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Introduction: rare events

Rare events occur when dealing with performance evaluation in many
different areas

in telecommunication networks: loss probability of a small unit of
information (a packet, or a cell in ATM networks), connectivity of a
set of nodes,

in dependability analysis: probability that a system is failed at a given
time, availability, mean-time-to-failure,

in air control systems: probability of collision of two aircrafts,

in particle transport: probability of penetration of a nuclear shield,

in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

in finance: value at risk (maximal loss with a given probability in a
predefined time),

...
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What is a rare event? Why simulation?

A rare event is an event occurring with a small probability.

How small? Depends on the context.

In many cases, these probabilities can be between 10−8 and 10−10, or
even at lower values. Main example: critical systems, that is,

◮ systems where the rare event is a catastrophic failure with possible
human losses,

◮ or systems where the rare event is a catastrophic failure with possible
monetary losses.

In most of the above problems, the mathematical model is often too
complicated to be solved by analytic or numeric methods because

◮ the assumptions are not stringent enough,
◮ the mathematical dimension of the problem is too large,
◮ the state space is too large to get a result in reasonable time,
◮ ...

Simulation is, most of the time, the only tool at hand.
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Example: Highly Reliable Markovian Systems (HRMS)

System with c types of
components. Y = (Y1, . . . ,Yc)
with Yi number of up
components.

1: state with all components up.

Markov chain. Failure rates are
O(ε), but not repair rates. Failure
propagations possible.

System down when in grey
state(s).

Goal: compute µ(y) probability to
hit ∆ before 1.

µ(1) important in dependability
analysis,

Small if ε small.
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Example: connectivity within a graph

Static reliability problems (time is
not an explicit variable)

Communication network:

◮ nodes assumed to be perfect,
◮ links can fail independently.
◮ For each edge e, elementary

unreliability qe , reliability
re = 1− qe .

◮ The network works iff two
specific nodes communicate.

Model: graph with M links

X = (X1, . . . ,XM) (random)
configuration with Xe = 1 if edge
e works, 0 otherwise.

state of the system: φ(X ), where
φ(X ) = 1 iff s and t not
connected.

u = E[φ(X )] , computation
NP-hard problem in general.

u small if individual unreliabilities
small and/or redundancy of paths.

A

B

C

D

q1 = ǫ

q2 = ǫ

q4 = ǫ

q5 = ǫ

q3 = ǫ
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Monte Carlo

In all the above problems, the goal is to compute µ = E[X ] of some
random variable X .

Monte Carlo simulation (in its basic form) generates n independent
copies of X , (Xi , 1 ≤ i ≤ n),

X̄n = (1/n)
∑n

i=1 Xi approximation of µ.

Almost sure convergence as n → ∞ (law of large numbers).

Accuracy: central limit theorem, yielding a confidence interval

µ ∈
(

X̄n −
cασ√
n
, X̄n +

cασ√
n

)

◮ α: desired confidence probability,
◮ cα = Φ−1(1− α

2 ) with Φ is the cumulative Normal distribution
function of N (0, 1)

◮ σ2 = Var[X ] = E[X 2]− (E[X ])2, estimated by
S2
n = (1/(n − 1))

∑n

i=1 X
2
i − (n/(n − 1))(X̄n)

2.
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Inefficiency of crude Monte Carlo
Crude Monte Carlo: simulates the model directly
We compute the probability µ = E[1A] << 1 of a rare event A.
Xi Bernoulli r.v.: 1 if the event is hit and 0 otherwise.
To get a single occurence, we need in average 1/µ replications (109

for µ = 10−9), and more to get a confidence interval.
In most cases, you will get (0, 0) as a confidence interval.
nX̄n Binomial with parameters (n, µ) and the confidence interval is

(

X̄n −
cα
√

µ(1− µ)√
n

, X̄n +
cα
√

µ(1− µ)√
n

)

.

