Surrogate modeling based on resampled polynomial chaos expansions

Zicheng Liu¹

Dominique Lesselier², Joe Wiart¹

w. thanks to Bruno Sudret at ETH Zürich, Switzerland

¹Chaire C2M, LTCI, Télécom Paris, France

²Laboratoire des Signaux et Systèmes, UMR8506 (CNRS-CentraleSupélec-Université Paris-Sud), Université Paris-Saclay, France

Outline

- Polynomial chaos expansion (PCE)
- Sparse polynomial chaos expansion
- Resampled polynomial chaos expansion (rPCE)
- Global sensitivity analysis by Sobol' indices
- Application examples
- Conclusions and perspectives

Polynomial chaos expansion (PCE)

$$f(\mathbf{x}^{(n)}) = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^M} \beta_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\mathbf{x}^{(n)})$$
 , $\mathbf{x}^{(n)} \in \mathbb{R}^M$, $n = 1, ..., N$

- *f*: function which represents for the physical system and often computed by numerical methods (e.g., FDTD, FEM) with high computational costs.
- ψ_{α} : basis polynomial
- β_{α} : expansion coefficient
- α : vector of order for multivariate polynomial (e.g., $\alpha = (1,2)$ for $x_1 x_2^2$)
- $x^{(n)}$: sample of the input space. $(x^{(n)}, f(x^{(n)}))$ composes the experimental design (ED).
- *M*: number of input parameters
- *N*: number of samples in ED

Sampling method

$$f(\mathbf{x}^{(n)}) = \sum_{\alpha \in \mathbb{N}^M} \beta_{\alpha} \psi_{\alpha}(\mathbf{x}^{(n)}), \mathbf{x}^{(n)} \in \mathbb{R}^M, n = 1, \dots, N$$

random sampling

Expansion basis

$$f(\mathbf{x}^{(n)}) = \sum_{\alpha \in \mathbb{N}^M} \beta_{\alpha} \psi_{\alpha}(\mathbf{x}^{(n)}), \mathbf{x}^{(n)} \in \mathbb{R}^M, n = 1, \dots, N$$

Supporting basis ψ_{α} is decided by **<u>orthogonality</u>** and **order** α .

 ψ_{lpha} is a basis in a Hilbert space equipped with the inner product:

$$\langle f,g \rangle = E[f(\mathbf{X})g(\mathbf{X})] = \int_{\mathbb{X}} f(\mathbf{x})g(\mathbf{x})p_{\mathbf{X}}(\mathbf{x})d\mathbf{x}$$

 p_X joint probability density function (PDF) of random vector $X = [X_1, ..., X_M]$.

The orthogonality of basis polynomials defined by

$$<\psi_{\alpha},\psi_{\gamma}>=E[\psi_{\alpha}(X)\psi_{\gamma}(X)]=\delta_{\alpha,\gamma}$$

 $\delta_{\pmb{lpha},\pmb{\gamma}}=1$ if $\pmb{lpha}=\pmb{\gamma}$, =0 otherwise.

Expansion basis

Assuming X_m , m = 1, ..., M, are independent, i.e.,

$$p_{\boldsymbol{X}}(\boldsymbol{X}) = p_{X_1}(X_1) \times \cdots \times p_{X_M}(X_M)$$

 p_{X_m} marginal PDF, ψ_{α} tensor product of univariate polynomial $\pi_{\alpha_m}(X_m)$, i.e.,

$$\psi_{\alpha}(X) = \pi_{\alpha_1}(X_1) \times \cdots \times \pi_{\alpha_M}(X_M)$$

Not hard to conclude that if π_{α_m} satisfies

$$<\pi_{\alpha_{j}},\pi_{\alpha_{k}}>=\int_{\mathbb{X}_{m}}\pi_{\alpha_{j}}(x_{m})\pi_{\alpha_{k}}(x_{m})p_{X_{m}}(x_{m})dX_{m}=\delta_{j,k}$$

orthogonality of ψ_{α} is guaranteed.

nality of ψ_{α} is guaranteed.	$J^{n}\alpha_{k}(x_{m})P_{x_{m}}(x_{m})\alpha_{m}m = 0_{J,K}$	
PDF of X _m	polynomial family of π_{α_m}	
Uniform distribution	Legendre polynomial	
Gaussian distribution	Hermite polynomial	

