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Uncertainty Quantification (UQ) in simulation-based studies

Exploratory study : understand a phenomena, 
an experimental or industrial process

Safety study : evaluate a 
safety margin                                             
(failure probability, rare events)

Design study : optimizing
and control the performances

• Environmental variables
• Physical parameters
• Process parameters

• Output distributions
• Probability of failure
• « Main » influential input 

parameters

Process: simulation 
code or experiments

Uncertainties

Design of 
experiments

Metamodel



CFD computer code: 

Code_Saturne (EDF)

Simulation of the purge of hot water by 

introducing cold water 

Example with the following meshing:  

10 billion cells, 10x3 vectors per cell, 200 time steps => 12 TB / run

One parametric study would require hundreds of runs with:

- hot water varying from 300°C to 350°C

- cold water varying from 20°C to 30°C 

If a probabilistic model is associated to the inputs, uncertainty propagation 
aims to provide the mean, variance, min, max or full pdf for temperature and 
pressure at each mesh element

Storage used for N = 100 simulations: 1200 TB !

An example of a numerical experiment
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Iterative uncertainty quantification

Objective: in-situ treatment of large volume of data (outputs of 
computer codes), due to file transfer/access and storage issues

In-situ vs a posteriori: performing the data analysis at the same
time as the calculation

Treatment: visualisation, compression and statistical analysis



Iterative (in transit) statistics
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No intermediate files:

– Storage saving

– Time saving

Ubiquitous spatio-temporal 
statistics, i.e. everywhere in 
space and time

c2 (x,y,z,t)Output: one 

concentration

c1(x,y,z,t) per 

mesh cell and 

timestep

N simulations with different parameter values
(injection width, duration, dye concentration)

cN (x,y,z,t)

Example on the mean estimation 

Replace the empirical mean

by the one-pass average

with n = 1, …, N and  �� �, �, �, � = 0
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Global sensitivity analysis
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UQ methods considered in this talk
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Quantity of interest: Sobol’ indices
(i = 1, …, p)

X = (X1, …, Xp)Quantities of interest:

- Quantile of order α of Y

- Quantile function Q(α), α∈]0,1[

Uncertainty propagation

Inputs: X

Model(s)

Output: Y

Y qα
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Global sensitivity analysis
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Part 1: Global sensitivity analysis
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Quantity of interest: Sobol’ indices
(i = 1, …, p)

X = (X1, …, Xp)



Sobol’ Index Estimation: pick-freeze method

A and B are independent 
random matrices 

Ck built from A and B 

Estimators of first order and 
total Sobol’ Indices:

It requires running  n (p + 2)  simulations, with values given by each 
raw of  A, B, Ck (k = 1,...,p) 
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Melissa server:
• Receive data (any order)

• Update Sobol’ indices using variance & 
covariance update formula [Pébay 2008] 

General formula for Cov(A,B):

• Use of asymptotic confidence intervals to 
control their precision

• Discard data

Implementing the iterative estimation of Sobol’ 
Indices

Groups of p+2 simulations MPI_gather

Dynamics parallel connection
Data redistribution at each timestep
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Uncertainty analysis results: Mean and variance of the 
temperature field



Sensitivity analysis results: First-order Sobol’ indices

Injection width

Injection duration



Dye

concentration

Width

Duration

Top injector Bottom  injector

First-order Sobol’ indices at timestep 80



Quantities of interest:

- Quantile of order α of Y

- Quantile function Q(α), α∈]0,1[

Uncertainty propagation

Inputs: X

Model(s)

Output: Y

Y qα

Part 2: Uncertainty propagation

{ }αα ≥≤Ρ= )(:inf yYyq
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 In the applications under study (quantile estimation of outputs of expensive

numerical simulation code), we consider not so extreme α values: 

 α Є [0.01 , 0.99]

 N (total number of simulations) Є [100 , 1000] 

 The sample is denoted (� � , … , � � )

 Empirical (Monte-Carlo) estimator (with an i.i.d. sample):

with 1A the indicator function of the set A

Quantile estimation

���� = inf{� ∈ ℝ, $%&� � ≥ (} where $%&� � = 1/
 � 1 + , -.
�

���

For ��]0,1[, �� = inf{� ∈ ℝ, $0 � ≥ (} 
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 Important hypotheses for the asymptotic convergence of the RM estimator:

=> OK for C > 0 and  γγγγ Є ]0.5;1]

 RM averaging version is known to be more efficient then basic RM (it minimizes
its asymptotic variance)

 However, when N is not large (our case): 

 averaging version does not work well,

 there are important tuning issues for the constants C and γ

Following numerical tests: C = 1, N = 1000 and αααα = 0.95
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Iterative αααα-quantile estimation: Robbins-Monro 
algorithm (RM)
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γγγγ = 0.6 (best result) 

γγγγ = 0.4 γγγγ = 0.8 
γγγγ = 1 

αααα = 0.95
Gaussian pdf: Y ~ NNNN(0,1)

C = 1

R = 1000
(repetitions of the 

RM algo)

For other distributions of Y, best results are obtained with different γ values:
γ ~ 1 for uniform pdf; γ ~ 0.6 for exponential pdf; etc.