Relative half width cασ/(
√
nµ) = cα

√

(1− µ)/µ/n → ∞ as µ → 0.
For a given relative error RE , the required value of

n = (cα)
2 1− µ

RE 2µ
,

inversely proportional to µ.
Two main families of techniques:

◮ Splitting (also called subset simulation) and Importance Sampling.
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Robustness properties

In rare-event simulation models, we often parameterize with a rarity
parameter ǫ > 0 such that µ = E[X (ǫ)] → 0 as ǫ → 0.

An estimator X (ǫ) is said to have bounded relative variance (or
bounded relative error) if σ2(X (ǫ))/µ2(ǫ) is bounded uniformly in ǫ.

Interpretation: estimating µ(ǫ) with a given relative accuracy can be
achieved with a bounded number of replications even if ǫ → 0.

Weaker property: asymptotic optimality (or logarithmic efficiency) if
limǫ→0 ln(E[X

2(ǫ)])/ ln(µ(ǫ)) = 2.

Stronger property: vanishing relative variance: σ2(X (ǫ))/µ2(ǫ) → 0
as ǫ → 0. Asymptotically, we get the zero-variance estimator.

Other robustness measures exist (based on higher degree moments,
on the Normal approximation, on simulation time...).

L’Ecuyer, Blanchet, T., Glynn, ACM ToMaCS 2010
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Importance Sampling (IS)

Let X = h(Y ) for some function h where Y obeys some probability
law P.
IS replaces P by another probability measure P̃, using

E [X ] =

∫

h(y)dP(y) =

∫

h(y)
dP(y)

d P̃(y)
d P̃(y) = Ẽ [h(Y )L(Y )]

◮ L = dP/d P̃ likelihood ratio,
◮ Ẽ is the expectation associated to probability law P.

Required condition: d P̃(y) 6= 0 when h(y)dP(y) 6= 0.

If P and P̃ continuous laws, L ratio of density functions.

If P and P̃ are discrete laws, L ratio of indiv. prob.

Unbiased estimator:
1

n

n
∑

i=1

h(Yi )L(Yi ) with (Yi , 1 ≤ i ≤ n) i.i.d;

copies of Y , according to P̃.

Goal: select probability law P̃ such that

σ̃2[h(Y )L(Y )] = Ẽ[(h(Y )L(Y ))2]− µ2 < σ2[h(Y )].
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IS difficulty: system with exponential failure time

Goal: to compute µ that the system fails before T ,
µ = E[1A(Y )] = 1− e−λT .

Use for IS an exponential density with a different rate λ̃

Ẽ[(1A(Y )L(Y ))2] =

∫ T

0

(

λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy =
λ2(1− e−(2λ−λ̃)T )

λ̃(2λ− λ̃)
.

Variance ratio for T = 1 and λ = 0.1:

λ̃
λ = 0.1 1 2 3 4 5 6 7

variance ratio σ̃2(1A(Y )L(Y ))/σ2(1A(Y ))

0

0.5

1

1.5

2
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Conclusions from the example

Increasing the failure rate (λ̃ > λ) reduces drastically the variance

But increasing it too much has the opposite effect!

Trade-off (how much to modify) difficult in practice.

To be applied at each level, but can be very efficient with a good
choice.

Often applied principle:
◮ consider a parameterized family of IS change of measures
◮ determine the parameter minimizing the variance.
◮ Ex: what we have done with the previous example.
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Optimal estimator for estimating E[h(Y )] =
∫

h(y)L(y)d P̃(y)

Optimal change of measure:

d P̃ =
|h(Y )|

E[|h(Y )|]dP.

Proof: for any alternative IS measure P
′, leading to the likelihood

ratio L′ and expectation E
′,

Ẽ[(h(Y )L(Y ))2] = (E[|h(Y )|])2 = (E′[|h(Y )|L′(Y )])2 ≤ E
′[(h(Y )L′(Y ))2].