Expansion basis

$$f(\mathbf{x}^{(n)}) = \sum_{\alpha \in \mathbb{N}^M} \beta_{\alpha} \psi_{\alpha}(\mathbf{x}^{(n)}), \mathbf{x}^{(n)} \in \mathbb{R}^M, n = 1, \dots, N$$

 ψ_{α} is decided by **orthogonality** and <u>**order**</u> α .

infinite series
$$\sum_{\alpha \in \mathbb{N}^M} \square$$
 truncated PCE $\sum_{\alpha \in \mathbb{A}}$

How to decide \mathbb{A} ? The commonly utilized full model follows

$$\mathbb{A}^{\text{full}} = \{ \boldsymbol{\alpha} : \sum_{m=1}^{M} \alpha_m \le p \}$$

However, the cardinality of \mathbb{A}^{full}

$$\operatorname{card}(\mathbb{A}^{\operatorname{full}}) = \binom{p+M}{p}$$

will polynomially increases with p and M.

As a result, surrogate modeling suffers from *curse of dimensionality*, i.e., large ED required w. large M and p to avoid the <u>overfitting phenomena</u>.

Expansion coefficients

$$\hat{f}(\mathbf{x}^{(n)}) = \sum_{\alpha \in \mathbb{A}} \beta_{\alpha} \psi_{\alpha}(\mathbf{x}^{(n)}), \mathbf{x}^{(n)} \in \mathbb{R}^{M}, n = 1, \dots, N$$

Projection method:

Due to orthogonality of basis polynomials,

$$\beta_{\alpha} = \int_{\mathbb{X}} f(\mathbf{x}) \, \psi_{\alpha}(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

Integral is numerically computed.

Regression approach:

 β_{α} solution of minimization problem

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} E[(f(\boldsymbol{X}) - \boldsymbol{\Psi}(\boldsymbol{X})\boldsymbol{\beta})^2]$$

matrix $\pmb{\Psi} = [\psi_{\pmb{\alpha}}]$ and column vector $\pmb{\beta} = [\beta_{\pmb{\alpha}}].$ Based on ED,

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{\Psi}^T \boldsymbol{\Psi})^{-1} \boldsymbol{\Psi}^T \boldsymbol{y}$$
 ordinary least square (OLS)

column vector $\mathbf{y} = [f(\mathbf{x}^{(n)})]$.

Estimation of prediction performance

Generalization error: $\operatorname{Err} = E\left|\left(f(X) - \hat{f}(X)\right)^2\right| \quad X \text{ random vector of inputs}$

If a large set of data is available for validation,

Err
$$\approx \epsilon_{\text{val}} = \frac{1}{N_{\text{val}}} \sum_{n=1}^{N_{\text{val}}} \left(f(\boldsymbol{x}^{(n)}) - \hat{f}(\boldsymbol{x}^{(n)}) \right)^2$$

Otherwise, cross-validation (CV) is recommended.

Leave-one-out (LOO) cross-validation: $\epsilon_{\text{LOO}} = \frac{1}{N} \sum_{n=1}^{N} \left(f(\mathbf{x}^{(n)}) - \hat{f}^{-(n)}(\mathbf{x}^{(n)}) \right)^2$ PCE model built by leaving *n*-th sample out for validation

 ϵ_{LOO} can be computed fast in single training process based on \hat{f} .

Assuming candidate models \hat{f}_i are available,

$$\hat{f}^* = \arg\min_{\hat{f}_i} \epsilon_{\text{LOO}}(f, \hat{f}_i)$$

Sparse polynomial chaos expansion

$$\hat{f}(\boldsymbol{x}^{(n)}) = \sum_{\alpha \in \mathbb{A}} \beta_{\alpha} \psi_{\alpha}(\boldsymbol{x}^{(n)}), \boldsymbol{x}^{(n)} \in \mathbb{R}^{M}, n = 1, \dots, N$$

Not all basis polynomials ψ_{α} , $\alpha \in \mathbb{A}^{\text{full}}$, are influential. Greedy algorithms LARS (least angle regression) and **OMP** (orthogonal matching pursuit) are popularly used to select the most relevant basis polynomials.

