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Polynomial chaos expansion (PCE)
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𝑓 𝒙(𝑛) = ෍𝜶∈ℕ𝑀 𝛽𝜶𝜓𝜶(𝒙(𝑛)) , 𝒙(𝑛) ∈ ℝ𝑀, 𝑛 = 1,… , 𝑁
• 𝑓: function which represents for the physical system  and often computed by 

numerical methods (e.g., FDTD, FEM) with high computational costs.

• 𝜓𝜶: basis polynomial

• 𝛽𝜶: expansion coefficient

• 𝜶: vector of order for multivariate polynomial (e.g., 𝜶 = (1,2) for 𝑥1𝑥22)

• 𝒙(𝑛): sample of the input space. 𝒙 𝑛 , 𝑓 𝒙 𝑛 composes the experimental 

design (ED). 

• 𝑀: number of input parameters

• 𝑁: number of samples in ED



Sampling method
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𝑓 𝒙(𝑛) = ෍𝜶∈ℕ𝑀 𝛽𝜶𝜓𝜶(𝒙(𝑛)) , 𝒙(𝑛) ∈ ℝ𝑀, 𝑛 = 1,… , 𝑁
random sampling

Latin hypercube sampling (LHS)
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Expansion basis
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𝑓 𝒙(𝑛) = ෍𝜶∈ℕ𝑀 𝛽𝜶𝜓𝜶(𝒙(𝑛)) , 𝒙(𝑛) ∈ ℝ𝑀, 𝑛 = 1,… , 𝑁
Supporting basis 𝜓𝜶 is decided by orthogonality and order 𝜶.   𝜓𝜶 is a basis in a Hilbert space equipped with the inner product:< 𝑓, 𝑔 > = 𝐸 𝑓 𝑿 𝑔 𝑿 = න𝕏𝑓 𝒙 𝑔 𝒙 𝑝𝑿 𝒙 𝑑𝒙𝑝𝑿 joint probability density function (PDF) of random vector 𝑿 = [𝑋1, … , 𝑋𝑀]. 
The orthogonality of basis polynomials defined by< 𝜓𝜶, 𝜓𝜸 >= 𝐸 𝜓𝜶 𝑿 𝜓𝜸 𝑿 = 𝛿𝜶,𝜸𝛿𝜶,𝜸 = 1 if 𝜶 = 𝜸, = 0 otherwise. 



Expansion basis
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Not hard to conclude that if 𝜋𝛼𝑚 satisfies < 𝜋𝛼𝑗 , 𝜋𝛼𝑘 >= න𝕏𝑚 𝜋𝛼𝑗 𝑥𝑚 𝜋𝛼𝑘 𝑥𝑚 𝑝𝑋𝑚 𝑥𝑚 𝑑𝑋𝑚 = 𝛿𝑗,𝑘
orthogonality of 𝜓𝜶 is guaranteed. 

PDF of 𝑋𝑚 polynomial family of 𝜋𝛼𝑚
Uniform distribution Legendre polynomial

Gaussian distribution Hermite polynomial… …

Assuming 𝑋𝑚, 𝑚 = 1, … ,𝑀, are independent, i.e.,

𝑝𝑋𝑚 marginal PDF, 𝜓𝜶 tensor product of univariate polynomial 𝜋𝛼𝑚 𝑋𝑚 , i.e.,

×⋯× 𝑝𝑋𝑀 𝑋𝑀𝑝𝑿 𝑿 = 𝑝𝑋1 𝑋1
𝜓𝜶 𝑿 = 𝜋𝛼1 𝑋1 𝜋𝛼𝑀(𝑋𝑀)×⋯×



Expansion basis
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𝑓 𝒙(𝑛) = ෍𝜶∈ℕ𝑀 𝛽𝜶𝜓𝜶(𝒙(𝑛)) , 𝒙(𝑛) ∈ ℝ𝑀, 𝑛 = 1,… , 𝑁
𝜓𝜶 is decided by orthogonality and order 𝜶. 

infinite series σ𝜶∈ℕ𝑀 truncated PCE σ𝜶∈𝔸
How to decide 𝔸 ? The commonly utilized full model follows𝔸full = {𝜶:σ𝑚=1𝑀 𝛼𝑚 ≤ 𝑝}
However, the cardinality of 𝔸full

card 𝔸full = 𝑝 +𝑀𝑝
will polynomially increases with 𝑝 and 𝑀.

