ instead of $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}\cup\{u\}} = \max\{\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}, \Re_{\{u_{\mathcal{M}}-u\}}\}.$

Proposition (T – 2021)

- \Re is continuous.
- \mathfrak{K}_{\bullet} is monotonic, i.e. $A \subseteq B$ implies $\mathfrak{K}_A \leq \mathfrak{K}_B$.

Definition

Define the local variation function $\mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}} := \lim_{\mathsf{diam}(\mathcal{N}) \to 0} \mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}}.$

- Monotonicity implies $\mathfrak{K}_{\mathcal{M},u_{\mathcal{M}}}^{\mathrm{loc}} \leq \mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}} \leq \mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{M}}$.
- Continuity implies $\mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}} \approx \mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}}$ if diam(\mathcal{N}) is small.

Consider $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}$ instead of $\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}\cup\{u\}} = \max\{\Re_{\{u_{\mathcal{M}}\}-\mathcal{N}}, \Re_{\{u_{\mathcal{M}}-u\}}\}.$

Proposition (T – 2021)

- \Re is continuous.
- \mathfrak{K}_{\bullet} is monotonic, i.e. $A \subseteq B$ implies $\mathfrak{K}_A \leq \mathfrak{K}_B$.

Definition

Define the local variation function
$$\mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}} := \lim_{\mathsf{diam}(\mathcal{N}) \to 0} \mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}}.$$

- Monotonicity implies $\mathfrak{K}_{\mathcal{M},u_{\mathcal{M}}}^{\mathrm{loc}} \leq \mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}} \leq \mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{M}}$.
- Continuity implies $\mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}} \approx \mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}}$ if diam(\mathcal{N}) is small.

 $\mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}}$ provides a tight lower bound for $\mathfrak{K}_{\{u_{\mathcal{M}}\}-\mathcal{N}}$.

BIMoS

Another phase diagram for rank 1 approximation of $exp(y_1 + \cdots + y_M)$

The local variation function can be computed analytically

Definition

 \mathcal{M} is *locally linearizable* in $u_{\mathcal{M}} \in \mathcal{M}$ if there exists a neighborhood \mathcal{N} of $u_{\mathcal{M}}$ in \mathcal{M} such that \mathcal{N} is an embedded, connected C^2 -manifold with positive reach. Then $\mathbb{T}_{u_{\mathcal{M}}}\mathcal{M}$ denotes the *tangent space* of \mathcal{M} in $u_{\mathcal{M}}$.

The local variation function can be computed analytically

Definition

 \mathcal{M} is *locally linearizable* in $u_{\mathcal{M}} \in \mathcal{M}$ if there exists a neighborhood \mathcal{N} of $u_{\mathcal{M}}$ in \mathcal{M} such that \mathcal{N} is an embedded, connected C^2 -manifold with positive reach. Then $\mathbb{T}_{u_{\mathcal{M}}}\mathcal{M}$ denotes the *tangent space* of \mathcal{M} in $u_{\mathcal{M}}$.

Theorem (T - 2021)

If \mathcal{M} is locally linearizable in $u_{\mathcal{M}} \in \mathcal{M}$, then $\mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}} = \mathfrak{K}_{\mathbb{T}_{u_{\mathcal{M}}}\mathcal{M}}$.

The local variation function can be computed analytically

Definition

 \mathcal{M} is *locally linearizable* in $u_{\mathcal{M}} \in \mathcal{M}$ if there exists a neighborhood \mathcal{N} of $u_{\mathcal{M}}$ in \mathcal{M} such that \mathcal{N} is an embedded, connected C^2 -manifold with positive reach. Then $\mathbb{T}_{u_{\mathcal{M}}}\mathcal{M}$ denotes the *tangent space* of \mathcal{M} in $u_{\mathcal{M}}$.

Theorem (T - 2021)

If \mathcal{M} is locally linearizable in $u_{\mathcal{M}} \in \mathcal{M}$, then $\mathfrak{K}^{\mathrm{loc}}_{\mathcal{M},u_{\mathcal{M}}} = \mathfrak{K}_{\mathbb{T}_{u_{\mathcal{M}}}\mathcal{M}}$.