Mixing issues due to γγγγ
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N = 1000
γγγγ = 1 and C = 1

Convergence difficulties
appear at quantile levels
corresponding to slow 
variations zone of the 
underlying distribution fct

Not shown:

optimal γ values differ for
different α values

Issues due to the distrib. fct behaviour at αααα

Exponential Gaussian

Uniform Lognormal
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 A simple first idea:

Linear evolution of γ γ γ γ (n) between 0.1 and 1 along the iterations of RM

 Algorithm that we call « Sequential RM »

Asymptotical convergence is guaranteed if  γ (n) ≤ 0.5 for a finite number of iterations
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C = 1, N = 1000 and αααα = 0.95

R = 1000 (repetitions of the RM algo)

1.4 1.5 1.6 1.7 1.8 1.9

0
1

2
3

4
5

6

Density norm, alpha=0.95

quantile

D
e
n
s
it
y

Empirical

Sequential

gam= 0.3
gam= 0.4
gam= 0.5

gam= 0.6
gam= 0.7

gam= 0.8
gam= 0.9
gam= 1

0 200 400 600 800 1000

1
.0

1
.5

2
.0

2
.5

Index

s
q

R
M

c
v

Example on the Gaussian distribution N(0,1)
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Numerical tests with other distributions for Y

C = 1

N = 1000

α = 0.95

R = 1000
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5%-quantile 25%-quantile

75%-quantile 95%-quantile

Results on the CFD application (1/2)
80th time-step over 100
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Results on the CFD application (2/2)
Temporal evolution of the quantile at one spatial location

Quantiles of order α = 0.05, 0.25, 0.75 and 0.95
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PWR scenario:

Loss of primary coolant accident 

due to a break in cold leg

Variable of Interest :

Second peak of cladding temperature

(PCT) = scalar output

p (~ 100) input random variables :

Critical flowrates, initial/boundary

conditions, phys. eq. coef., …

Another thermal-hydraulic test case

Quantity of Interest (QoI) :

High-order quantile (e.g. 90%, 95%...)

Modelled using CATHARE code:

- Models complex thermal-hydraulic phenomena

- Uncertain inputs 

 Exploration with Monte Carlo methods

- Large CPU cost for one code run ( > 1 hour )
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N = 889 (Monte-Carlo sample, applying the pdf of the inputs) – p = 96 variables

Empirical quantile 90%: q0.9 ~ 673

Empirical quantile 95%: q0.95 ~  703

300 350 400 450 500 550 600 650 700 750 800
0

10

20

30

40

50

60

Analysis of the 889 PCT outputs (in oC)

Scatter plots with 1-D local polynomials for trends

[ Marrel et al., 2020 ]

Classical uncertainty propagation results
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Thermalhydraulic application - Sequential RM algo
N = 889 - α = 0.95 - γ  = linear profile - R = 100

We imagine that we receive the output Y values 
sequentially (on-the-fly)
(as we have access to the full sample, we can
repeat the RM algo bu using R bootstrap samples)

C = 1

Indeed, at the beginning of the RM algo, 
perturbations for quantile updating have to be of 
the order of the Y dispersion 

C = 2 x σY





However, this dispersion is unkown in practice
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Goal: approximation of the quantile function of Y by estimating, at each iteration, 

all the α –quantiles (α being finely discretized between 0.05 and 0.95)

Work (under progress): adaptive tuning of C
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 N = 1000 ; α = {0.05,0.06, …,0.94,0.95} ; R = 1000 repetitions of the 
estimation process

 We give the distribution of an error metric (L2-distance between the exact 
quantile function and the estimated one)

Numerical tests (1/3) – Gaussian distribution N(0,1)

L
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0 = sin 2� + 7 sin 24 4 + 0,1256 sin 2� with 27~9 −:, :  �; = 1,2,3
Numerical tests (2/3) – Ishigami function

pdf

quantile fct
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Numerical tests (3/3) – Thermalhydraulic application
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Conclusion

In transit quantile estimation and sensitivity analysis with one-pass statistics

– No intermediate files – software properties: elastic, fault tolerant, adaptive

– Ubiquitous spatio-temporal statistics (Sobol’ indices and quantile function)

Software: https://melissa-sa.github.io/ - OpenTURNS module under development

Current works and perspectives: 

• Improving the robustness of the RM algo and tests on real applications

• Giving access to confidence intervals on estimates (no needs to specify N)

• Iterative dimension reduction and metamodeling
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