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Polynomial chaos expansion (PCE)

f(x™) = z By (x™), xMW e RM n=1,..., N

acNM

f: function which represents for the physical system and often computed by
numerical methods (e.g., FDTD, FEM) with high computational costs.

Y, basis polynomial

B4 expansion coefficient

a: vector of order for multivariate polynomial (e.g., & = (1,2) for x;x3)
x(M: sample of the input space. (x("),f(x("))) composes the experimental
design (ED).

M : number of input parameters

N: number of samples in ED



Sampling method

X1

X

N =4
orthogonal sampling



Expansion basis

------

F(x®) = Y Bipe{x™),x™ e RM,n = 1,...,N

lllllll

aceNM

Supporting basis Y, is decided by orthogonality and order a.

Y, is a basis in a Hilbert space equipped with the inner product:

< f.g>=E[fX)gX)] = jx £ g(Dpx(X)dx

px joint probability density function (PDF) of random vector X = [X, ...

The orthogonality of basis polynomials defined by

< Yq, wy > = E[l,ba(X)l,by(X)] = Sa,y

0ay = 1if @ =y, = 0 otherwise.

, X ]



Expansion basis

Assuming X,,,, m = 1, ..., M, are independent, i.e.,
px(X) = px, (X1) X% pxp (Xnr)
px,, marginal PDF, 1, tensor product of univariate polynomial nam(Xm), ie.,
Ya(X) =g, (X1) X - X gy, (Xn)
Not hard to conclude that if T, satisfies
<y T > = [ g, G Gom Iy Coim) X = 85

m
orthogonality of 1, is guaranteed.

PDF of X,, polynomial family of m,

Uniform distribution Legendre polynomial

Gaussian distribution Hermite polynomial




Expansion basis

------

F(x®) = Y Bipe{x™),x™ e RM,n = 1,...,N

lllllll

acNM
Y, is decided by orthogonality and order a.

infinite series ), ,.ym |:> truncated PCE 2qen

How to decide A ? The commonly utilized full model follows
A" = {a: ¥ am < p)

However, the cardinality of Afull

card(AM) = (p _;M>

will polynomially increases with p and M.

As a result, surrogate modeling suffers from curse of dimensionality, i.e., large ED
required w. large M and p to avoid the overfitting phenomena.




Expansion coefficients

f(x™) = zgﬁ;}%(ﬂm),x(n) ERMn=1,.. N

------

achA
Projection method:

Due to orthogonality of basis polynomials,

Be = f £ (0 Yo (O)px (X)dx
X

Integral is numerically computed.

Regression approach: f;f
B4 solution of minimization problem

B = arg min E[(f (X) - Y (X))

matrix ¥ = [Y,] and column vector 8 = [B,]-

Based on ED,
E = (PTy)~ 1Ty ordinary least square (OLS)

column vector y = [f(x(™)] .



Estimation of prediction performance

. 2
Generalization error: Err = E [(f(X) — f(X)) ] X random vector of inputs

If a large set of data is available for validation,

Err ~ €y = — z Nval (f(x(n)) f(x(")))

Otherwise, cross-validation (CV) is recommended.
Validation Training

-----------

Leave-one-out (LOO) cross-validation: €;.gg = Zn " (f(x("))

-----------

PCE model built by leaving n-th sample out for validation

€100 €an be computed fast in single training process based on f

Assuming candidate models f; are available,

fr=arg min eLoo(f, fi)

i



Sparse polynomial chaos expansion

f(x™) = Z Bbe(x™), x™ e RM n=1,...,N

agh

Not all basis polynomials y,, « € A™, are influential. Greedy algorithms LARS
(least angle regression) and OMP (orthogonal matching pursuit) are popularly
used to select the most relevant basis polynomials.

Sparse PCE model based on OMP

1. Initialization: residual R, = y, active set AJ = @, candidate set A§ = Afull
2.Forj =1, ...,min{N -1, card(Afu“)}

1) Find tl)aj most correlated with R;_1, 1/)0,]. = arg max |R]-T_1t/)a|.

C
aeAj_l

3) With 1/’&?: compute B as the ordinary least square solution.

4) Update residual R; =y — tij,zﬁj and compute associated eioo-

End
3. 1,bA\3_z with smallest €, ¢ is selected as best sparse basis.

