Application of HSIC-ANOVA indices to an industrial thermal-hydraulic case

SAMOURAI Workshop 2024 @ Institut Henri Poincaré Simulation Analytics and Meta-model-based solutions for Optimization, Uncertainty and Reliability AnalysIs (ANR-20-CE46-0013)

<u>Vincent Chabridon¹,</u> Antoine Ajenjo¹, Gabriel Sarazin², Amandine Marrel³, Sébastien Da Veiga⁴

December, 10th 2024

 EDF R&D, 6 quai Watier, 78401 Chatou, France ²CEA, DES, ISAS, DM2S, SGLS, LIAD, 91191 Gif-sur-Yvette, France CEA, DES, IRESNE, DER, Cadarache, 13108 Saint-Paul-Lez-Durance, France ENSAI, CREST - UMR 9194, F-35000 Rennes, France

Foreword

◆ Acknowledgment:

- ❏ To Delphine S. (for her patience during the 4-year-long project) and the co-organizers! ✌
- ❏ To the scientific partners of the ANR SAMOURAI Project! \heartsuit Special thanks to Gabriel S., Amandine M., Sébastien D.V. (WP #1) and Romain A.A.L., Julien B., Emmanuel V. (WP #2)!
- ❏ To the audience!

◆ About the present work:

- \Box "Applicative" part of the work carried out in WP #1 by G. Sarazin during his postdoctoral work \Rightarrow [cea-04320711](https://cea.hal.science/cea-04320711/document) &&&
- ❏ Mainly based on the use of the [sensitivity](https://cran.r-project.org/web/packages/sensitivity/index.html) R package \heartsuit Special thanks to B. looss (EDF R&D) as a maintainer and {S. Da Veiga, G. Sarazin} for HSIC-ANOVA codes!

[1. Introduction](#page-2-0)

◆ A road trip through uncertainties!

Figure 1: Dealing with uncertainties in an industrial process (©EDF).

☞ About UQ in industrial practice: [\[DRDT08,](#page-68-0) [DR12\]](#page-68-1)

Uncertainty Quantification in a nutshell!

\blacklozenge Verification, Validation & Uncertainty Quantification

Figure 2: VV&UQ framework (©EDF).

☞ To go further into UQ in general: [\[Smi13,](#page-69-0) [Sul15\]](#page-69-1) ☞ To go further into Uncertainty Propagation: [\[MB15,](#page-69-2) [DK22\]](#page-68-2) ☞ To go further into Surrogate Modeling: [\[Bou18\]](#page-68-3)

 \cong To go further into SA: ISRA^+ 08, [DGIP21\]](#page-68-4)

- \blacklozenge In this talk, you probably will ...
	- \blacktriangleright Have a (very) short overview about a few sensitivity indices (Sobol', HSIC, HSIC-ANOVA) ☞ Wonderful textbook by [\[DGIP21\]](#page-68-4)
	- \vee Have a first glimpse about applying these tools to real-world / industrial use cases!
	- \vee Benefit from a few insights about their practical advantages and drawbacks!
- \blacklozenge With this talk, you probably won't ...
	- ✘ Become an expert in kernel-based sensitivity methods ☞ Go back to Gabriel's talk!

Main question

Do the HSIC-ANOVA indices bring a significant improvement, from an industrial viewpoint, in terms of ranking?

- 1. [Introduction](#page-2-0)
- 2. [Some background about global sensitivity analysis](#page-7-0)
- 3. [Application to the "Mystery Case"](#page-27-0)
- 4. [Application to a thermal-hydraulic accident case](#page-56-0)
- 5. [Conclusion](#page-65-0)

[2. Background about GSA](#page-7-0)

GSA using Sobol' indices

\blacklozenge Main notations and (\triangle strong) assumptions

 \Box G scalar-valued, black-box, deterministic computer model such that:

$$
G: \begin{vmatrix} \mathcal{X} \subseteq \mathbb{R}^d & \to & \mathcal{Y} \subseteq \mathbb{R} \\ \mathbf{X} & \mapsto & Y = G(\mathbf{X}) \end{vmatrix}
$$
 (1)

Assumption A_0

Let $G \in \mathbb{L}^2(\mathbb{P}_\mathbf{X})$ where $\mathbb{L}^2(\mathbb{P}_\mathbf{X})$ is (\approx) "the set of all measurable functions g s.t. $\mathbb{E}\left[g^2(\mathbf{X})\right]<+\infty$ ".

