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» This talk is loosely based on the paper Bayesian Image
Classification with Deep Convolutional Gaussian Processes,
Vincent Dutordoir, Mark van der Wilk, Artem Artemev, James
Hensman; AISTATS 2020.
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Uncertainty: a matter of life or death
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Deep learning applied in the wild, but what would you do
» in a previously unscen situation, or ambiguous stimulus?
» if you were 10% sure there was an obstruction?
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Automatic machine learning

Current learning procedure:
1. Obtain a large dataset
2. Design data augmentations

3. Train multiple models with different hyperparameters (layers,
topology, ...)
4. Cross-validate and deploy model with best performance
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Automatic machine learning

Current learning procedure:
1. Obtain a large dataset
2. Design data augmentations

3. Train multiple models with different hyperparameters (layers,
topology, ...)
4. Cross-validate and deploy model with best performance

Can we
» automatically pick hyperparameters and data augmentation?

» update model based on new observations?
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Goals:
1. Good uncertainty

2. Automatic model selection

Related problems

in the Bayesian framework
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Overview

Bayesian Deep Learning
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Neural networks are basis function models

.—> Output

B
fix) = Z wydp(x) = W' P(x)

fi=1

D
dy(x)=c (Z f”dxd) = {W'x)

d=1

Uneerteinty in Deep Models asing Gamssian Processes Telark v am duer Wilk Impuriol Cullege London, March 10, 2020



Bayesian Neural Networks are a prior over functions

Placing priors on w gives us a distribution over functions:

flx) = 3 () = wTp(x), w~ N (w;0,051).
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Bayesian advantages

Prior draws Posterior draws

1y g s

0 5 10 0 5 10

Using the prior, we can obtain the posterior to quantify uncertainty:

l lrx P (y”_|W, 9);’)‘(“’ HJ
p(ylf)

p(wly,8) =
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Bayesian advantages

Prior draws Posterior draws

1y g s

0 5 10 0 5 10

Using the prior, we can obtain the posterior to quantify uncertainty:

l lrx P (y”_|W, 9);’)‘(“’ HJ
p(ylf)

Using the marginal likelihood we can find hyperparameters
(properties of the prior):

p(@]y)

p(wly,8) =

_ 1L py[6)p(6)
p(y)
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Variational Inference

p(wly)

Figore adopied foes Bla et ol s WP 2000 cateenad

» Find approximation of a probability distribution (e.g., posterior)
by optimization:
1. Define a (parametrized) family of approximating distributions g,
2. Detine KL[approx||posterior] to be measure of similarity
3. Optimise measure w.r.t. variational parameters v

» Inference M Optimization
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Variational Inference in Bayesian Neural Networks

Variational inference is most commonly used for approximate
inference in BNNs:
q(w) = argmin KL|g(w)||p(w |y, 8)]
g{w)isQ
logp(y #) — KL[g{w)||p(w y,8)] = ELBO = L

ELBO becomes:

L = Eyoyllog ply W, 0)] = KLg(w)][p(w)]
P

with e.g. g(w) = }i[ N (’Ebf,y“ ; )

E.g. Blundell et al. Weight Uncertainty in Neural Networks [2015]
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Is variational inference working?

From Blundell et al. Weight Uncertainty in Neural Networks [2015]:

cross-validation where possible. Empirically we found op-
timising the parameters of a prior P(w) (by taking deriva-
tives of (1)) to not be useful, and yield worse results.
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» ELBOs not tight encugh for model comparison
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Is variational inference working?

From Blundell et al. Weight Uncertainty in Neural Networks [2015]:

cross-validation where possible. Empirically we found op-
timising the parameters of a prior P(w) (by taking deriva-
tives of (1)) to not be useful, and yield worse results.

» ELBOs not tight encugh for model comparison

» Observation: Bounds are so loose that they prefer a noise model
over fitting the data (i.e. variance of ¥y g, ,) — 0)

L+ KL[g{w)||lp(w|y)] =log p(y|8)
J'-‘:(Vopt: 9()pfr) 2 ﬁ(vgoodz Hgood)

— KL[g(w)[[p(w]y,8)] - large!
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Problems

Bayesian deep learning using Variational Inference
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Problems

Bayesian deep learning using Variational Inference

1. does not give good estimates of the marginal likelihood (so no
model selection!)
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1. does not give good estimates of the marginal likelihood (so no
model selection!)

2. has an inaccurate approximation to the true posterior
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Problems

Bayesian deep learning using Variational Inference

1. does not give good estimates of the marginal likelihood (so no
model selection!)