2) Update A" = A" ; Uajand A7 = A7, \ a;.

Sparse PCE model based on LARS runs similar procedure but less greedy than OMP.
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Idea of resampled PCE (rPCE)

As a result, the basis polynomials of true model will be frequently selected during
surrogate modeling with varied data, as shown by the following example.

FOX) =1+X, + X, Xy + X X2 + X, X3, X,~N(0,1) and X,~N(6,1)

12 data for training and 10% data for validation, 100 trials are performed with OMP-
based PCE modeling. At each trial, data are obtained through LHS method.

A : | l——Vv—w Vv T Vv Vv WV T VW]
ﬂ >[1,3,6,9,14]
N 1 08
o f Rval 1 = eya/var(Yyar)
AN |
N \/\/kw« il :
b ! | : _/\/l\ N | | [2’3,8]
0 10 20 30 40 0 20 40 60 80 100

index of o trial index

- Selectlng the optimal a (associated basis polynomial) as most
! frequent ones might improve the performance of PCE models.
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rPCE: procedure

[ Simulate data variation through resampling ]

¥

[ Based on B sets of resamples, build PCE models with ]
LARS and/or OMP and collect associated A;,i =1, ...,B

¥

[ Merge A; into one set A,,, = {A;,i = 1, ..., B}, ]

¥

Counting repetition frequency of all elements. ]

¥

[ Resorting elements according to frequency

¥

[ Number of basis polynomials is decided by cross validation. ]

12



rPCE: data variation

Data variation is simulated by applying resampling technique - k-fold division.
Data left out Training

IS

How to decide the value of k?
Small k (e.g. 2) I:> biased basis polynomials

Large k (e.g. N) I:f} high correlation of training data sets

The suggested configuration, rather than a single value,
k ={3,5,10,20, N}

which is a set of recommended values in literature.

13



rPCE: generation of candidate polynomials

Three options are available: LARS, OMP, or their combination, and one needs to
decide which is the optimal.

From the observation of simulations, one finds that

o T T N R N N R R N R N S R N N R N S R R R R R N R R N R R R R N R R N R R S R R N R R R R N R ey

: | If LARS performs “much better” than OMP, one should choose
i LARS, and vice versa. Otherwise, the combination scheme is used.

How to properly define the criterion of “much better”?

Based on resamples, PCE models are constructed with LARS and OMP. Accordingly,
one obtains corresponding values of RZ,;.

box plot of RZ,;

maximumT

75%

25%

minimum i

Q3

Q1

[ |f QLARS 5 gOMP | ARS performs much |
| better than OMP and generates candidate
i polynomials to rPCE, and vice versa. i
\ Otherwise, the combination is chosen. i



Global sensitivity analysis by Sobol’ indices

F(x) =Y 4en BaWa(x) is reformulated as

pwi D B+ D D Babaltm)tt D fatbalir, e

i=1 aEA{i} 1Si<jSM aEAk{i,j} (XEA{L_"’M}

Ay, .ig={la €A a #0ifk € {iy, .., i;}; ax = 0 otherwise}, s € {1, ..., M}

Orthogonality of basis polynomials gives the estimation of total and partial variances,

D = Z Bé—Bo.Di, i, = z Ba — B

ach aEA{il’_"’iS}
and the ratio between them yields the Sobol' indices

YML S =1
Sil;--'iis — Dil,...,iS/D LZS:l l1,.slg I

Total Sobol’ indices are defined as

ZSM L= {li i) 3 @) (S ST 21 )

Xpm)
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Ishigami function: prediction

y(x) = sin(x;) + asin?(x,) + bx3 sin(x;)

where a = 7,b = 0.1, X; are independent and uniform in [—m, ],i = 1,2,3.