As a result, surrogate modeling suffers from curse of dimensionality, i.e., large ED

required w. large 𝑀 and 𝑝 to avoid the overfitting phenomena.



Expansion coefficients
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መ𝑓 𝒙(𝑛) = ෍𝜶∈𝔸𝛽𝜶𝜓𝜶(𝒙(𝑛)) , 𝒙(𝑛) ∈ ℝ𝑀, 𝑛 = 1,… , 𝑁
Projection method:

Due to orthogonality of basis polynomials,𝛽𝜶 = න𝕏𝑓 𝒙 𝜓𝜶 𝒙 𝑝𝑿(𝒙)𝑑𝒙
Integral is numerically computed. 

Regression approach:𝛽𝜶 solution of minimization problem෡𝜷 = arg min𝜷 𝐸 𝑓 𝑿 −𝜳(𝑿)𝜷 2
matrix 𝜳 = [𝜓𝜶] and column vector 𝜷 = [𝛽𝜶].
Based on ED, ෡𝜷 = 𝜳𝑇𝜳 −𝟏𝜳𝑇𝒚
column vector 𝒚 = [𝑓(𝒙(𝑛))] .

ordinary least square (OLS)



Estimation of prediction performance

9

Generalization error:          Err = 𝐸 𝑓 𝑿 − መ𝑓 𝑿 2 𝑿 random vector of inputs

If a large set of data is available for validation, Err ≈ 𝜖val = 1𝑁valσ𝑛=1𝑁val 𝑓 𝒙(𝑛) − መ𝑓 𝒙(𝑛) 2
Otherwise, cross-validation (CV) is recommended.

Leave-one-out (LOO) cross-validation: 𝜖LOO = 1𝑁σ𝑛=1𝑁 𝑓 𝒙(𝑛) − መ𝑓−(𝑛) 𝒙(𝑛) 2
𝜖LOO can be computed fast in single training process based on መ𝑓.

Assuming candidate models መ𝑓𝑖 are available, መ𝑓∗ = arg minመ𝑓𝑖 𝜖LOO(𝑓, መ𝑓𝑖)
PCE model built by leaving 𝑛-th sample out for validation

Cross-validation:

Validation Training



Sparse polynomial chaos expansion
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መ𝑓 𝒙(𝑛) = ෍𝜶∈𝔸𝛽𝜶𝜓𝜶(𝒙(𝑛)) , 𝒙(𝑛) ∈ ℝ𝑀, 𝑛 = 1,… , 𝑁
Not all basis polynomials 𝝍𝜶, 𝜶 ∈ 𝔸full, are influential. Greedy algorithms LARS

(least angle regression) and OMP (orthogonal matching pursuit) are popularly 

used to select the most relevant basis polynomials. 

1. Initialization: residual 𝑹0 = 𝒚, active set 𝔸0𝑎 = ∅, candidate set 𝔸0𝑐 = 𝔸full
2. For 𝑗 = 1,… ,min 𝑁 − 1, card 𝔸full

1) Find 𝝍𝜶𝑗 most correlated with 𝑹𝑗−1,  𝜓𝜶𝑗 = arg max𝜶∈𝔸𝑗−1𝑐 𝑹𝑗−1𝑇 𝝍𝜶 . 

2) Update 𝔸𝑗𝑎 = 𝔸𝑗−1𝑎 ∪ 𝜶𝑗 and 𝔸𝑗𝑐 = 𝔸𝑗−1𝑐 ∖ 𝜶𝑗 .

3) With 𝝍𝔸𝑗𝑎 , compute 𝜷𝑗 as the ordinary least square solution.

4) Update residual 𝑹𝑗 = 𝒚 − 𝝍𝔸𝑗𝑎𝜷𝑗 and compute associated 𝜖𝐿𝑂𝑂𝑗
.

End

3. 𝜓𝔸𝑗𝑎 with smallest 𝜖𝐿𝑂𝑂 is selected as best sparse basis.

Sparse PCE model based on OMP

Sparse PCE model based on LARS runs similar procedure but less greedy than OMP.
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rPCE: procedure

Based on 𝐵 sets of resamples, build PCE models with 

LARS and/or OMP and collect associated 𝔸𝑖 , 𝑖 = 1, … , 𝐵
Simulate data variation through resampling

Counting repetition frequency of all elements.