If h ≥ 0, Ẽ[(h(Y )L(Y ))2] = (E[h(Y )])2, i.e., σ̃2(h(Y )L(Y )) = 0.
That is, IS provides a zero-variance estimator.

Implementing it requires knowing E[|h(Y )|], i.e. what we want to
compute; if so, no need to simulate!

But provides a hint on the general form of a “good” IS. measure.
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Examples

If we want to compute the probability P[A] of an event A, this gives

d P̃(y) =
1(y ∈ A)

p
dP(y).

For the example of computing the probability that an exponential law
with rate λ is smaller than T , the optimal density (yielding variance
zero) is

g̃(y) = g(y)
1(y ∈ [0,T ])

E[1(y ∈ [0,T ])]
= 1(y ∈ [0,T ])

λe−λy

1− e−λy
.

It is the same exponential distribution, truncated to the interval [0,T ].
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IS for a discrete-time Markov chain (DTMC) {Yj , j ≥ 0}
X = h(Y0, . . . ,Yτ ) function of the sample path with

◮ P = (P(y , z) transition matrix, π0(y) = P[Y0 = y ], initial probabilities
◮ up to a stopping time τ , first time it hits a set ∆.
◮ µ(y) = Ey [X ].

IS replaces the probabilities of paths (y0, . . . , yn),

P[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] = π0(y0)
n−1
∏

j=1

P(yj−1, yj),

by P̃[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] st Ẽ[τ ] < ∞.

For convenience, the IS measure remains a DTMC, replacing P(y , z)
by P̃(y , z) and π0(y) by π̃0(y).

Then L(Y0, . . . ,Yτ ) =
π0(Y0)

π̃0(Y0)

τ−1
∏

j=1

P(Yj−1,Yj)

P̃(Yj−1,Yj)
.
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Zero-variance IS estimator for Markov chains simulation

Restrict to an additive (positive) cost

X =

τ
∑

j=1

c(Yj−1,Yj)

Is there a Markov chain change of measure yielding zero-variance?

Yes we have zero variance with

P̃(y , z) =
P(y , z)(c(y , z) + µ(z))

∑

w P(y ,w)(c(y ,w) + µ(w))

=
P(y , z)(c(y , z) + µ(z))

µ(y)
.

Without the additivity assumption the probabilities for the next state
must depend in general of the entire history of the chain.
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Zero-variance for Markov chains

Proof by induction on the value taken by τ , using the fact that
µ(Yτ ) = 0 In that case, if X̃ denotes the IS estimator,

X̃ =

τ
∑

i=1

c(Yi−1,Yi )

i
∏

j=1

P(Yj−1,Yj)

P̃(Yj−1,Yj)

=

τ
∑

i=1

c(Yi−1,Yi )

i
∏

j=1

P(Yj−1,Yj)µ(Yj−1)

P(Yj−1,Yj)(c(Yj−1,Yj) + µ(Yj))

=

τ
∑

i=1

c(Yi−1,Yi )

i
∏

j=1

µ(Yj−1)

c(Yj−1,Yj) + µ(Yj)

= µ(Y0)

Unique Markov chain implementation of the zero-variance estimator.

Again, implementing it requires knowing µ(y) ∀y , the quantities we
wish to compute.

Approximation to be used.
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Zero-variance approximation

Use a heuristic approximation µ̂(·) and plug it into the zero-variance
change of measure instead of µ(·).
More efficient but also more requiring technique: learn adaptively
function µ(·), and still plug the approximation into the zero-variance
change of measure formula instead of µ(·).

◮ Adaptive Monte Carlo (AMC) proceeds iteratively.
⋆ Considers several steps and ni independent simulation replications at

step i .
⋆ At step i , replaces µ(x) by a guess µ(i)(x)

⋆ use probabilities P̃(i)
y,z =

Py,z(cy,z + µ(i)(z))
∑

w
Py,w (cy,w + µ(i)(w))

.

⋆ Gives a new estimation µ(i+1)(y) of µ(y), from which a new transition
matrix P̃(i+1) is defined.