Assumption A_1

X is a second-order random vector of independent components, i.e.:

$$
\mathbf{X} = (X_1, X_2, \dots, X_d)^\top \sim \mathbb{P}_{\mathbf{X}} \quad \text{over} \quad \mathcal{X} = \bigtimes_{i=1}^d \mathcal{X}_i \tag{2}
$$

\blacklozenge Main notations and (\triangle strong) assumptions

Assumption A_3

Given-data context \circ a **single** *n*-size i.i.d. learning sample of the couple (X, Y) is available!

$$
\left(\mathbf{X}^{(j)}, Y^{(j)}\right)_{(1 \le j \le n)} = \left(X_1^{(j)}, X_2^{(j)}, \dots, X_d^{(j)}, Y^{(j)}\right)_{(1 \le j \le n)}\tag{3}
$$

with $\mathbb{P}_{\mathbf{X}(j)} = \mathbb{P}_{\mathbf{X}}$ and $Y^{(j)}=G\left(X_{1}^{(j)},X_{2}^{(j)},\ldots,X_{d}^{(j)}\right)\!, \forall j \in \{1,\ldots,n\}$

GSA using Sobol' indices

◆ A brief reminder about Sobol' indices

$\mathbf{\hat{x}}$ Theorem (Hoeffding decomposition)

Under \mathcal{A}_0 and $\mathcal{A}_1,$ $\exists !$ decomposition of G in $\mathbb{L}^2(\mathbb{P}_{\mathbf{X}})$ as follows:

$$
G(\mathbf{x}) = \sum_{A \in \mathcal{P}_d} G_A(\mathbf{x}_A), \quad \mathbb{P}_{\mathbf{X}} - \text{a.s.},
$$
 (4)

such that the following two properties hold:

(i) G_{\emptyset} constant a.s.

$$
\text{(ii)}\ \ \forall\ A\in\mathcal{P}_d, A\neq\emptyset, \forall\ i\in A, \text{$\int_{E_i}G_A(\mathbf{x}_A)\mathbb{P}_{X_i}(\mathrm{d}x_i)=0$}.
$$

The unique solution is given by, $\forall A \in \mathcal{P}_d$,

$$
G_A(\mathbf{x}_A) = \sum_{B \subset A} (-1)^{|A| - |B|} \mathbb{E}\left[G(\mathbf{X}) \mid \mathbf{X}_B = \mathbf{x}_B \right] \quad \text{a.s.} \tag{5}
$$

◆ A brief reminder about Sobol' indices

✰ Corollary (FANOVA)

Assume \mathcal{A}_0 . For any $A \in \mathcal{P}_d$, $A \neq \emptyset$, let $V_A = \text{Var}(G_A(\mathbf{X}_A))$. Then, under A_1 , one has:

$$
V = \text{Var}\left(G(\mathbf{X})\right) = \sum_{A \in \mathcal{P}_d, A \neq \emptyset} V_A. \tag{6}
$$

Furthermore, for any $A \in \mathcal{P}_d$, $A \neq \emptyset$,

$$
V_A = \sum_{B \subset A} (-1)^{|A| - |B|} \text{Var}\left(\mathbb{E}\left[G(\mathbf{X}) \mid \mathbf{X}_B\right]\right). \tag{7}
$$

GSA using Sobol' indices

◆ A brief reminder about Sobol' indices

✎ Definition (Sobol' indices)