Resorting elements according to frequency

Number of basis polynomials is decided by cross validation.

Merge 𝔸𝑖 into one set 𝔸𝑚 = {𝔸𝑖 , 𝑖 = 1,… , 𝐵},



rPCE: data variation
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Data variation is simulated by applying resampling technique - 𝒌-fold division.

1 2 3 … 𝒌Data left out Training

1 2 3 … 𝒌
1 2 3 … 𝒌…

How to decide the value of 𝑘?
Small 𝑘 (e.g. 2)

Large 𝑘 (e.g. 𝑁)

biased basis polynomials

high correlation of training data sets

The suggested configuration, rather than a single value,𝑘 = 3,5,10,20, 𝑁
which is a set of recommended values in literature.



rPCE: generation of candidate polynomials
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Three options are available: LARS, OMP, or their combination, and one needs to 

decide which is the optimal.

From the observation of simulations, one finds that

If LARS performs “much better” than OMP, one should choose 
LARS, and vice versa. Otherwise, the combination scheme is used.

How to properly define the criterion of “much better”?

Based on resamples, PCE models are constructed with LARS and OMP. Accordingly, 

one obtains corresponding values of 𝑅val2 .

box plot of 𝑅val2
minimum

maximum

25%75% 𝑄1
𝑄3 If 𝑄1LARS > 𝑄3OMP, LARS performs much 

better than OMP and generates candidate 

polynomials to rPCE, and vice versa. 

Otherwise, the combination is chosen.



Global sensitivity analysis by Sobol’ indices
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መ𝑓 𝒙 = σ𝜶∈𝔸𝛽𝜶𝜓𝜶(𝒙) is reformulated as𝛽𝟎 +෍𝑖=1𝑀 ෍𝜶∈𝔸{𝑖} 𝛽𝜶𝜓𝜶(𝑥𝑖) + ෍1≤𝑖<𝑗≤𝑀 ෍𝜶∈𝔸{𝑖,𝑗} 𝛽𝜶𝜓𝜶(𝑥𝑖 , 𝑥𝑗) + ⋯+ ෍𝜶∈𝔸{1,…,𝑀} 𝛽𝜶𝜓𝜶(𝑥1, … , 𝑥𝑀)
where 𝔸{𝑖1,…,𝑖𝑠} = 𝜶 ∈ 𝔸, 𝛼𝑘 ≠ 0 if 𝑘 ∈ 𝑖1, … , 𝑖𝑠 ; 𝛼𝑘 = 0 otherwise , 𝑠 ∈ 1, … ,𝑀
Orthogonality of basis polynomials gives the estimation of total and partial variances,𝐷 = ෍𝜶∈𝔸𝛽𝜶2 − 𝛽𝟎2 , 𝐷𝑖1,…,𝑖𝑠 = ෍𝜶∈𝔸 𝑖1,…,𝑖𝑠 𝛽𝜶2 − 𝛽𝟎2
and the ratio between them yields the Sobol' indices𝑆𝑖1,…,𝑖𝑠 = 𝐷𝑖1,…,𝑖𝑠/𝐷
Total Sobol’ indices are defined as𝑆𝑖𝑇 =෍𝕀𝑖 𝑆𝑖1,…,𝑖𝑠 , 𝕀𝑖 = 𝑖1, … , 𝑖𝑠 ∋ {𝑖}

σ𝑠=1𝑀 𝑆𝑖1,…,𝑖𝑠 = 1
σ𝑖=1𝑀 𝑆𝑖𝑇 ≥ 1



𝑦 𝒙 = sin(𝑥1) + 𝑎 sin2(𝑥2) + 𝑏𝑥34 sin(𝑥1)
where 𝑎 = 7, 𝑏 = 0.1, 𝑋𝑖 are independent and uniform in −𝜋, 𝜋 , 𝑖 = 1,2,3.
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Ishigami function: prediction

50 data for training and 104 data for validation, build PCE models based on LARS, OMP 

and rPCE. Repeating the above process 100 times, one has 106 prediction data.