50 data for training and 10* data for validation, build PCE models based on LARS, OMP
and rPCE. Repeating the above process 100 times, one has 10° prediction data.

suggested k and polynomial source at each trial

-rPCE I(R 4 = 0.9971) LARS (R al = O 8724) OMP (R al = 0 8790)

00—~ ‘ ; 30 30

20}

10

-101

30



Ishigami function: prediction

Mean of RZ,, w.r.t. 100 replications

k=1 | k=3 | k=5 (k=10 |k=20 | k=N | allk
LARS 0.8723 | 0.7890 |[0.9281 [0.9542 |0.9630 |0.9686 |0.9619
OMP 0.8788 | 0.7734 [ 0.9566 [0.9972 |0.9919 |0.9918 | 0.9947
LARS+OMP 0.8935 [ 0.9817 [0.9974 |0.9969 |0.9978 | 0.9971
10 = = ‘f =TT é'#"!!r SFT¥ OoFF O SFE
I ﬁ ? ¥ ; e ¥ i +
05 _ % 1 : i N i
+ ; . T
: , i
0.0
W +
05 - + "
-1.0 t
wsor o LARS OMP = LARS+OMP |
without refinement by rPCE k = {3,5,10,20, N}
AN | | | | | | | e ! !
k=11 k=3 k=5 k=10 k=20 k=N Fail 'k‘/ 17

- ——

—————



Ishigami function: Sobol’ indices

0.8

0.6

0.4

0.2

0.0

—0.2

Mean of Sobol’ indices w.r.t. 100 replications

51 S2 S3 51,2 52,3 51,3 51,23
Reference |0.3139 |0.4424 |0.0000 | 0.0000 |{0.0000 {0.2437 |0.0000
rPCE 0.3141 |0.4422 {0.0000 | 0.0000 |0.0001 |0.2435 |0.0001
LARS 0.3553 | 0.4152 {0.0114 | 0.0017 |0.0096 [0.2019 |0.0049
OMP 0.3017 [{0.4239 [0.0028 | 0.0052 | 0.0042 | 0.2363 | 0.0258

AS; = SFCF — spe!

+
+
+
+ + + S
+
£ £ i + 4 + + + i
+ = N
N : g
+ + +
+
| + = LARS OMP @™ (PCE
| T | | | 1 |
AS, AS, AS, AS,, AS; 5 AS, ;5 AS 55
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Maximum deflection of a truss structure

Py Py Py P Ps Ps
Eh, Ay 9,
V

l< .
| 24m |

Six vertical loads denoted by P; ~P¢ are put on a truss structure composed of 23
bars. The response quantity of interest, the mid-span deflection V, is computed
with finite-element method (FEM).

Variable Distribution  Mean Std Description

En,E, (Pa) Lognormal 2.1x 10"  2.1x 10 Young’s moduli

A, (m?) Lognormal 2.0x 107 2.0x 107* cross-section area of horizontal bars
A, (m?) Lognormal 1.0x 107 1.0x 10~* cross-section area of oblique bars
P{ ~ P (N) Gumbel 50x10* 7.5x10° vertical loads

19



Truss deflection: prediction

50 data for training and 10* data for validation, build PCE models based on LARS, OMP
and rPCE. Repeating the above process 100 times, one has 10 prediction data.

suggested k and polynomial source at each trial
LARS (RZ,; = 0.9631) OMP (RZ,; = —6.2257)

-0.05 -0.05 -0.05

T:f
T:f

-0.1 -0.1 -0.1

-0.15 -0.15

0.78% data with V' < —0.11

20



Truss deflection: prediction

Mean of RZ,; W.r.t.

100 replications

k=1 | k=3 | k=5 |k=10 |k=20 | k=N | allk
LARS 0.9631 | 0.9651 | 0.9658 | 0.9692 | 0.9726 | 0.9735 [0.9744
OMP —6.2248(0.3873 {0.7915 [ 0.8273 | 0.8721 | 0.8974 | 0.9315
LARS+OMP 0.9641 [0.9660 |0.9693 [0.9735 |0.9741 [ 0.9762

—-10

—40
without refiner

-50

T B

HHHH -

.|_

T

—————

—————

= LARS OMP = LARS+OMP
ment by rPCE
+ k = {3,5,10,20,N}
:\ L F | | | | A
N (== 21
(=11 k=3 k=5 k=10 k=20 k=N fall k }



Truss deflection: total Sobol’ indices

Mean of total Sobol’ indices w.r.t. 100 replications

Ap

Ao

Py

P,

Ps

P,

Ps

Ref.