Under A_0 and A_1 and $A \in \mathcal{P}_d$, one can define:

 \Box The Sobol' index associated to A:

$$
S_A = \frac{V_A}{V} = \frac{\sum_{B \subset A} (-1)^{|A| - |B|} \text{Var} \left(\mathbb{E} \left[G(\mathbf{X}) \mid \mathbf{X}_B \right] \right)}{\text{Var} \left(G(\mathbf{X}) \right)}.
$$

 \Box The first-order index for the variable X_i : $S_i = S_{\{i\}}$.

 \Box The <u>closed index</u> associated to $A\,(\equiv$ 1s^t-order of \mathbf{X}_A):

$$
S_A^{\text{clos}} = \sum_{A' \subset A} S_{A'} = \frac{\text{Var}\left(\mathbb{E}\left[G(\mathbf{X}) \mid \mathbf{X}_A\right]\right)}{\text{Var}\left(G(\mathbf{X})\right)}.
$$

The total index associated to X_A :

$$
S_A^{\text{Tot}} = 1 - S_A^{\text{clos}}.
$$

◆ An illustration of Sobol' indices

Figure 3: Illustration of the Sobol' and closed Sobol' indices for a three-input model (source: [\[II24\]](#page-68-5)).

◆ Estimation of Sobol' indices

- ❏ A large panel of estimators do exist!
- ❏ Given-data contex ➮ k-nearest-neighbor estimator will be used in the following! *I*[®] [\[DVGIP21\]](#page-68-6)
- \Box In practice \diamond function shapleysobol knn() in [sensitivity](https://cran.r-project.org/web/packages/sensitivity/index.html)
- \Box \triangle These estimators are known to show bias (in practice).

✌ To keep in mind ✌

◆ HSIC in a nutshell

Assumption A_4

☞ Ingredients:

- \Box let $\mathcal{H}_\mathcal{X}$ an RKHS of functions $\mathcal{X} \to \mathbb{R}$ with kernel $k_\mathcal{X}$;
- Let $\mathcal{H}_{\mathcal{V}}$ an RKHS of functions $\mathcal{Y} \to \mathbb{R}$ with kernel $k_{\mathcal{V}}$;
- **□** a couple of random vectors $(U, V) \sim \mathbb{P}_{(U, V)}$ on $\mathcal{X} \times \mathcal{Y}$ of marginal distributions \mathbb{P}_{U} and \mathbb{P}_{V} , resp.

Figure 4: Illustration of the "kernel mean embedding" principle (source: [\[MFSS17\]](#page-69-4))

◆ HSIC in a nutshell

N.B.: HSIC → Hilbert-Schmidt Independence Criterion

✎ Definition (HSIC indices)

☞ First formulation:

$$
\text{HSIC}(U, V) = ||\mu_{\mathbb{P}_{(U,V)}} - \mu_{\mathbb{P}_U \times \mathbb{P}_V}||_{\mathcal{H}_X \times \mathcal{H}_Y}^2
$$
(8)

where $\mu_{\mathbb{P}_{(U,V)}}$ and $\mu_{\mathbb{P}_U \times \mathbb{P}_V}$ are the **kernel mean embeddings** of the joint / product of marginal distributions, defined as:

$$
\mu_{\mathbb{P}_{(U,V)}} = \int_{\mathcal{X}\times\mathcal{Y}} k_{\mathcal{X}}(\cdot,u) k_{\mathcal{Y}}(\cdot,v) d\mathbb{P}_{(U,V)}(u,v) \tag{9}
$$

$$
\mu_{\mathbb{P}_U \times \mathbb{P}_V} = \int_{\mathcal{X} \times \mathcal{Y}} k_{\mathcal{X}}(\cdot, u) k_{\mathcal{Y}}(\cdot, v) d\mathbb{P}_U(u) d\mathbb{P}_V(v) \tag{10}
$$