rPCE (𝑅val2 = 0.9971) LARS (𝑅val2 = 0.8724) OMP (𝑅val2 = 0.8790)

suggested 𝑘 and polynomial source at each trial



17

Mean of 𝑅val2 w.r.t. 100 replications

Ishigami function: prediction

without refinement by rPCE 𝑘 = {3,5,10,20,𝑁}

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10 𝑘 = 20 𝑘 = 𝑁 all 𝑘
LARS 0.8723 0.7890 0.9281 0.9542 0.9630 0.9686 0.9619
OMP 0.8788 0.7734 0.9566 0.9972 0.9919 0.9918 0.9947

LARS+OMP 0.8935 0.9817 0.9974 0.9969 0.9978 0.9971
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Ishigami function: Sobol’ indices

Δ𝑆𝑖 = 𝑆𝑖PCE − 𝑆𝑖ref

𝑆1 𝑆2 𝑆3 𝑆1,2 𝑆2,3 𝑆1,3 𝑆1,2,3
Reference 0.3139 0.4424 0.0000 0.0000 0.0000 0.2437 0.0000

rPCE 0.3141 0.4422 0.0000 0.0000 0.0001 0.2435 0.0001
LARS 0.3553 0.4152 0.0114 0.0017 0.0096 0.2019 0.0049
OMP 0.3017 0.4239 0.0028 0.0052 0.0042 0.2363 0.0258

Mean of Sobol’ indices w.r.t. 100 replications



Maximum deflection of a truss structure

Six vertical loads denoted by 𝑃1~𝑃6 are put on a truss structure composed of 23
bars. The response quantity of interest, the mid-span deflection 𝑉, is computed 

with finite-element method (FEM).

19



20

Truss deflection: prediction

50 data for training and 104 data for validation, build PCE models based on LARS, OMP 

and rPCE. Repeating the above process 100 times, one has 106 prediction data.

rPCE (𝑅val2 = 0.9770) LARS (𝑅val2 = 0.9631) OMP (𝑅val2 = −6.2257)

0.78% data with 𝑉 < −0.11

suggested 𝑘 and polynomial source at each trial
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Truss deflection: prediction

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10 𝑘 = 20 𝑘 = 𝑁 all 𝑘
LARS 0.9631 0.9651 0.9658 0.9692 0.9726 0.9735 0.9744
OMP −6.2248 0.3873 0.7915 0.8273 0.8721 0.8974 0.9315

LARS+OMP 0.9641 0.9660 0.9693 0.9735 0.9741 0.9762

Mean of 𝑅val2 w.r.t. 100 replications

without refinement by rPCE 𝑘 = {3,5,10,20,𝑁}
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Truss deflection: total Sobol’ indices

𝐸ℎ 𝐸𝑜 𝐴ℎ 𝐴𝑜 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 σ
Ref. 0.367 0.010 0.388 0.014 0.004 0.031 0.075 0.079 0.035 0.005 1.008

rPCE 0.3713 0.0121 0.3695 0.0127 0.0046 0.0359 0.0750 0.0756 0.0355 0.0048 0.9969
LARS 0.3748 0.0135 0.3715 0.0135 0.0057 0.0365 0.0759 0.0751 0.0361 0.0061 1.0086
OMP 0.4295 0.2290 0.4037 0.2291 0.2105 0.2251 0.2808 0.2557 0.2271 0.1891 2.6795

Mean of total Sobol’ indices w.r.t. 100 replications

Δ𝑆𝑇 = 𝑆PCE𝑇 − 𝑆Ref𝑇



Estimation of specific absorption rate (SAR)

Whole-body SAR (mW/kg), the ratio of the total power absorbed in the body to the mass of the human 

model, is computed with an in-house FDTD code.(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) , (𝑥𝑝, 𝑦𝑝 , 0) and human orientation 𝜃𝑝 are inputs, which are independent and uniformly 

distributed in [𝟎. 𝟎𝟓, 3.95], [0.05,2.95], [𝟎. 𝟐𝟓, 2], [𝟎. 𝟑, 3.7], [0.3,2.7] in meters and [0,360) in degrees.   

Reflection by walls, ceiling and ground is not considered. Thus, four variables  including polar coordinates 𝑟𝑠𝑝, 𝜙𝑠𝑝 , 𝜃𝑠𝑝 w.r.t. local coordinate system of WLAN source and 𝑧𝑠 are considered finally. 