0.367

0.010

0.388

0.014

0.004

0.031

0.075

0.079

0.035

0.005

1.008

rPCE

0.3713

0.0121

0.3695

0.0127

0.0046

0.0359

0.0750

0.0756

0.0355

0.0048

0.9969

LARS

0.3748

0.0135

0.3715

0.0135

0.0057

0.0365

0.0759

0.0751

0.0361

0.0061

1.0086

OMP

0.4295

0.2290

0.4037

0.2291

0.2105

0.2251

0.2808

0.2557

0.2271

0.1891

2.6795

|

0.

0 F

8 | —

ant

-

AS® :ngCE — SRef |

- H+ +

+4 I} #
---&m----

| (X3

- H HHE

—e-ed +HE 4+

P;

P,
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Estimation of specific absorption rate (SAR)

z

2m

StarLab

>Y

T 3m

Whole-body SAR (mW/kg), the ratio of the total power absorbed in the body to the mass of the human
model, is computed with an in-house FDTD code.

(x%,y%,2%), (xP,yP,0) and human orientation 8% are inputs, which are independent and uniformly
distributed in [0.05, 3.95], [0.05,2.95], [0. 25, 2], [0. 3, 3.7], [0.3,2.7] in meters and [0,360) in degrees.

Reflection by walls, ceiling and ground is not considered. Thus, four variables including polar coordinates
(rsp, qbf), 6P w.r.t. local coordinate system of WLAN source and z° are considered finally.

23



SAR estimation: prediction

340 data for training and 10 data for validation, build PCE models based on LARS, OMP
and rPCE. Repeating the above process 100 times, one has 103 prediction data.

rPCE (R2 A= 09102)

0 0.5 1

909% data with values< 0.2

LARS (R 1 =0. 8688)

OMP (R 1 =0. 7269)

0.5 0 0.5 1

24




SAR estimation: prediction

Mean of RZ,; w.r.t. 100 replications

k=1 k=3 k=5 k=10 |k=20 | k=N all k
LARS 0.8799 [0.9085 [ 0.9067 | 0.8995 | 0.9033 | 0.8995 | 0.9068
OMP 0.7500 [0.8186 | 0.8771 | 0.8854 | 0.8628 |0.8521 | 0.8794
LARS+OMP 0.9046 109182 | 09171 | 09157 |0.8893 | 0.9178
10 _
= & TET TPT T7T 2T ToT oo
$ I N % + ¥ % % : i ¥ = g ¥ $ + 1
+ + e + + ¥ + + + + F o+
+ T T+ + + + I +
00 |- y o+ * N + +
“o‘f + T + + +
-05 H T + 4
~10 F
L O LARS OMP = LARSIOMP
L | | | | |
k=1 k=3 k=5 k=10 k=20 k=N all k




SAR estimation: global sensitivity analysis

Mean of total Sobol’ indices w.r.t. 100 replications

b
Ts

PF

ZS

05

%

rPCE

0.9809

0.0128

0.2175

0.0098

1.2210

LARS

0.9714

0.0357

0.1954

0.0316

1.2341

OMP

0.9761

0.0984

0.2925

0.0743

1.4412

160

140
120
100
80
60

@

Large value of rsp and small value of qbf maybe explained by observing following
electric-field intensity map, where observation plane is z; = 0.
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SAR estimation: global sensitivity analysis

0.8

0.6

0.4

0.0

b

O5

%

rPCE

0.9809

0.0128

0.2175

0.0098

1.2210

LARS

0.9714

0.0357

0.1954

0.0316

1.2341

OMP

0.9761

0.0984

0.2925

0.0743

1.4412

H T

HIF +

-4

+ 4+ -RH

o LARS= OMP =

rPCE

box plots of Sobol’ indices
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SAR estimation: global sensitivity analysis

p
Ts

b

ZS

O5

%

rPCE

0.9809

0.0128

0.2175

0.0098

1.2210

LARS

0.9714

0.0357

0.1954

0.0316

1.2341

OMP

0.9761

0.0984

0.2925

0.0743

1.4412

Setting qbf = 0 and 95 = 0, predict values of whole-body SAR:

height of human
model 1.36 m

0.3 0.5

LD'@D

0.9

|

1.2

1.0

-1 0.8



Example with varied input dimension: prediction

M M
1 1
y =3+ x,X5 — X3X5 + XX, + MZ k(x3 — 5x;) + In WZ k(xg +x9) | + xpea + Xp_axZ
k=1 k=1

X; are independent and uniform in [1,2],i = 1, ..., M. Range of X,, (when M > 20) is changed as [1,3]
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of
PCE models 50 times. A lighter setting of k, k = {3,5,10,20}, is applied.