◆ HSIC in a nutshell

✎ Definition (HSIC indices)

☞ Second formulation:

$$
HSIC(U, V) = \mathbb{E}_{U, U', V, V'} [k_{\mathcal{X}}(U, U')k_{\mathcal{Y}}(V, V')]
$$

+ $\mathbb{E}_{U, U'} [k_{\mathcal{X}}(U, U')] \mathbb{E}_{V, V'} [k_{\mathcal{Y}}(V, V')]$
- $2\mathbb{E}_{U, V} [\mathbb{E}_{U'} [k_{\mathcal{X}}(U, U')] \mathbb{E}_{V'} [k_{\mathcal{Y}}(V, V')]$ (11)

where (U, V) and (U', V') are independent copies $\sim \mathbb{P}_{(U, V)}$.

✰ Fundamental Property (HSIC)

Assume that k_{χ} and k_{γ} are characteristic kernels (δ), one has:

 $HSIC(U, V) = 0 \Leftrightarrow U \perp V.$

◆ Estimation of HSIC indices

 \Box Two kinds of estimators are available for $\mathsf{HSIC}(X_i, Y)$ ➮ U-stat. vs. V-stat. ☞ [\[DVGIP21\]](#page-68-6)

 \Box One often uses a normalized sensitivity index (plug-in estimator):

$$
\widehat{R_{\text{HSIC},i}^2} = \frac{\widehat{\text{HSIC}}(X_i, Y)}{\sqrt{\widehat{\text{HSIC}}(X_i, X_i) \widehat{\text{HSIC}}(Y, Y)}}
$$
(12)

 \Box Kernel choice (type + hyperparameters):

 \triangleright mainstream approach (tabular data) \diamond well-guided!

 $k_z(z, z') = \exp\{-\theta ||z - z'||^2\}$ (Gaussian / RBF kernel) (13)

with $\theta = 1/\sigma^2$ (σ^2 the variance of Z , to be estimated empirically) $▶$ specific task \diamond **user-defined** \triangle Characteristic kernels! \Box In practice \circ functions sensiHSIC() (and testHSIC()) in [sensitivity](https://cran.r-project.org/web/packages/sensitivity/index.html)

$$
\underline{\mathsf{N.B.}}:\overbrace{\mathsf{\Lambda}}\ \ \text{notation}\circ\ H_j:=\mathsf{HSIC}(X_j,Y)
$$

✌ To keep in mind ✌

GSA using HSIC-ANOVA indices

◆ HSIC-ANOVA in a nutshell

☞ See Gabriel's talk for further details!

Assumption A_5

The reproducing kernel k_x is of the form:

$$
k_{\mathcal{X}}(\mathbf{x}, \mathbf{x}') = \prod_{j=1}^{d} (1 + k_j(x_j, x'_j))
$$
\n(14)

where, $\forall j \in \{1, ..., d\}, k_i(\cdot, \cdot)$ is the reproducing kernel of a RKHS \mathcal{H}_i of real functions depending only on variable x_i and such that $1 \notin \mathcal{H}_i$. Furthermore, $\forall j \in \{1, ..., d\}$, and $\forall x_j \in \mathcal{X}_i$, one has:

$$
\int_{\mathcal{X}_j} k_j(x_j, x'_j) \, d\mathbb{P}_{X_j}(x'_j) = 0.
$$

N.B.: ✌ using univariate kernels associated to RKHSs which do not include constant functions.

GSA using HSIC-ANOVA indices

◆ HSIC-ANOVA in a nutshell

✰ Theorem (ANOVA for HSIC)

Under the same assumptions as for Hoeffding decomposition and A_5 (+ Mercer thm. holds):

$$
\text{HSIC}(\mathbf{X}, Y) = \sum_{A \subseteq \mathcal{P}_d} \text{HSIC}_A, \tag{15}
$$

where each term is given by:

$$
\text{HSIC}_A = \sum_{B \subset A} (-1)^{|A| - |B|} \text{HSIC}(\mathbf{X}_B, Y),\tag{16}
$$

and HSIC(X_B, Y) is defined with kernel

$$
k_B(\mathbf{x}_B, \mathbf{x}'_B) = \prod_{j \in B} (1 + k_j(x_j, x'_j))
$$

on the inputs.