Sparse PCE model based on OMP

1. Initialization: residual $\mathbf{R}_0 = \mathbf{y}$, active set $\mathbb{A}_0^a = \emptyset$, candidate set $\mathbb{A}_0^c = \mathbb{A}^{\text{full}}$ 2. For $j = 1, ..., \min\{N - 1, \operatorname{card}(\mathbb{A}^{\text{full}})\}$ 1) Find $\boldsymbol{\psi}_{\alpha_j}$ most correlated with \mathbf{R}_{j-1} , $\boldsymbol{\psi}_{\alpha_j} = \arg \max_{\boldsymbol{\alpha} \in \mathbb{A}_{j-1}^c} |\mathbf{R}_{j-1}^T \boldsymbol{\psi}_{\boldsymbol{\alpha}}|$. 2) Update $\mathbb{A}_j^a = \mathbb{A}_{j-1}^a \cup \boldsymbol{\alpha}_j$ and $\mathbb{A}_j^c = \mathbb{A}_{j-1}^c \setminus \boldsymbol{\alpha}_j$. 3) With $\boldsymbol{\psi}_{\mathbb{A}_j^a}$, compute $\boldsymbol{\beta}_j$ as the ordinary least square solution. 4) Update residual $\mathbf{R}_j = \mathbf{y} - \boldsymbol{\psi}_{\mathbb{A}_j^a} \boldsymbol{\beta}_j$ and compute associated $\boldsymbol{\epsilon}_{LOO}^j$. End 3. $\boldsymbol{\psi}_{\mathbb{A}_j^a}$ with smallest $\boldsymbol{\epsilon}_{LOO}$ is selected as best sparse basis.

Sparse PCE model based on LARS runs similar procedure but less greedy than OMP.

Idea of resampled PCE (rPCE)

As a result, the basis polynomials of true model will be frequently selected during surrogate modeling with varied data, as shown by the following example.

 $f(\mathbf{X}) = 1 + X_1 + X_1 X_2 + X_1 X_2^2 + X_1 X_2^3$, $X_1 \sim N(0,1)$ and $X_2 \sim N(6,1)$

12 data for training and 10^4 data for validation, 100 trials are performed with OMPbased PCE modeling. At each trial, data are obtained through LHS method.

rPCE: procedure

rPCE: data variation

Data variation is simulated by applying resampling technique - k-fold division.

How to decide the value of k?

Small k (e.g. 2) \longrightarrow biased basis polynomials

Large k (e.g. N) \longrightarrow high correlation of training data sets

The **suggested** configuration, rather than a single value,

 $k = \{3, 5, 10, 20, N\}$

which is a set of recommended values in literature.

rPCE: generation of candidate polynomials

Three options are available: LARS, OMP, or their combination, and one needs to decide which is the optimal.

From the observation of simulations, one finds that

If LARS performs "**much better**" than OMP, one should choose LARS, and vice versa. Otherwise, the combination scheme is used.

How to properly define the criterion of "much better"?

Based on resamples, PCE models are constructed with LARS and OMP. Accordingly, one obtains corresponding values of R_{val}^2 .

Global sensitivity analysis by Sobol' indices

$$\hat{f}(\boldsymbol{x}) = \sum_{\alpha \in \mathbb{A}} \beta_{\alpha} \psi_{\alpha}(\boldsymbol{x}) \text{ is reformulated as}$$
$$\beta_{0} + \sum_{i=1}^{M} \sum_{\alpha \in \mathbb{A}_{\{i\}}} \beta_{\alpha} \psi_{\alpha}(x_{i}) + \sum_{1 \le i < j \le M} \sum_{\alpha \in \mathbb{A}_{\{i,j\}}} \beta_{\alpha} \psi_{\alpha}(x_{i}, x_{j}) + \dots + \sum_{\alpha \in \mathbb{A}_{\{1,\dots,M\}}} \beta_{\alpha} \psi_{\alpha}(x_{1}, \dots, x_{M})$$

where

$$\mathbb{A}_{\{i_1,\ldots,i_s\}} = \{ \boldsymbol{\alpha} \in \mathbb{A}, \alpha_k \neq 0 \text{ if } k \in \{i_1,\ldots,i_s\}; \alpha_k = 0 \text{ otherwise}\}, s \in \{1,\ldots,M\}$$