◮ Adaptive stochastic approximation (ASA) updates the probabilities at
each step of the simulation.

◮ But those methods require to store a lot of information for large
systems.

Other methods, based on subsolutions of Isaac equations (P. Dupuis et

al.) or the construction of Lyapounov functions (Blanchet, Glynn et al.).
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Illustration of heuristics: birth-death process

Let P(i , i + 1) = p and P(i , i − 1) = 1− p for 1 ≤ i ≤ B − 1, and
P(0, 1) = P(B ,B − 1) = 1.

We want to compute µ(1), probability of reaching B before coming
back to 0.

If p small, to approach µ(·), we can use

µ̂(y) = pB−y ∀y ∈ {1, . . . ,B − 1}

with µ̂(0) = 0 and µ̂(B) = 1 based on the asymptotic estimate
µ(i) = pB−i + o(pB−i ).

We can verify that the variance of this estimator is going to 0 (for
fixed sample size) as p → 0.
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Highly Reliable Markovian Systems (HRMS)

System with c types of components. Y = (Y1, . . . ,Yc) with Yi

number of up components.

1: state with all components up.

Failure rates are O(ε), but not repair rates. Failure propagations
possible.

System down (in ∆) when some combinations of components are
down.

Goal: compute µ(1) with µ(y) probability to hit ∆ before 1.

Simulation using the embedded DTMC. Failure probabilities are O(ε)
(except from 1). How to improve (accelerate) this?

Existing method: ∀y 6= 1, increase the probability of the set of
failures to constant 0.5 < q < 0.9 and use individual probabilities
proportional to the original ones (SFB), or uniformly (BFB).

Failures not rare anymore. BRE property verified for BFB.
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HRMS Example, and IS

Figure: Original probabilities Figure: Probabilities under IS/BFB
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HRMS, Zero-variance IS L’Ecuyer & T., ANOR, 2011

Complicates the previous model due to the multidimensional
description of a state.

The idea is to approach µ(y) by the probability of the path from y to
∆ with the largest probability

Intuition: as ǫ → 0, we get a good idea of the probability.

Proposition

Bounded Relative Error proved (as ǫ → 0) in general.
Even Vanishing Relative Error if µ̂(y) contains all the paths with the
smallest degree in ǫ.

Other simple version: approach µ(y) by the (sum of) probability of
paths from y with only failure components of a given type.

Gain of several orders of magnitudes + stability of the results with
respect to the literature.
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HRMS: numerical illustrations

Comparison of BFB and Zero-Variance Approximation (ZVA).

c = 3 types of components, ni of type i

λ1 = ε, λ2 = 1.5ε, and λ3 = 2ε2, µ = 1

System is down whenever fewer than two components of any one type are
operational.

ni ε µ0 BFB est ZVA est BFB σ2 ZVA σ2

3 0.001 2.6× 10−3 2.7× 10−3 2.6× 10−3 6.2× 10−5 2.2× 10−8

6 0.01 1.8× 10−7 1.9× 10−7 1.8× 10−7 6.3× 10−11 2.0× 10−14

6 0.001 1.7× 10−11 1.8× 10−11 1.7× 10−11 8.8× 10−19 1.2× 10−23

12 0.1 6.0× 10−8 4.8× 10−8 6.0× 10−8 8.1× 10−10 1.6× 10−10

12 0.001 3.9× 10−28 (1.8× 10−40) 3.9× 10−28 (3.2× 10−74) 1.4× 10−55
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Graph model
M links can fail independently, elementary unreliability qe = 1− re for edge
e.

What is the probability that the set K of (grey) nodes is connected (in the
underlying random partial graph of G)?
X = (X1, . . . ,XM) (random) configuration with Xe = 1 if edge e works, 0
otherwise.

state of the system: φ(X ), where φ(X ) = 1 iff K not connected.

u = E[φ(X )] =
∑

x∈{0,1}M φ(x)P[X = x ].
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Graph model
M links can fail independently, elementary unreliability qe = 1− re for edge
e.