GSA using HSIC-ANOVA indices

◆ HSIC-ANOVA in a nutshell

✎ Definition (HSIC-ANOVA indices)

Under similar assumptions mentioned previously, and with $A \in \mathcal{P}_d$, one can define:

 \Box The normalized HSIC-ANOVA index associated to A:

$$
S_A^{\text{HSIC}} = \frac{\text{HSIC}_A}{\text{HSIC}(\mathbf{X}, Y)}.
$$

 \Box The total HSIC-ANOVA index associated to A:

$$
S_A^{\text{Tot},\text{HSIC}} = \sum_{B \subseteq \mathcal{P}_d, B \cap A \neq \emptyset} S_B^{\text{HSIC}} = 1 - \frac{\text{HSIC}(\mathbf{X}_{-A}, Y)}{\text{HSIC}(\mathbf{X}, Y)}.
$$

◆ HSIC-ANOVA in a nutshell

✰ Fundamental Property (HSIC-ANOVA)

From previous theorem, one has:

$$
\sum_{A \subseteq \mathcal{P}_d} S_A^{\text{HSIC}} = 1.
$$

◆ Estimation of HSIC-ANOVA indices

- ❏ Two kinds of estimators are available for HSIC-ANOVA ➮ U-stat. vs. V-stat. 4! ☞ [\[DVGIP21\]](#page-68-6)
- **□** Kernel choice \odot **Sobolev** $r = 1$ (for both inputs and output)
- \Box In practice \diamond functions sensiHSIC() (and testHSIC()) in [sensitivity](https://cran.r-project.org/web/packages/sensitivity/index.html)

$$
\underline{\mathsf{N.B.}}:\overbrace{\mathsf{\Lambda}}\ \ \text{notation}\circ\ H_j:=\mathsf{HSIC}(X_j,Y)
$$

✌ To keep in mind ✌

[3. Appli. #1 – Mystery Case](#page-27-0)

The "Mystery Case"

◆ A (very) few words

- $\Box~$ Computer model: $G:\mathcal{X}\subseteq\mathbb{R}^{d=5}\to\mathbb{R}^{+}$
- **□** Inputs: $\mathbf{X} = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\beta}, X_{\pi})$ \odot some quantities of materials
- ❏ Probabilistic model:
	- $\blacktriangleright \forall i \in \{1, \ldots, d\}, X_i \sim \mathcal{U}([a_i, b_i])$
	- \triangleright The components of **X** are mutually independent!
- **□** Output variable of interest: $Y = G(X)$ \odot a distance of propagation of the output phenomenon

 \Box <u>Given-data context</u>: i.i.d. sample of size $n=2\times 10^3$ for $(X^{(j)}, Y^{(j)})$ _(1 $\leq j \leq n$)

Goal of the study

☞ Analyse the relative importance of the inputs and the identify the interactions.

◆ Scenarios

- \Box The idea: the problem does involve either all, or a part of the inputs \circ several scenarios have to be tested!
- ❏ 4 analyses are conducted:

1.
$$
d = 5
$$
, $\mathbf{X} = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\rho}, X_{\pi})$
\n2. $d = 3$, $\mathbf{X} = (X_{\beta}, X_{\gamma}, X_{\rho})$
\n3. $d = 3$, $\mathbf{X} = (X_{\beta}, X_{\gamma}, X_{\eta})$
\n4. $d = 3$, $\mathbf{X} = (X_{\beta}, X_{\eta}, X_{\rho})$

Specific question

☞ Are there some special combinations between materials that influence Y globally?

