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Setting



The best approximation in a nonlinear model class is given by

uM ∈ arg min
v∈M

‖u − v‖L2(Y ,ρ),

• where V = L∞(Y , ρ) for a probability measure ρ,
• u ∈ V is the function to be approximated,
• and M ⊆ V is the (nonlinear) model class.

In general, this problem can only be solved empirically
• Given i.i.d. samples yi ∼ ρ for i = 1, ... , n ∈ N, we can estimate ‖u − v‖L2(Y ,ρ) by

‖u − v‖n :=
(

1
n

n∑
i=1

|u(yi) − v(yi)|2
)1/2

.

• The empirical best approximation of u in M is given by

uM,n ∈ arg min
v∈M

‖u − v‖n.

Philipp Trunschke 2



The best approximation in a nonlinear model class is given by

uM ∈ arg min
v∈M

‖u − v‖L2(Y ,ρ),

• where V = L∞(Y , ρ) for a probability measure ρ,
• u ∈ V is the function to be approximated,
• and M ⊆ V is the (nonlinear) model class.

In general, this problem can only be solved empirically
• Given i.i.d. samples yi ∼ ρ for i = 1, ... , n ∈ N, we can estimate ‖u − v‖L2(Y ,ρ) by

‖u − v‖n :=
(

1
n

n∑
i=1

|u(yi) − v(yi)|2
)1/2

.

• The empirical best approximation of u in M is given by

uM,n ∈ arg min
v∈M

‖u − v‖n.

Philipp Trunschke 2



uM,n approximates u almost as well as uM

Definition
For any set A ⊆ V and any δ ∈ (0, 1) define the restricted isometry property

RIPA(δ) :⇔ ∀u ∈ A : (1 − δ)‖u‖2
L2(Y ,ρ) ≤ ‖u‖2

n ≤ (1 + δ)‖u‖2
L2(Y ,ρ).

Theorem (Eigel, Schneider, T – 2021)

If RIP{uM}−M∪{u}(δ) holds, then

‖u − uM‖L2(Y ,ρ) ≤ ‖u − uM,n‖L2(Y ,ρ) ≤
(

1 + 2
√

1+δ
1−δ

)
‖u − uM‖L2(Y ,ρ).

Since ‖ • ‖n is a random variable, RIP{uM}−M∪{u}(δ) is a random event.
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The probability of RIPA(δ) can be bounded by standard concentration inequalities

Definition

For any set A ⊆ V, define the variation function KA(y) := supa∈A
|a(y)|2

‖a‖2
L2(Y ,ρ)

.

Theorem (Eigel, Schneider, T – 2021)
For any set A ⊆ V with dim(〈A〉) < ∞ and any δ ∈ (0, 1) there exists C such that

P[¬ RIPA(δ)] ≤ C exp
(

− n
2

(
δ

‖KA‖L∞(Y ,ρ)

)2
)

.

The constant C is independent of n and depends polynomially on δ and ‖KA‖−1
L∞(Y ,ρ).

Empirical best approximation requires a “small” K{uM}−M∪{u}.
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The sample complexity of tensor networks



Approximation by tensor networks

• Tensor networks are multilinear approximations that can break the curse of dimensionality.
• They can be interpreted as a subclass of neural networks.
• But they form manifolds and varieties.
• They are a popular tool in the numerics of parametric PDEs.

Theorem (T – 2021)

• Let V := V1 ⊗ · · · ⊗ VM with dim(Vm) = dm for m = 1, ... , M.
• Consider a model class M ⊆ V of tensor networks with 〈M〉 = V.
• Then, for all u ∈ V,

‖K{uM}−M∪{u}‖L∞(Y ,ρ) ≥
M∏

m=1
dm.
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Approximation by tensor networks may not be feasible

• Tensor networks are multilinear approximations that can break the curse of dimensionality.
• They can be interpreted as a subclass of neural networks.
• But they form manifolds and varieties.
• They are a popular tool in the numerics of parametric PDEs.

Theorem (T – 2021)
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dm.

The curse persists with respect to the number of samples.
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A phase diagram for rank 1 approximation of exp(y1 + · · · + yM)
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But approximation by tensor networks is feasible in practice!