StarLab

23



24

SAR estimation: prediction

340 data for training and 10 data for validation, build PCE models based on LARS, OMP 

and rPCE. Repeating the above process 100 times, one has 103 prediction data.

rPCE (𝑅val2 = 0.9102) LARS (𝑅val2 = 0.8688) OMP (𝑅val2 = 0.7269)

90% data with values< 0.2
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SAR estimation: prediction

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10 𝑘 = 20 𝑘 = 𝑁 all 𝑘
LARS 0.8799 0.9085 0.9067 0.8995 0.9033 0.8995 0.9068
OMP 0.7500 0.8186 0.8771 0.8854 0.8628 0.8521 0.8794

LARS+OMP 0.9046 0.9182 0.9171 0.9157 0.8893 0.9178

Mean of 𝑅val2 w.r.t. 100 replications
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SAR estimation: global sensitivity analysis

𝑟𝑠𝑝 𝜙𝑠𝑝 𝑧𝑠 𝜃𝑠𝑝 σ
rPCE 0.9809 0.0128 0.2175 0.0098 1.2210
LARS 0.9714 0.0357 0.1954 0.0316 1.2341
OMP 0.9761 0.0984 0.2925 0.0743 1.4412

Mean of total Sobol’ indices w.r.t. 100 replications

Large value of 𝑟𝑠𝑝 and small value of 𝜙𝑠𝑝 maybe explained by observing following 

electric-field intensity map, where observation plane is 𝑧𝑠 = 0.



27

SAR estimation: global sensitivity analysis

𝑟𝑠𝑝 𝜙𝑠𝑝 𝑧𝑠 𝜃𝑠𝑝 σ
rPCE 0.9809 0.0128 0.2175 0.0098 1.2210
LARS 0.9714 0.0357 0.1954 0.0316 1.2341
OMP 0.9761 0.0984 0.2925 0.0743 1.4412

box plots of Sobol’ indices
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SAR estimation: global sensitivity analysis

𝑟𝑠𝑝 𝜙𝑠𝑝 𝑧𝑠 𝜃𝑠𝑝 σ
rPCE 0.9809 0.0128 0.2175 0.0098 1.2210
LARS 0.9714 0.0357 0.1954 0.0316 1.2341
OMP 0.9761 0.0984 0.2925 0.0743 1.4412

Setting 𝜙𝑠𝑝 = 0 and 𝜃𝑠𝑝 = 0, predict values of whole-body SAR:

height of human 

model 1.36 m



𝑦 = 3 + 𝑥1𝑥22 − 𝑥3𝑥5 + 𝑥2𝑥4 + 1𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘3 − 5𝑥𝑘) + ln 13𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘2 + 𝑥𝑘4) + 𝑥𝑀−4 + 𝑥𝑀−4𝑥𝑀2𝑋𝑖 are independent and uniform in 1,2 , 𝑖 = 1, … ,𝑀. Range of 𝑋20 (when 𝑀 ≥ 20) is changed as 1,3
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of 

PCE models 50 times. A lighter setting of 𝑘, 𝑘 = {3,5,10,20}, is applied.
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Example with varied input dimension: prediction



𝑦 = 3 + 𝑥1𝑥22 − 𝑥3𝑥5 + 𝑥2𝑥4 + 1𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘3 − 5𝑥𝑘) + ln 13𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘2 + 𝑥𝑘4) + 𝑥𝑀−4 + 𝑥𝑀−4𝑥𝑀2𝑋𝑖 are independent and uniform in 1,2 , 𝑖 = 1, … ,𝑀. Range of 𝑋20 (when 𝑀 ≥ 20) is changed as 1,3
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of 

PCE models 50 times. A lighter setting of 𝑘, all 𝑘 = {3,5,10,20}, is applied.
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Example with varied input dimension: prediction



𝑦 = 3 + 𝑥1𝑥22 − 𝑥3𝑥5 + 𝑥2𝑥4 + 1𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘3 − 5𝑥𝑘) + ln 13𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘2 + 𝑥𝑘4) + 𝑥𝑀−4 + 𝑥𝑀−4𝑥𝑀2𝑋𝑖 are independent and uniform in 1,2 , 𝑖 = 1, … ,𝑀. Range of 𝑋20 (when 𝑀 ≥ 20) is changed as 1,3
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of 