What is the probability that the set K of (grey) nodes is connected (in the
underlying random partial graph of G)?
X = (X1, . . . ,XM) (random) configuration with Xe = 1 if edge e works, 0
otherwise.

state of the system: φ(X ), where φ(X ) = 1 iff K not connected.

u = E[φ(X )] =
∑

x∈{0,1}M φ(x)P[X = x ].

We have to sum over the 2M configurations.
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Zero-variance est. L’Ecuyer, Rubino, Saggadi & T., IEEE Trans. Rel. 2011

Idea: sample the links one after the other, with an IS probability that
depends on the state of previously sampled links.

Let um(x1, · · · , xm−1), with xi ∈ {0, 1}, be the unreliability of the
graph G given the states of the links 1 to m− 1: if xi = 1 the link i is
operational, otherwise it is failed.

Then u = u1().

Sample state of link m, giving 1 with probability:

r ′m(x1, · · · , xm−1) =
rmum+1(x1, · · · , xm−1, 1)

rmum+1(x1, · · · , xm−1, 1) + (1− rm)um+1(x1, · · · , xm−1, 0)
.

Remark (by conditionning) that

um(x1, · · · , xm−1) = rmum+1(x1, · · · , xm−1, 1) + (1− rm)rmum+1(x1, · · · , xm−1, 0).
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Zero-variance estimation and approximation

Proposition

Using this IS, the estimator has zero variance (always yields u).

Problem: the um(·) are not known, otherwise no need to simulate.

Principle: approach um(·) by some ûm(·) and use

r
′
m(x1, · · · , xm−1) =

rmûm+1(x1, · · · , xm−1, 1)

rmûm+1(x1, · · · , xm−1, 1) + (1− rm)ûm+1(x1, · · · , xm−1, 0)
.
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Approximation of the zero-variance estimator

Our proposal: ûm(x1, · · · , xm−1) is the probability of a mincut of the
graph with highest probability, given the state of links 1 to m − 1.

◮ A cut (or K-cut) is a set of edges such that, if we remove them, the
nodes in K are not in the same connected component.

◮ A mincut (minimal cut) is a cut that contains no other cut than itself.

Intuition: the unreliability is the probability of union of all cuts, the
most crucial one(s) being the mincut(s) with highest probability.

Cuts can be obtained in polynomial time.

In a given state (x1, · · · , xm−1), we need to determine
ûm+1(x1, · · · , xm−1, 1) and ûm+1(x1, · · · , xm−1, 0).

This adds some computational burden, but should substantially
reduce the variance.

Proposition

Bounded relative error proved in general,
Vanishing relative error under identified conditions.
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Ex: dodecahedron topology, all links with unreliability ǫ

A

B

1

2

3

4

5

67

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

2930

ǫ Estimation Confidence interval Std deviation Relative error

10−1 2.8960 10−3 (2.8276 10−3, 2.9645 10−3) 3.49 10−3 1.2
10−2 2.0678 10−6 (2.0611 10−6, 2.0744 10−6) 3.42 10−7 0.17
10−3 2.0076 10−9 (2.0053 10−9, 2.0099 10−9) 1.14 10−10 0.057
10−4 2.0007−12 (2.0000 10−12, 2.0014 10−12) 3.46 10−14 0.017

With respect to crude MC, a computational time increase of 16.
Bruno Tuffin (INRIA) Rare event simulation Sminaire IHP 31 / 51



Larger networks: 3 dodecahedrons in parallel

A dodec. 1

dodec. 2

dodec. 3

B

ǫ Estimate 95% confidence interval std dev. Relative Error

10−1 2.3573 × 10−8 (2.2496 × 10−8, 2.4650 × 10−8) 5.49 × 10−8 2.3

5 × 10−2 2.5732 × 10−11 (2.5138 × 10−11, 2.6327 × 10−11) 3.03 × 10−11 1.2

10−2 8.7655 × 10−18 (8.7145 × 10−18, 8.8165 × 10−18) 2.60 × 10−18 0.30

Vanishing relative error observed

For 3 dodecahedron in series, Bounded relative error observed

Works very well for such topologies with close to 100 links, and larger.
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Splitting: general principle

Splitting is the other main rare event simulation technique.