10 b ——4—— —— —— —— —_— —— -
0s L : ' . B i g
I e 1 3
% 4 A l
% s
06 | ! - *
o B - b Z *
e % -
04 . 2
o ke % + ER
02 O LARS @ OMP = rPCE N %
EZ I b
+ 1
00 +
o i
| | \ | | ] ] 29

M=11 M=16 M=21 M=26 M=31 M=36 M=41



Example with varied input dimension: prediction

M M
1 1
y =3+ x,X5 — X3X5 + XX, + MZ k(x3 — 5x;) + In Wz k(xg +x9) | + xpea + Xp_axZ
k=1 k=1

X; are independent and uniform in [1,2],i = 1, ..., M. Range of X,, (when M > 20) is changed as [1,3]
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of
PCE models 50 times. A lighter setting of k, all k = {3,5,10,20}, is applied.

M=11 M=16 M=21 M=26 M=31 M=36 :M=41l :
LARS | 0.9998 0.9995 0.9573 0.9679 0.8985 0.8260 :0.7761 :
OMP | 0.9998 0.9634 0.6940 0.6679 0.4832 0.3308 :0.1536 :
LARS | 0.9997 0.9996 0.9422 0.9249 0.8646 0.8322 0.8125
k=3 OMP | 09998 0.8072 0.7810 0.7737 0.6514 0.5358 0.3870

L+O | 09998 0.9996 :0.8929 0.8771 0.7810 0.7262 0.6805 :

LARS | 0.9998 0.9995 0.9600 0.9726 0.8899 0.8574 0.8351
k=25 OMP | 0.9999 0.9552 0.8171 0.7915 0.6935 0.5894 (0.4826
L+O | 09999 0.9996 0.9511 0.9651 :0.8630 0.8110 0.7681 :

LARS | 0.9999 0.9995 0.9714 0.9945 0.9316 0.8724 0.8445
k=10 | OMP | 0.9999 0.9963 0.8395 0.8194 0.7252 0.6239 0.5340

L+O | 0.9999 0.9998 0.9668 0.9937 0.9210 0.8557 :0.8193:

LARS | 0.9999 0.9995 0.9824 0.9971 0.9523 0.8947 0.8714
k=20 | OMP | 0.9999 0.9999 0.8392 0.8195 0.7197 0.6149 0.5165

L+0O | 09999 0.9999 0.9784 0.9971 0.9404 0.8692 :0.8391:

LARS | 0.9999 0.9996 0.765 0.9965 0.0437 0.8904 0.8725
all k OMP | 0.9999 0.9987 0.8423 0.8248 0.7316 0.6191 0.5011

L+O | 0.9999 0.9998 0.9738 0.9961 0.9371 0.8790 :0.8604 : 30




Example with varied input dimension: time cost

M M
1 1
y =3+ x,X5 — X3X5 + XX, + MZ k(x3 — 5x;) + In WZ k(xg +x9) | + xpea + Xp_axZ
k=1 k=1

X; are independent and uniform in [1,2],i = 1, ..., M. Range of X,, (when M > 20) is changed as [1,3]
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of
PCE models 50 times. A lighter setting of k, all k = {3,5,10,20}, is applied.

+
2500 B
= '
o
5
2400 |- —
z k=10
=
=300 | - _
g O LARS @ OMP ¥ i
S200 - _ _
= + f ez e
Q
E + -
S1o0 T .-
* Q'jl S"' ;
0 t | ! ) _L| | T _I_|

M=11 M=16 M=21 M=26 M=31 M=36 M=41
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Example with varied input dimension: time cost

M M
1 1
y =3+ x,X5 — X3X5 + XX, + MZ k(x3 — 5x;) + In WZ k(xg +x9) | + xpea + Xp_axZ
k=1 k=1

X; are independent and uniform in [1,2],i = 1, ..., M. Range of X,, (when M > 20) is changed as [1,3]
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of
PCE models 50 times. A lighter setting of k, all k = {3,5,10,20}, is applied.