Orthogonality of basis polynomials gives the estimation of total and partial variances,

$$D = \sum_{\alpha \in \mathbb{A}} \beta_{\alpha}^2 - \beta_{\mathbf{0}}^2 , D_{i_1, \dots, i_s} = \sum_{\alpha \in \mathbb{A}_{\{i_1, \dots, i_s\}}} \beta_{\alpha}^2 - \beta_{\mathbf{0}}^2$$

and the ratio between them yields the Sobol' indices

$$S_{i_1,\dots,i_s} = D_{i_1,\dots,i_s}/D$$
 $\sum_{s=1}^M S_{i_1,\dots,i_s} = 1$

Total Sobol' indices are defined as

$$S_i^T = \sum_{\mathbb{I}_i} S_{i_1,\dots,i_s}, \mathbb{I}_i = \left\{ \{i_1,\dots,i_s\} \ni \{i\} \right\} \qquad \sum_{i=1}^M S_i^T \ge 1$$

Ishigami function: prediction

 $y(x) = \sin(x_1) + a\sin^2(x_2) + bx_3^4\sin(x_1)$

where $a = 7, b = 0.1, X_i$ are independent and uniform in $[-\pi, \pi], i = 1, 2, 3$.

50 data for training and 10^4 data for validation, build PCE models based on LARS, OMP and rPCE. Repeating the above process 100 times, one has 10^6 prediction data.

Ishigami function: prediction

Mean of R_{val}^2 w.r.t. 100 replications											
	<i>k</i> = 1	<i>k</i> = 3	<i>k</i> = 5	<i>k</i> = 10	<i>k</i> = 20	k = N	all k				
LARS	0.8723	0.7890	0.9281	0.9542	0.9630	0.9686	0.9619				
OMP	0.8788	0.7734	0.9566	0.9972	0.9919	0.9918	0.9947				
LARS+OMP		0.8935	0.9817	0.9974	0.9969	0.9978	0.9971				

Ishigami function: Sobol' indices

18

Maximum deflection of a truss structure

Six vertical loads denoted by $P_1 \sim P_6$ are put on a truss structure composed of 23 bars. The response quantity of interest, the mid-span deflection V, is computed with finite-element method (FEM).

Variable	Distribution	Mean	Std	Description
E_h, E_o (Pa) A_h (m ²) A_c (m ²)	Lognormal Lognormal Lognormal	2.1×10^{11} 2.0×10^{-3} 1.0×10^{-3}	2.1×10^{10} 2.0×10^{-4} 1.0×10^{-4}	Young's moduli cross-section area of horizontal bars cross-section area of oblique bars
$P_1 \sim P_6 (\mathrm{N})$	Gumbel	5.0×10^4	7.5×10^{3}	vertical loads

50 data for training and 10^4 data for validation, build PCE models based on LARS, OMP and rPCE. Repeating the above process 100 times, one has 10^6 prediction data.

0.78% data with V < -0.11

Truss deflection: prediction

Mean of R_{val}^2 w.r.t. 100 replications											
	<i>k</i> = 1	<i>k</i> = 3	<i>k</i> = 5	<i>k</i> = 10	<i>k</i> = 20	k = N	all k				
LARS	0.9631	0.9651	0.9658	0.9692	0.9726	0.9735	0.9744				
OMP	-6.2248	0.3873	0.7915	0.8273	0.8721	0.8974	0.9315				
LARS+OMP		0.9641	0.9660	0.9693	0.9735	0.9741	0.9762				