The "Mystery Case" – Case #1 (
$$
d = 5
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\rho}, X_{\pi})$)

◆ Uncertainty analysis

Figure 5: Output distribution (histogram and KDE) – Case #1.

The "Mystery Case" – Case #1 $(d = 5, \mathbf{X} = (X_{\beta}, \overline{X_{\gamma}}, X_{\eta}, X_{\rho}, X_{\pi}))$

◆ Input-output visualization

Figure 6: Scatter plots – Case #1.

The "Mystery Case" – Case #1 (
$$
d = 5
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\rho}, X_{\pi})$)

Figure 7: First-order Sobol' indices – Case #1.

The "Mystery Case" – Case #1 (
$$
d = 5
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\rho}, X_{\pi})$)

Figure 8: Total Sobol' indices – Case #1.

The "Mystery Case" – Case #1 (
$$
d = 5
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\rho}, X_{\pi})$)

Figure 9: Closed Sobol' indices – Case #1.

The "Mystery Case" – Case #1 ($d = 5$, $X = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\rho}, X_{\pi})$)

◆ R2-HSIC indices

 $N.B.: \triangle$ HSIC indices with Gaussian / RBF kernels.

Figure 10: R2-HSIC indices – Case #1.

The "Mystery Case" – Case #1 ($d = 5$, $X = (X_{\beta}, X_{\gamma}, X_{\eta}, X_{\rho}, X_{\pi})$)

◆ HSIC-ANOVA indices

Figure 11: HSIC-ANOVA indices – Case #1.

The "Mystery Case" - Case #2 (
$$
d = 3
$$
, **X** = $(X_{\beta}, X_{\gamma}, X_{\rho})$)

◆ Uncertainty analysis

Figure 12: Output distribution (histogram and KDE) – Case #2.

The "Mystery Case" – Case #2 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\rho})$)

◆ Input-output visualization

Figure 13: Scatter plots – Case #2.

The "Mystery Case" – Case #2 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\rho})$)

Figure 14: First-order Sobol' indices – Case #2.

The "Mystery Case" – Case #2 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\rho})$)

Figure 15: Total Sobol' indices – Case #2.

The "Mystery Case" – Case #2 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\rho})$)

Figure 16: Closed Sobol' indices – Case #2.

The "Mystery Case" – Case #2 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\rho})$)

◆ R2-HSIC indices

 $N.B.: \triangle$ HSIC indices with Gaussian / RBF kernels.

Figure 17: R2-HSIC indices – Case #2.

The "Mystery Case" – Case #2 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\rho})$)

◆ R2-HSIC and HSIC-ANOVA indices

N.B.: \triangle HSIC indices with Sobolev ($r = 1$) kernels.

Figure 18: HSIC-ANOVA indices – Case #2.

The "Mystery Case" – Case #3 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta})$)

◆ Uncertainty analysis

Figure 19: Output distribution (histogram and KDE) – Case #3.

The "Mystery Case" – Case #3 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta})$)

Figure 20: First-order Sobol' indices – Case #3.

The "Mystery Case" – Case #3 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta})$)

Figure 21: Total Sobol' indices – Case #3.

The "Mystery Case" – Case #3 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta})$)

Figure 22: Closed Sobol' indices – Case #3.

The "Mystery Case" – Case #3 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta})$)

◆ R2-HSIC indices

 $N.B.: \triangle$ HSIC indices with Gaussian / RBF kernels.

Figure 23: R2-HSIC indices – Case #3.

The "Mystery Case" – Case #3 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\gamma}, X_{\eta})$)

◆ R2-HSIC and HSIC-ANOVA indices

N.B.: \triangle HSIC indices with Sobolev ($r = 1$) kernels.

Figure 24: HSIC and HSIC-ANOVA indicices – Case #3.