Assume we want to compute the probability P(D) of an event D.

General idea:
◮ Decompose

D1 ⊃ · · · ⊃ Dm = D,

◮ Use P(D) = P(D1)P(D2 | D1) · · ·P(Dm | Dm−1), each conditional event
being “not rare”,

◮ Estimate each individual conditional probability by crude Monte Carlo,
i.e., without changing the laws driving the model.

◮ The final estimate is the product of individual estimates.

Question: how to do it for a stochastic process? Difficult to sample
conditionally to an intermediate event.

Rem: Generalized Splitting not presented here (cf papers with P. L’Ecuyer
and Z. Botev). Makes use of Gibbs sampling.
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Graphical interpretation

D1

D2

D3 = D
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Splitting and Markov chain {Yj ; j ≥ 0} ∈ Y
Goal: compute γ0 = P[τB < τA] with

◮ τA = inf{j > 0 : Yj−1 6∈ A and Yj ∈ A}
◮ τB = inf{j > 0 : Yj ∈ B}

Intermediate levels from importance function h : Y → R with
A = {x ∈ Y : h(x) ≤ 0} and B = {x ∈ Y : h(x) ≥ ℓ}:

◮ Partition [0, ℓ) in m subintervals with boundaries
0 = ℓ0 < ℓ1 < · · · < ℓm = ℓ.

◮ Let Tk = inf{j > 0 : h(Yj) ≥ ℓk} and Dk = {Tk < τA}.
1st stage:

◮ simulate N0 chains until min(τA, T1).
◮ If R1 number of chains for which D1 occurs, p̂1 = R1/N0 unbiased

estimator of p1 = P(D1).

Stage 1 < k ≤ m:
◮ If Rk−1 = 0, p̂l = 0 for all l ≥ k and the algorithm stops
◮ Otherwise, start Nk chains from these Rk entrance states, by

potentially cloning (splitting) some chains
◮ simulate these chains up to min(τA, Tk).
◮ p̂k = Rk/Nk−1 unbiased estimator of pk = P(Dk |Dk−1)
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The different implementations

Fixed splitting:
◮ clone each of the Rk chains reaching level k in ck copies, for a fixed

positive integer ck .
◮ Nk = ckRk is random.

Fixed effort:
◮ Nk fixed a priori
◮ random assignment draws the Nk starting states at random, with

replacement, from the Rk available states.
◮ fixed assignment, on the other hand, we would split each of the Rk

states approximately the same number of times.
◮ Fixed assignment gives a smaller variance than random assignment

because it amounts to using stratified sampling over the empirical
distribution Gk at level k .

Fixed splitting can be implemented in a depth-first way, recursively,
while fixed effort cannot.

On the other hand, you have no randomness (less variance) in the
number of chains with fixed effort.
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Diminishing the computational effort

As k increases, it is likely that the average time before reaching the
next level or going back to A increases significantly.

We can kill (truncate) trajectories hat go a given number β of levels
down (unlikely to come back), but biased.

Unbiased solution: apply the Russian roulette principle
◮ kill the trajectory going down with a probability rβ . If it survives, assign

a multiplicative weight 1/(1− rβ).
◮ Several possible implementations to reduce the variance due to the

introduction of weights.
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Issues to be solved

How to define the importance function h?
◮ If the state space is one-dimensional and included in R, the final time is

an almost surely finite stopping time and the critical region is
B = [b,∞), any strictly increasing function would be good (otherwise
a mapping can be constructed, by just moving the levels), such as for
instance h(x) = x .