Truss deflection: total Sobol' indices

E_h E_o A_h A_o P_1 P_2 P_3 P_4 P_5 P_6 Ref.0.3670.0100.3880.0140.0040.0310.0750.0790.0350.005rPCE0.37130.01210.36950.01270.00460.03590.07500.07560.03550.0048LARS0.37480.01350.37150.01350.00570.03650.07590.07510.03610.0061	Σ 1.008 0.9969 1.0086 2.6795
Ref.0.3670.0100.3880.0140.0040.0310.0750.0790.0350.005rPCE0.37130.01210.36950.01270.00460.03590.07500.07560.03550.0048LARS0.37480.01350.37150.01350.00570.03650.07590.07510.03610.0061	1.008 0.9969 1.0086 2.6795
rPCE0.37130.01210.36950.01270.00460.03590.07500.07560.03550.0048LARS0.37480.01350.37150.01350.00570.03650.07590.07510.03610.0061	0.9969 1.0086 2.6795
LARS 0.3748 0.0135 0.3715 0.0135 0.0057 0.0365 0.0759 0.0751 0.0361 0.0061	1.0086 2.6795
	2.6795
OMP 0.4295 0.2290 0.4037 0.2291 0.2105 0.2251 0.2808 0.2557 0.2271 0.1891	
1.0 0.8 0.6 0.4 $S^{T} = S^{T}_{PCE} - S^{T}_{Ref}$ \downarrow	
-0.4 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	22

Estimation of specific absorption rate (SAR)

Whole-body SAR (mW/kg), the ratio of the total power absorbed in the body to the mass of the human model, is computed with an in-house **FDTD** code.

 (x^s, y^s, z^s) , $(x^p, y^p, 0)$ and human orientation θ^p are inputs, which are independent and uniformly distributed in [0.05, 3.95], [0.05, 2.95], [0.25, 2], [0.3, 3.7], [0.3, 2.7] in meters and [0,360) in degrees.

Reflection by walls, ceiling and ground is not considered. Thus, **four variables** including polar coordinates $(r_s^p, \phi_s^p), \theta_s^p$ w.r.t. local coordinate system of WLAN source and z^s are considered finally.

340 data for training and 10 data for validation, build PCE models based on LARS, OMP and rPCE. Repeating the above process 100 times, one has 10^3 prediction data.

^{90%} data with values < 0.2

SAR estimation: prediction

Mean of R_{yal}^2 w.r.t. 100 replications											
	<i>k</i> = 1	<i>k</i> = 3	<i>k</i> = 5	<i>k</i> = 10	<i>k</i> = 20	k = N	all k				
LARS	0.8799	0.9085	0.9067	0.8995	0.9033	0.8995	0.9068				
OMP	0.7500	0.8186	0.8771	0.8854	0.8628	0.8521	0.8794				
LARS+OMP		0.9046	0.9182	0.9171	0.9157	0.8893	0.9178				

SAR estimation: global sensitivity analysis

Mean of total Sobol' indices w.r.t. 100 replications

	r_s^p	ϕ_s^p	Z^{S}	θ_s^p	Σ
rPCE	0.9809	0.0128	0.2175	0.0098	1.2210
LARS	0.9714	0.0357	0.1954	0.0316	1.2341
OMP	0.9761	0.0984	0.2925	0.0743	1.4412

Large value of r_s^p **and small value of** ϕ_s^p maybe explained by observing following electric-field intensity map, where observation plane is $z_s = 0$.

SAR estimation: global sensitivity analysis

	r_s^p	ϕ_s^p	Z^{S}	θ_s^p	Σ
rPCE	0.9809	0.0128	0.2175	0.0098	1.2210
LARS	0.9714	0.0357	0.1954	0.0316	1.2341
OMP	0.9761	0.0984	0.2925	0.0743	1.4412

27

SAR estimation: global sensitivity analysis

	r_s^p	ϕ^p_s	Z^{S}	$ heta_s^p$	Σ
rPCE	0.9809	0.0128	0.2175	0.0098	1.2210
LARS	0.9714	0.0357	0.1954	0.0316	1.2341
OMP	0.9761	0.0984	0.2925	0.0743	1.4412

Setting $\phi_s^p = 0$ and $\theta_s^p = 0$, predict values of whole-body SAR:

Example with varied input dimension: prediction

$$y = 3 + x_1 x_2^2 - x_3 x_5 + x_2 x_4 + \frac{1}{M} \sum_{k=1}^{M} k(x_k^3 - 5x_k) + \ln\left(\frac{1}{3M} \sum_{k=1}^{M} k(x_k^2 + x_k^4)\right) + x_{M-4} + x_{M-4} x_M^2$$

 X_i are independent and uniform in [1,2], i = 1, ..., M. Range of X_{20} (when $M \ge 20$) is changed as [1,3] to increase non-linearity. **200** data for training and 10^3 data for validation, repeat the construction of PCE models 50 times. A lighter setting of $k, k = \{3,5,10,20\}$, is applied.