W
=)
=3,

|
+ A+

O LARS @ OMP

—

)

)
\

Computational time (seconds)
S
=
|

. ' a
2 g 5
: + = @ E =

0 k — = EIQ

=] k=3 k=5 k=10 k=20
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Conclusions

Resampled PCE (rPCE) refines the ranking of importance of candidate polynomials
in the context of sparse polynomial chaos expansions

Resampling scheme (k-fold division) and source of candidate polynomials

(LARS, OMP or their combination) impact the performance of rPCE

Analyse global sensitivity through the computation of Sobol’ indices

Application examples include two analytical functions, one FEM model (truss
deflection) and one FDTD model (SAR estimation)

OMP-based PCE modelling seems the worst among three methods. LARS-based
approach generally generates a better model and refinements by rPCE are
obvious in terms of prediction variance and number of outliers. rPCE performs as

least as well as LARS for global sensitivity analysis

33



Perspectives

Modelling complicated physical scenarios require high-order PCE models, construction

of which easily sink into overfitting problem. Complicated scenarios are divided into

several simpler ones.

PCE

—

PCE

PCE

PCE
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Ranking polynomials in rPCE

Ranking polynomials by total score
S =S+ S,

S frequency score, S, error score.
f e

Frequency score
. = Sklcm(3,20, N)
f f k
k€{3,5,10,20,N}

"lcm" short for least common multiple.

Error score

In PCE modeling based on OMP/LARS, each basis polynomial results increment of €199
I | j—1
A€i00 = €L00 ~ €L00
and

Ae
Se max z LOO

35



Borehole function

Y = EHTEI(HH _H!}
~ In(r/r,)(1 + T,/T;) + 2LT,/r:K,,

Borehole function, which is nonlinear and non-additive, models water flow through a
borehole. 8 input features are independent.

Name Distribution Bounds Description

Fe (M) N(0.10,0.0161812) [0.05.0.15] radius of borehole

r(m) Lognormal(7.71, 1.0056) [100, 50000] radius of influence

T, (m?/yr) Uniform [63070, 115600] transmissivity of upper aquifer

H, (m) Uniform [990, 1110] potentiometric head of upper aquifer
T; (11]2/}-'1’} Uniform [63.1.116] transmissivity of lower aquifer

H; (m) Uniform [700, 820] potentiometric head of lower aquifer
L (m) Uniform [1120. 1680] length of borehole

K, (m/yr)  Uniform [ 1500, 15000] hydraulic conductivity of borehole




i

300

250 ¢
200 1
150 ¢
100 |

50 -

50 |

=100
=100

Borehole function: prediction

40 data for training and 10* data for validation, build PCE models based on LARS, OMP
and rPCE. Repeating the above process 100 times, one has 10 prediction data.

rPCE (R2,; = 0.9723) LARS (R2,; = 0.9517) OMP (R2,, = 0.1472)
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Borehole function: prediction

|
2 =
R val

Mean of RZ,; w.r.t. 100 replications

k=1 k = k=5 k=10 |k=20 | k=N all k
LARS 0.9517 [0.9072 [0.9451 [0.9673 [0.9736 [0.9743 [0.9719
OMP 0.1467 [0.5852 [0.6434 [0.7293 [0.7506 [0.7633 [0.8112
LARS+OMP 0.8859 [(0.9239 (0.9587 [0.9704 [0.9697 [0.9723
= o TaT T=T TaT TeT Tev e
VJ. + -+ T
Z * e ¥ : .
| * + + +
+ : +
J’_
-
J’_
+
+ = LARS OMP = LARS+OMP
L | | | | | |
k=1 k=3 =5 k=10 k=20 k=N all k
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Borehole function: total Sobol’ indices

Mean of total Sobol” indices w.r.t. 100 replications

T r T, H, T, H, L K, y
Reference (0.3127 {0.0000 {0.0000 |0.0487 (0.0000 {0.0487 |0.0472 |0.6369 [1.0942
rPCE |0.3072 |0.0010 {0.0010 {0.0418 |{0.0011 |0.0431 [0.0423 [0.6376 |1.0751
LARS |0.2962 |0.0023 {0.0015 |0.0420 |0.0018 |0.0427 {0.0427 |0.6322 |1.0614
OMP  [0.4127 {0.1967 |0.1635 [0.1995 [0.1802 |0.1751 |0.2026 [0.6259 |2.1562
+
+ +
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