◮ If the state space is multidimensional: the importance function is a
one-dimensional projection of the state space.

◮ Desirable property: the probability to reach the next level should be the
same, whatever the entrance state in the current level.

◮ Ideally, h(x) = P[τB ≤ τA | X (0) = x ], but as in IS, they are a
probabilities we are looking for.

◮ This h(·) can also be learnt or estimated a priori, with a presimulation,
by partitionning the state space and assuming it constant on each
region.
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Issues to be solved (2)

How many offsprings at each level?
◮ In fixed splitting:

⋆ if ck < 1/pk , we do not split enough, it will become unlikely to reach
the next event;

⋆ if ck > 1/pk , the number of trajectories will exponentially explode with
the number of levels.

⋆ The right amount is ck = 1/pk (ck can be randomized to reach that
value if not an integer).

◮ In fixed effort, no explosion is possible.
◮ In both cases, the right amount has to be found.

How many levels to define?
◮ i.e., what probability to reach the next level?
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Optimal values

In a general setting, very few results exist:
◮ We only have a central limit theorem based on genetic type interacting

particle systems, as the sample increases.
◮ Nothing exist on the definition of optimal number of levels...

Consider the simplified setting, with a single entrance state at each
level.

Similar to coin–flipping to see if next level is reached or not.

In that case, asymptotically optimal results can be derived, providing
hints of values to be used.
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Simplified setting and fixed effort

N0 = N1 = · · · = Nm−1 = n

The p̂k ’s binomial r.v. with parameters n and pk = p = µ
1/m
0

assumed independent.
It can be shown that

Var[p̂1 · · · p̂m] =
m
∏

k=1

E[p̂2
k ]− γ2

0 =

(

p
2 +

p(1− p)

n

)m

− p
2m

=
mp2m−1(1− p)

n
+ · · · +

(p(1− p))m

nm
.

Assuming n ≫ (m − 1)(1− p)/p,

Var[p̂1 · · · p̂m] ≈ mp2m−1(1− p)/n ≈ mγ
2−1/m
0 /n.

The work normalized variance ≈ [γn0m
2]/n = γ

2−1/m
0 m2

Minimized at m = − ln(γ0)/2

This gives pm = γ0 = e−2m, so p = e−2.

But the relative error and its work-normalized version both increase
toward infinity at a logarithmic rate.

There is no asymptotic optimality either.
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Simplified setting: fixed splitting

N0 = n, pk = p = γ
1/m
0 for all k , and c = 1/p; i.e., Nk = Rk/p.

The process {Nk , k ≥ 1} is a branching process.

From standard branching process theory

Var[p̂1 · · · p̂m] = m(1− p)p2m−1/n.

If p fixed and m → ∞, the squared relative error m(1− p)/(np) is
unbounded,

But it is asymptotically efficient:

lim
γ0→0+

log(E[γ̃2
n ])

log γ0
= lim

γ0→0+

log(m(1− p)γ2
0/(np) + γ2

0)

log γ0
= 2.

Fixed splitting is asymptotically better, but it is more sensitive to the
values used.
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Illustrative simple example: a tandem queue

Illustrative of the impact of the importance function.

Two queues in tandem
◮ arrival rate at the first queue is λ = 1
◮ mean service time is ρ1 = 1/4, ρ2 = 1/2.
◮ Embedded DTMC: Y = (Yj , j ≥ 0) with Yj = (Y1,j ,Y2,j) number of

customers in each queue after the jth event
◮ B = {(x1, x2) : x2 ≥ L = 30}, A = {(0, 0)}.

Goal: impact of the choice of the importance function?

Importance functions:

h1(x1, x2) = x2,

h2(x1, x2) = (x2 +min(0, x2 + x1 − L))/2,

h3(x1, x2) = x2 +min(x1, L− x2 − 1)× (1− x2/L).
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Illustration, fixed effort: a tandem queue (2)

VN : variance per chain, (N times the variance of the estimator) and the
work-normalized variance per chain, WN = SNVN , where SN is the expected
total number of simulated steps of the N Markov chains.