2. has an inaccurate approximation to the true posterior

We could be doing a lot better!
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Overview

Gaussian Processes

Sinmsian Processes
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Gaussian Processes

A Gaussian process is a distribution over functions with Gaussian
marginals. Its properties are defined by the kernel function k(x, x'):

p(f(xa), f(x2), f(x3),...) = p(f(X)) = N(f(X);0,K)
[K]:’j = fc(x.,;,x}-)
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Gaussian Processes

A Gaussian process is a distribution over functions with Gaussian
marginals. Its properties are defined by the kernel function k(x, x'):

p(f(xa), f(x2), f(x3),...) = p(f(X)) = N(f(X);0,K)
[K]:’j = fc(x.,;,x}-)

» Behaves as a basis function model
v Can have infinite basis functions
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Gaussian Processes

A Gaussian process is a distribution over functions with Gaussian
marginals. Its properties are defined by the kernel function k(x, x'):

p(f(xa), f(x2), f(x3),...) = p(f(X)) = N(f(X);0,K)
[K]:’j = fc(x.,;,x}-)

» Behaves as a basis function model
v Can have infinite basis functions

» Posteriors can be represented accurately
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Finite basis functions

Prior draws Posterior draws
2 2 _
i e
0 5 10 0 5 10

» Should we be so certain far from the data?

» How many basis functions?
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Finite basis functions

Prior draws Posterior draws

27 247 N
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» Should we be so certain far from the data?

» How many basis functions?
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Finite basis functions

Prior draws Posterior draws
™ @%’%l‘
0 5 10 0 5 10

» Should we be so certain far from the data?

» How many basis functions?
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Finite basis functions

Prior draws Posterior draws
-2 -2
0 5 10 0 5 10

» Should we be so certain far from the data?

» How many basis functions?
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Finite basis functions

Prior draws Posterior draws
é | é | /\J’ﬁ'\»@_¢’—?-
9 9]
0 5 10 0 5 10

» Should we be s0 certain far from the data?

» How many basis functions?

Solution: Use large number of basis functions
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Finite basis functions

Prior draws Posterior draws

/\Jﬁ \%,y—?\‘

0 5 10 0 5 10

» Should we be so certain far from the data?

» How many basis functions?

Solution: Use an infinite number of basis functions?
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Infinite basis functions

output Y
=

|
—

r Should we be so certain far from the data? — No, and we don't
have to be!

» How may basis functions? — infinite!
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Inference in Gaussian Processes

Predictions are made using the posterior:

P 1y,0) = [plrcxe) |0, e ettt
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Inference in Gaussian Processes

Predictions are made using the posterior:

(x))p(f(X)]6)
(v )

PUX) y,0) = [P | £(x), 6L Ln P '--; dF(x)

» Prior is computationally costly. Covariance matrix inverse and
determinant scale as O(N?).

» Need approximate inference for non-Gaussian likelihoods.
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Variational Inference for Gaussian Processes

In VI for GPs, we minimise the KL divergence between the
approximate posterior over functions 4(f(-)) and the true posterior
over functions p(f{(-) |y, 0):

KL[g{(f(:Dllp(f() 1y, 0)]
This is well-defined, [Matthews et al. 2016], and leads to a tractable
ELBO [Hensman et al. 2013]:

J'\IT

L= Eyrponlog plyn | £(xi)] = KLIG(F)Ip(F()))

n=1

(Weabuse nolation of densilies over Tunclions o mean the appropriale Gaussian process measiires, ora diskribulion enerean

arbitrary set of function values,)
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Set of approximate posteriors

Gaussian process prior, but with constrained behaviour at M points

1k .
B A\ g
O
‘ _2 | | \f |
0 5 0 5
1)) = [ P | 22N (2)
N
L~ > Eyrinlog pyn | £(xa)] = KL[G(F(Z)lp(F(Z))]
n=1
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Set of approximate posteriors

Gaussian process prior, but with constrained behaviour at M points

1F )
FET ’\v/ fo—
B VAL
\J
.. 2L ! !
0 5 0 5
1)) = [ P | 22N (2)
N
L= > Eypox10g pyn | f(xa)] = KLIG(F(Z)p(F(Z))]
n=1

» Computationally efficient [Titsias 2009]

» Can be minibatched [Hensman et al. 2013]

» Works with arbitrary likelihoods [Hensman et al. 2016]
» Can be arbitrarily accurate [Burt ct al. 2019]
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Overview

Deep Gaussian Processes
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Gaussian Processes as a Layer

A Gaussian process has nicer properties than a single layer neural
network, but has limited performance in high-dimensional tasks.
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Gaussian Processes as a Layer

A Gaussian process has nicer properties than a single layer neural
network, but has limited performance in high-dimensional tasks.

Can we use a GP as a layer in a deep model?
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Gaussian Processes as a Layer

A Gaussian process has nicer properties than a single layer neural
network, but has limited performance in high-dimensional tasks.

Can we use a GP as a layer in a deep model?

Possible advantages:
» Better uncertainty per layer (infinite basis functions)?

» More accurate inference?
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Gaussian Processes as a Layer

A Gaussian process has nicer properties than a single layer neural
network, but has limited performance in high-dimensional tasks.

Can we use a GP as a layer in a deep model?

Possible advantages:
» Better uncertainty per layer (infinite basis functions)?
» More accurate inference?

[Damianou & Lawrence 2013]
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Deep Gaussian Processes

Define model through
» function composition (like deep NNs),

» (Gaussian process priors on each layer.