Example with varied input dimension: prediction

$$y = 3 + x_1 x_2^2 - x_3 x_5 + x_2 x_4 + \frac{1}{M} \sum_{k=1}^{M} k(x_k^3 - 5x_k) + \ln\left(\frac{1}{3M} \sum_{k=1}^{M} k(x_k^2 + x_k^4)\right) + x_{M-4} + x_{M-4} x_M^2$$

 X_i are independent and uniform in [1,2], i = 1, ..., M. Range of X_{20} (when $M \ge 20$) is changed as [1,3] to increase non-linearity. **200** data for training and 10^3 data for validation, repeat the construction of PCE models 50 times. A lighter setting of k, all $k = \{3,5,10,20\}$, is applied.

		M=11	M=16	M=21	M=26	M=31	M=36	M=41
k = 1	LARS	0.9998	0.9995	0.9573	0.9679	0.8985	0.8260	0.7761
$\kappa = 1$	OMP	0.9998	0.9634	0.6940	0.6679	0.4832	0.3308	0.1536
	LARS	0.9997	0.9996	0.9422	0.9249	0.8646	0.8322	0.8125
k = 3	OMP	0.9998	0.8072	0.7810	0.7737	0.6514	0.5358	0.3870
	L+O	0.9998	0.9996	0.8929	0.8771	0.7810	0.7262	0.6805
	LARS	0.9998	0.9995	0.9600	0.9726	0.8899	0.8574	0.8351
k = 5	OMP	0.9999	0.9552	0.8171	0.7915	0.6935	0.5894	0.4826
8	L+O	0.9999	0.9996	0.9511	0.9651	0.8630	0.8110	0.7681
	LARS	0.9999	0.9995	0.9714	0.9945	0.9316	0.8724	0.8445
k = 10	OMP	0.9999	0.9963	0.8395	0.8194	0.7252	0.6239	0.5340
	L+O	0.9999	0.9998	0.9668	0.9937	0.9210	0.8557	0.8193
	LARS	0.9999	0.9995	0.9824	0.9971	0.9523	0.8947	0.8714
k = 20	OMP	0.9999	0.9999	0.8392	0.8195	0.7197	0.6149	0.5165
	L+O	0.9999	0.9999	0.9784	0.9971	0.9404	0.8692	0.8391
	LARS	0.9999	0.9996	0.9765	0.9965	0.9437	0.8904	0.8725
all k	OMP	0.9999	0.9987	0.8423	0.8248	0.7316	0.6191	0.5011
	L+O	0.9999	0.9998	0.9738	0.9961	0.9371	0.8790	0.8604

Example with varied input dimension: time cost

$$y = 3 + x_1 x_2^2 - x_3 x_5 + x_2 x_4 + \frac{1}{M} \sum_{k=1}^{M} k(x_k^3 - 5x_k) + \ln\left(\frac{1}{3M} \sum_{k=1}^{M} k(x_k^2 + x_k^4)\right) + x_{M-4} + x_{M-4} x_M^2$$

 X_i are independent and uniform in [1,2], i = 1, ..., M. Range of X_{20} (when $M \ge 20$) is changed as [1,3] to increase non-linearity. **200** data for training and 10^3 data for validation, repeat the construction of PCE models 50 times. A lighter setting of k, all $k = \{3,5,10,20\}$, is applied.

Example with varied input dimension: time cost

$$y = 3 + x_1 x_2^2 - x_3 x_5 + x_2 x_4 + \frac{1}{M} \sum_{k=1}^{M} k(x_k^3 - 5x_k) + \ln\left(\frac{1}{3M} \sum_{k=1}^{M} k(x_k^2 + x_k^4)\right) + x_{M-4} + x_{M-4} x_M^2$$

 X_i are independent and uniform in [1,2], i = 1, ..., M. Range of X_{20} (when $M \ge 20$) is changed as [1,3] to increase non-linearity. **200** data for training and 10^3 data for validation, repeat the construction of PCE models 50 times. A lighter setting of k, all $k = \{3,5,10,20\}$, is applied.