With h1, V̂N and ŴN were significantly higher than for h2 and h3.

Estimators rescaled as ṼN = 1018 × V̂N and W̃N = 1015 × ŴN .

N = 210 N = 212 N = 214 N = 216

ṼN W̃N ṼN W̃N ṼN W̃N ṼN W̃N

h2, Splitting 109 120 89 98 124 137 113 125
h2, Rus. Roul. 178 67 99 37 119 45 123 47

h3, Splitting 93 103 110 121 93 102 107 118
h3, Rus. Roul. 90 34 93 35 94 36 109 41
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Splitting and HRMS

There are situations where the splitting method is not appropriate

HRMS: if we want to apply splitting, the thresholds must be defined
in terms of the vector of failed components (the state of the system).

But whenever there are failed components, the next event is a repair
with a very high probability.

Regardless of how we determine the thresholds, the probabilities pk of
reaching the next threshold from the current one are always very
small.

For this reason, the splitting method cannot be made efficient in this
case.
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Splitting and Stochastic Petri Nets

Work done in 1999 while at Duke University

Basic IS implemented too.

Implementation in SPNP (Stochastic Petri Net Package)
◮ Written in CSPL (C-based SPN language), but GUI available

Generate a ll Markings

Markings

(tangible + vanishing)

Eliminate vanishing

Extended Reachability
Graph (ERG)

Markovian Nets

rates for tangible Markings

Generate Reward

Non-Markovian Nets FSPNs

Stochastic Reward Net (SRN) Models

Discrete Event Simulation (DES) 

Steady-state transient

Steady-state transient

SOR G auss-

Seidel

Power

method

Std unifor-

mization
Fox and G lynn
uniformization

Independent

replications

SplittingRestartimportance

sampling

Regular

DES

Batch
means

Regenerative

simulation

Markov Reward Model (MRM)

ana lytic-numeric methods

Stiff

uniformization
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Implementation in SPNP

Importance function: on a measure P(#p ≥ xi ).

Number of thresholds and threshold values can be given or obtained
through a pre-simulation

Running all trials at level i before running the trials at level i + 1 ⇒
storage requirement growing exponentially
⇒ structure of the elements of the model replicated at each splitting
point. The “child” paths are simulated one after another, then the
structure is removed. The cloning structure needs to contain the

1 splitting level;
2 current weight of the path;
3 clock;
4 marking;
5 list of enabled transitions and their clocks resampled conditionally.
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A summary of best existing methods for static reliability
estimation on the dodecahedron

Without presenting all implementations.

(Normalized) relative error
√
n×RE

cα
for various methods and unreliabilities ǫ of links on the

dodecahedron topology
Method ǫ = 0.1 ǫ = 10−2 ǫ = 10−3 ǫ = 10−4

Conditioning, Fishman 86 2.6 e+00 1.3 e+00 4.3 e−01 1.4 e−02
GS Botev et al. 13 4.0 e+00 6.2 e+00 7.7 e+00 8.9 e+00
Splitting, Murray et al. 13 4.6 e+00 7.1 e+00 8.6 e+00 8.8 e+00
Permutation MC Gerbatsh 3.0 e+00 4.2 e+00 4.3 e+00 4.4 e+00
IS: ZVA 2010 1.2 e+00 1.7 e−01 5.7 e−02 1.7 e−02
RVR Cancela, Khadiri 1995 8.4 e−01 7.1 e−01 7.1 e−01 7.1 e−01
IS+ RVR: BRD 14 9.5 e−01 7.0 e-01 7.1 e−01 7.1 e−01
IS+RVR: AZVRD 14 2.8 e−01 5.1 e−02 1.6 e−02 5.0 e−03
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Conclusions: book advertisements
Released in March 2009 (John Wiley & Sons):

In March 2010 (éditions Hermès):
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