 $\mathfrak{K}_{\mathbb{T}_{u_{\mathcal{M}}}\mathcal{M}} \text{ grows exponentially for example ??.}$ But it is small, for example, if $u_{\mathcal{M}}$ is a low degree polynomial.

Empirical approximation requires a small variation function

- This may be satisfied in a neighborhood \mathcal{N} of $u_{\mathcal{M}}$.
- And this provides a heuristic argument for the success of state-of-the-art algorithms.
- But we have also seen counterexamples.
- A low variation function can not be guaranteed in all practical applications.
- → Algorithms should enforce a small variation function.
- For approximation by tensor train networks this is realized in the *restricted alternating least squares* (RALS) algorithm.

Numerical experiments

Stationary diffusion

• Consider the random stationary diffusion equation

$$-\nabla_x \cdot (a(x, y)\nabla_x u(x, y)) = f(x) \quad \text{in } D$$
$$u(x, y) = 0 \quad \text{on } \partial D$$

- $x \in D$ for a bounded Lipschitz domain $D \subseteq \mathbb{R}^d$
- $y \sim \rho$ for a measure ρ on the probability space (Ω, Σ, ρ)

Goal: Approximate $M(y) = \int_D u(x, y) dx$ from samples $M(y_i)$ with $y_i \sim \rho$.

Stationary diffusion: Uniform diffusion coefficient

$$a(x,y) := 1 + \frac{6}{\pi^2} \sum_{m=1}^{20} m^{-2} \sin(\pi \lfloor \frac{m}{2} \rfloor x_1) \sin(\pi \lceil \frac{m}{2} \rceil x_2) y_m \quad \text{and} \quad y \sim \mathcal{U}([-1,1])^{\otimes 20}$$

	n = 9000	n = 1000	n = 500	n = 100	n = 45
RALS	$1.13\cdot 10^{-5}$	$5.88\cdot 10^{-5}$	$2.52\cdot 10^{-4}$	$9.73\cdot 10^{-4}$	$1.35\cdot 10^{-3}$
hard thresholding	$4.23\cdot 10^{-5}$	$1.97\cdot 10^{-4}$	$6.17\cdot 10^{-4}$	$9.73\cdot 10^{-3}$	$2.92\cdot 10^{-2}$
SALSA	$8.24\cdot 10^{-5}$	$4.49\cdot 10^{-4}$	$1.46\cdot 10^{-2}$	$4.89\cdot 10^{-1}$	$4.91\cdot 10^{-1}$
ALS + ℓ^2 -regularization	$4.74\cdot 10^{-4}$	$7.15\cdot 10^{-4}$	$8.25\cdot 10^{-3}$	$9.86\cdot 10^{-1}$	$7.06\cdot 10^{-1}$

Stationary diffusion: Log-normal diffusion coefficient

$$a(x,y) := \exp\left(\frac{6}{\pi^2} \sum_{m=1}^{20} m^{-2} \sin(\pi \lfloor \frac{m}{2} \rfloor x_1) \sin(\pi \lceil \frac{m}{2} \rceil x_2) y_m\right) \quad \text{and} \quad y \sim \mathcal{N}(0,1)^{\otimes 20}$$

	n = 9000	n = 1000	n = 500	n = 100	n = 45
RALS	$1.13\cdot 10^{-5}$	$5.88\cdot 10^{-5}$	$2.52\cdot 10^{-4}$	$9.73\cdot 10^{-4}$	$1.35\cdot 10^{-3}$
hard thresholding	$4.23\cdot 10^{-5}$	$1.97\cdot 10^{-4}$	$6.17\cdot 10^{-4}$	$9.73\cdot 10^{-3}$	$2.92\cdot 10^{-2}$
SALSA	$8.24\cdot 10^{-5}$	$4.49\cdot 10^{-4}$	$1.46\cdot 10^{-2}$	$4.89\cdot 10^{-1}$	$4.91\cdot 10^{-1}$
ALS + ℓ^2 -regularization	$4.74\cdot 10^{-4}$	$7.15\cdot 10^{-4}$	$8.25\cdot 10^{-3}$	$9.86\cdot 10^{-1}$	$7.06\cdot 10^{-1}$

Algorithms should <u>enforce</u> a small variation function!