Conclusions

- Resampled PCE (rPCE) refines the ranking of importance of candidate polynomials in the context of sparse polynomial chaos expansions
- Resampling scheme (k-fold division) and source of candidate polynomials (LARS, OMP or their combination) impact the performance of rPCE
- Analyse global sensitivity through the computation of Sobol' indices
- Application examples include two analytical functions, one FEM model (truss deflection) and one FDTD model (SAR estimation)
- OMP-based PCE modelling seems the worst among three methods. LARS-based approach generally generates a better model and refinements by rPCE are obvious in terms of prediction variance and number of outliers. rPCE performs as least as well as LARS for global sensitivity analysis

Perspectives

 Modelling complicated physical scenarios require high-order PCE models, construction of which easily sink into overfitting problem. Complicated scenarios are divided into several simpler ones.

Ranking polynomials in rPCE

Ranking polynomials by total score

$$s = s_f + s_e$$

 s_f frequency score, s_e error score.

Frequency score

$$s_f = \sum_{k \in \{3,5,10,20,N\}} s_f^k \frac{\operatorname{lcm}(3,20,N)}{k}$$

"lcm" short for least common multiple.

Error score

In PCE modeling based on OMP/LARS, each basis polynomial results increment of $\epsilon_{
m LOO}$

$$\Delta \epsilon_{\rm LOO}^{\,j} = \epsilon_{\rm LOO}^{\,j} - \epsilon_{\rm LOO}^{\,j-1}$$

and

$$s_e = \frac{1}{s_f \Delta \epsilon_{\text{LOO}}^{\text{max}}} \sum_j \Delta \epsilon_{\text{LOO}}^j$$

Borehole function

$$Y = \frac{2\pi T_u (H_u - H_l)}{\ln(r/r_w) (1 + T_u/T_l) + 2LT_u/r_w^2 K_w}$$

Borehole function, which is nonlinear and non-additive, models water flow through a borehole. 8 input features are independent.

Name	Distribution	Bounds	Description
r_w (m)	N(0.10, 0.0161812)	[0.05, 0.15]	radius of borehole
<i>r</i> (m)	Lognormal(7.71, 1.0056)	[100, 50000]	radius of influence
T_u (m ² /yr)	Uniform	[63070, 115600]	transmissivity of upper aquifer
H_u (m)	Uniform	[990, 1110]	potentiometric head of upper aquifer
$T_l (\mathrm{m}^2/\mathrm{yr})$	Uniform	[63.1, 116]	transmissivity of lower aquifer
$H_l(\mathbf{m})$	Uniform	[700, 820]	potentiometric head of lower aquifer
L(m)	Uniform	[1120, 1680]	length of borehole
K_w (m/yr)	Uniform	[1500, 15000]	hydraulic conductivity of borehole

Borehole function: prediction

40 data for training and 10^4 data for validation, build PCE models based on LARS, OMP and rPCE. Repeating the above process 100 times, one has 10^6 prediction data.

Borehole function: prediction

Mean of R_{val}^2 w.r.t. 100 replications											
	<i>k</i> = 1	<i>k</i> = 3	<i>k</i> = 5	k = 10	<i>k</i> = 20	k = N	all k				
LARS	0.9517	0.9072	0.9451	0.9673	0.9736	0.9743	0.9719				
OMP	0.1467	0.5852	0.6434	0.7293	0.7506	0.7633	0.8112				
LARS+OMP		0.8859	0.9239	0.9587	0.9704	0.9697	0.9723				

Borehole function: total Sobol' indices

Mean of total Sobol' indices w.r.t. 100 replications									
	r _w	r	T _u	H _u	T_l	H_l	L	K _w	Σ
Reference	0.3127	0.0000	0.0000	0.0487	0.0000	0.0487	0.0472	0.6369	1.0942
rPCE	0.3072	0.0010	0.0010	0.0418	0.0011	0.0431	0.0423	0.6376	1.0751
LARS	0.2962	0.0023	0.0015	0.0420	0.0018	0.0427	0.0427	0.6322	1.0614
OMP	0.4127	0.1967	0.1635	0.1995	0.1802	0.1751	0.2026	0.6259	2.1562

39