Stationary diffusion

• Consider the random stationary diffusion equation

−∇x · (a(x , y)∇x u(x , y)) = f (x) in D
u(x , y) = 0 on ∂D

• x ∈ D for a bounded Lipschitz domain D ⊆ Rd

• y ∼ ρ for a measure ρ on the probability space (Ω,Σ, ρ)

Goal: Approximate u from samples u( • , yi ) with yi ∼ ρ.
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Stationary diffusion: Uniform diffusion coefficient

a(x , y) := 1 + 6
π2

20∑
m=1

m−2 sin(πb m
2 cx1) sin(πd m

2 ex2)ym and y ∼ U([−1, 1])⊗20
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Stationary diffusion: Log-normal diffusion coefficient

a(x , y) := exp
(

6
π2

20∑
m=1

m−2 sin(πb m
2 cx1) sin(πd m

2 ex2)ym

)
and y ∼ N (0, 1)⊗20
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The local sample complexity



The variation function may be small in the neighborhood N of uM in M

Consider K{uM}−N instead of K{uM}−N ∪{u} = max{K{uM}−N ,K{uM−u}}.

Proposition (T – 2021)

• K • is continuous.
• K • is monotonic, i.e. A ⊆ B implies KA ≤ KB .

Definition
Define the local variation function Kloc

M,uM
:= lim

diam(N )→0
K{uM}−N .

• Monotonicity implies Kloc
M,uM

≤ K{uM}−N ≤ K{uM}−M.
• Continuity implies K{uM}−N ≈ Kloc

M,uM
if diam(N ) is small.

Kloc
M,uM

provides a tight lower bound for K{uM}−N .
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Another phase diagram for rank 1 approximation of exp(y1 + · · · + yM)

1 2 3 4 5 6

S

10−7

10−5

10−3

10−1

r

10−8

10−6

10−4

10−2

100

m
e
a
n

e
rro

r

Philipp Trunschke 12



The local variation function can be computed analytically

Definition
M is locally linearizable in uM ∈ M if there exists a neighborhood N of uM in M such that
N is an embedded, connected C2-manifold with positive reach.
Then TuMM denotes the tangent space of M in uM.

Theorem (T – 2021)
If M is locally linearizable in uM ∈ M, then Kloc

M,uM
= KTuM M.

KTuM M grows exponentially for example ??.
But it is small, for example, if uM is a low degree polynomial.
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Empirical approximation requires a small variation function

• This may be satisfied in a neighborhood N of uM.
• And this provides a heuristic argument for the success of state-of-the-art algorithms.
• But we have also seen counterexamples.
• A low variation function can not be guaranteed in all practical applications.

Algorithms should enforce a small variation function.
• For approximation by tensor train networks this is realized in the restricted alternating least

squares (RALS) algorithm.
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Numerical experiments



Stationary diffusion

• Consider the random stationary diffusion equation

−∇x · (a(x , y)∇x u(x , y)) = f (x) in D
u(x , y) = 0 on ∂D

• x ∈ D for a bounded Lipschitz domain D ⊆ Rd

• y ∼ ρ for a measure ρ on the probability space (Ω,Σ, ρ)

Goal: Approximate M(y) =
∫

D u(x , y) dx from samples M(yi) with yi ∼ ρ.
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Stationary diffusion: Uniform diffusion coefficient

a(x , y) := 1 + 6
π2

20∑
m=1

m−2 sin(πb m
2 cx1) sin(πd m

2 ex2)ym and y ∼ U([−1, 1])⊗20

= = 9000 = = 1000 = = 500 = = 100 = = 45

RALS

hard
thresholding

SALSA

ALS
+ ℓ2-regularization

1.13 · 10−5 5.88 · 10−5 2.52 · 10−4 9.73 · 10−4 1.35 · 10−3

4.23 · 10−5 1.97 · 10−4 6.17 · 10−4 9.73 · 10−3 2.92 · 10−2

8.24 · 10−5 4.49 · 10−4 1.46 · 10−2 4.89 · 10−1 4.91 · 10−1

4.74 · 10−4 7.15 · 10−4 8.25 · 10−3 9.86 · 10−1 7.06 · 10−1
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Stationary diffusion: Log-normal diffusion coefficient
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Algorithms should enforce a small variation function!