PCE models 50 times. A lighter setting of 𝑘, all 𝑘 = {3,5,10,20}, is applied.
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Example with varied input dimension: time cost

𝑘 = 10



𝑦 = 3 + 𝑥1𝑥22 − 𝑥3𝑥5 + 𝑥2𝑥4 + 1𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘3 − 5𝑥𝑘) + ln 13𝑀෍𝑘=1𝑀 𝑘(𝑥𝑘2 + 𝑥𝑘4) + 𝑥𝑀−4 + 𝑥𝑀−4𝑥𝑀2𝑋𝑖 are independent and uniform in 1,2 , 𝑖 = 1, … ,𝑀. Range of 𝑋20 (when 𝑀 ≥ 20) is changed as 1,3
to increase non-linearity. 200 data for training and 103 data for validation, repeat the construction of 

PCE models 50 times. A lighter setting of 𝑘, all 𝑘 = {3,5,10,20}, is applied.
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Example with varied input dimension: time cost

𝑀 = 31
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Conclusions

 Resampled PCE (rPCE) refines the ranking of importance of candidate polynomials 

in the context of sparse polynomial chaos expansions

 Resampling scheme (𝑘-fold division) and source of candidate polynomials 

(LARS, OMP or their combination) impact the performance of rPCE

 Analyse global sensitivity through the computation of Sobol’ indices

 Application examples include two analytical functions, one FEM model (truss 

deflection) and one FDTD model (SAR estimation)

 OMP-based PCE modelling seems the worst among three methods. LARS-based 

approach generally generates a better model and refinements by rPCE are 

obvious in terms of prediction variance and number of outliers. rPCE performs as 

least as well as LARS for global sensitivity analysis



 Modelling complicated physical scenarios require high-order PCE models, construction 

of which easily sink into overfitting problem. Complicated scenarios are divided into 

several simpler ones.
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Perspectives

PCE
PCE

PCE PCE
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Ranking polynomials in rPCE

Ranking polynomials by total score 𝑠 = 𝑠𝑓 + 𝑠𝑒𝑠𝑓 frequency score, 𝑠𝑒 error score.

Frequency score 𝑠𝑓 = ෍𝑘∈{3,5,10,20,𝑁} 𝑠𝑓𝑘 lcm(3,20, 𝑁)𝑘"lcm" short for least common multiple.

Error score

In PCE modeling based on OMP/LARS, each basis polynomial results increment of 𝜖LOOΔ𝜖LOO𝑗 = 𝜖LOO𝑗 − 𝜖LOO𝑗−1
and 𝑠𝑒 = 1𝑠𝑓Δ𝜖LOOmax෍𝑗 Δ𝜖LOO𝑗



Borehole function, which is nonlinear and non-additive, models water flow through a 

borehole. 8 input features are independent.

Borehole function
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Borehole function: prediction

40 data for training and 104 data for validation, build PCE models based on LARS, OMP 

and rPCE. Repeating the above process 100 times, one has 106 prediction data.

rPCE (𝑅val2 = 0.9723) LARS (𝑅val2 = 0.9517) OMP (𝑅val2 = 0.1472)
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Borehole function: prediction

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10 𝑘 = 20 𝑘 = 𝑁 all 𝑘
LARS 0.9517 0.9072 0.9451 0.9673 0.9736 0.9743 0.9719
OMP 0.1467 0.5852 0.6434 0.7293 0.7506 0.7633 0.8112

LARS+OMP 0.8859 0.9239 0.9587 0.9704 0.9697 0.9723

Mean of 𝑅val2 w.r.t. 100 replications
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Borehole function: total Sobol’ indices

𝑟𝑤 𝑟 𝑇𝑢 𝐻𝑢 𝑇𝑙 𝐻𝑙 𝐿 𝐾𝑤 σ
Reference 0.3127 0.0000 0.0000 0.0487 0.0000 0.0487 0.0472 0.6369 1.0942

rPCE 0.3072 0.0010 0.0010 0.0418 0.0011 0.0431 0.0423 0.6376 1.0751
LARS 0.2962 0.0023 0.0015 0.0420 0.0018 0.0427 0.0427 0.6322 1.0614
OMP 0.4127 0.1967 0.1635 0.1995 0.1802 0.1751 0.2026 0.6259 2.1562

Mean of total Sobol’ indices w.r.t. 100 replications