F0) = filfirr(fimalo i) ) = (froo fior o )
fe() ~ GP(0, ke(,-))

Uneerteinty in Deep Models using Gavssian Proccsses Telark v am duer Wilk Impurial Collewe London, March 10, 205

!



Deep Gaussian Processes

Define model through
» function composition (like deep NNs),

» (Gaussian process priors on each layer.

F0) = filfirr(fimalo i) ) = (froo fior o )
fe() ~ GP(0, ke(,-))

How do we find the posterior?

T P | FO6), X0) Tl () 6)

PUAC) ol ) 9) 0
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Variational Inference for Gaussian Processes

We again minimise the KL divergence between the distributions over
functions, only we have more now.

KL[Q(flfrf) fll . ff |Y]
Wi o) = H 0)
=1
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Variational Inference for Gaussian Processes

We again minimise the KL divergence between the distributions over
functions, only we have more now.

KL[Q(flfrf) fll . ff |Y]
Wi o) = H 0)
=1

The ELBO has a similar structure, and can be optimised using Monte
Carlo estimates of the expectations:

N

L£- Z]Eq(h DHog plyu [(fLe-- - f1)(xe)] Z Lig(fe(2p(felZ))]

-

Monte Carlo estimate only needs to evaluate f;(-) at the output of
fe—1(-), starting with f;(x) [Salimbeni & Deisenroth 2017].
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Deep Convolutional Gaussian Process

In Dutordoir, v.d. Wilk, Artemev & Hensman [2020], we

» stack Gaussian process layers with convolutional structure
[v.d. Wilk 2017],
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Deep Convolutional Gaussian Process

In Dutordoir, v.d. Wilk, Artemev & Hensman [2020], we

» stack Gaussian process layers with convolutional structure
[v.d. Wilk 2017],

» introduce modelling capacity compared to Blomqvist et al. [2018],

» apply the straightforward variational inference procedure from
Salimbeni & Deisenroth [2017].

Uneerteinty in Deep Models using Gavssian Proccsses Telark v am duer Wilk Impurial Collewe London, March 10, 205



Deep Convolutional Gaussian Process

In Dutordoir, v.d. Wilk, Artemev & Hensman [2020], we

» stack Gaussian process layers with convolutional structure
[v.d. Wilk 2017],

» introduce modelling capacity compared to Blomqvist et al. [2018],

» apply the straightforward variational inference procedure from
Salimbeni & Deisenroth [2017].

We obtain
» an ELBO that we maximise for selecting hyperparameters,
» competitive performance on MNIST,

» better uncertainty estimates compared to NNs.
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Deep Convolutional Gaussian Processes: Uncertainty
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Applying theory simply works!
1. ELBO tight enough for hyperparameter optimisation
2. Evidence supporting KL[approx||posterior| is small
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Deep Convolutional Gaussian Processes: Results

Table 2: DCGP [Blomqvist. et al., 2019] (reproduced
with our code) and Deep TICK-GP (our method) on
MNIST and CIFAR-10.

MNIST CIFAR-10
depth  metric Couv TICK Conv  TICK
1 top-1 error (%) .87 1.19 41.06  37.10

NLL [ull 0.06 0.04 1.17 1.08
neg. BLBO (x10%) 820 5.83 6572 G3.51
2 top-1 error (%) 0.96 0.87 28.60 25.59
NLL full 0.04  0.02 084  0.75
neg. ELBO (x10%) 537  4.25 52.81  48.31
3 top-1 error (%) 0.93  0.64 25.33 23.83
NI, full 0.03  0.02 0.7 0.69
neg. ELBO (x10%) 5.045 4.19 490.38 47.53
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Conclusion

How does our approach compare to commeon Bayesian Deep
Learning practice?
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» BDL starts from current methods that perform well, and try to
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Conclusion

How does our approach compare to commeon Bayesian Deep
Learning practice?

» DGPs are behind in performance, but steadily improving.
» DGPs are slow, but getting faster.

» BDL starts from current methods that perform well, and try to
make inference work.

» DGPs start from inference that works, and try to make it perform
well.
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Future work

» Faster models, so we can train bigger models.
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Future work

» Faster models, so we can train bigger models.

» Bigger models, so we can get better performance.
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Future work

» Faster models, so we can train bigger models.
» Bigger models, so we can get better performance.

» Automatic learning of model structure and invariances.

We recently released a review paper on arXiv:

A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk, Vincent Dutordoir, ST John, Artem Artemev, Vincent Adam, James

Hensman

https://arxiv.org/abs/2003.01115

From theory, past derivations, all the way to implementation.
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Future work

» Faster models, so we can train bigger models.
» Bigger models, so we can get better performance.

» Automatic learning of model structure and invariances.

We recently released a review paper on arXiv:

A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk, Vincent Dutordoir, ST John, Artem Artemev, Vincent Adam, James

Hensman

https://arxiv.org/abs/2003.01115

From theory, past derivations, all the way to implementation.

Thank you!
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