The "Mystery Case" – Case #4 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\eta}, X_{\rho})$)

◆ Uncertainty analysis

Figure 25: Output distribution (histogram and KDE) – Case #3.

The "Mystery Case" – Case #4 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\eta}, X_{\rho})$)

Figure 26: First-order Sobol' indices – Case #4.

The "Mystery Case" – Case #4 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\eta}, X_{\rho})$)

Figure 27: Total Sobol' indices – Case #4.

The "Mystery Case" – Case #4 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\eta}, X_{\rho})$)

Figure 28: Closed Sobol' indices – Case #4.

The "Mystery Case" – Case #4 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\eta}, X_{\rho})$)

◆ R2-HSIC indices

 $N.B.: \triangle$ HSIC indices with Gaussian / RBF kernels.

Figure 29: R2-HSIC indices – Case #4.

The "Mystery Case" – Case #4 (
$$
d = 3
$$
, $X = (X_{\beta}, X_{\eta}, X_{\rho})$)

◆ HSIC and HSIC-ANOVA indices

N.B.: \triangle HSIC indices with Sobolev ($r = 1$) kernels.

Figure 30: HSIC and HSIC-ANOVA indices – Case #4.

[4. Appli. #2 – TH](#page-56-0)

◆ A (very) few words

- ❏ Reliability and risk assessment of critical nuclear systems/components:
	- ➤ Deterministic analyses (a.k.a. "conservative procedures")
	- ➤ "Best-estimate plus uncertainty" (BEPU) analyses
- ❏ Safety analyses using a set of accident scenarios, e.g., for thermal-hydraulic issues:
	- ➤ small-break loss-of-coolant accident
	- ➤ intermediate-break loss-of-coolant accident (IBLOCA)
	- ➤ large-break loss-of-coolant accident

Goal of the study

☞ Analyse the relative importance of the inputs and the identify the interactions.

◆ A (very) few words

Figure 31: Illustrative scheme of an IBLOCA scenario (@CEA)

– Simulation trajectories of the Peak Cladding Temperature (PCT) (@EDF).

◆ A (very) few words

- ❏ Complex system: primary circuit (cold leg) of a PWR
- ❏ Scenario: IBLOCA (thermal-hydraulic issue)
- ❏ Sources of uncertainties:
	- ☞ Critical flowrates, Initial/boundary conditions, . . .
- ❏ Probabilistic quantification of the input variables:
	- \mathbb{R} Marginal probability density functions (PDFs): U, LU, N, LN

❏ Goal of the study: risk assessment

- **Scalar model output** \rightarrow the 2nd peak of cladding temperature (PCT)
- \sqrt{w} Quantity of Interest (QoI) \rightarrow a high-order quantile over the PCT
- ❏ Simulation computer model: CATHARE2 (V2.5 3mod3.1) code
	- ☞ Highly-nonlinear
	- \sqrt{w} Costly-to-evaluate (1 run $>$ 1 hour)
	- \mathbb{R} High-dimensional (≈ 100 inputs)
- ❏ Uncertainty propagation: Monte Carlo sample of n = 1496 simulations

◆ Uncertainty analysis

Figure 32: Output distribution (histogram and KDE).

Figure 33: Total Sobol' indices.

Figure 34: First-order Sobol' indices.

◆ HSIC indices

 $N.B.: \triangle$ HSIC indices with Gaussian / RBF kernels.

Figure 35: HSIC and HSIC-ANOVA indices.

◆ HSIC and HSIC-ANOVA indices

Figure 36: HSIC and HSIC-ANOVA indices.

[Conclusion](#page-65-0)

Conclusion

✌ To REALLY keep in mind ✌

- ◆ From an industrial viewpoint, HSIC-ANOVA ...
- \vee Offer an elegant and sound theoretical framework!
- \triangleright Benefit from **both** sides: Sobol' indices (ANOVA) and HSIC (beyond variance-based indices)!
- \vee Show a great potential to detect **high-order** / **fine** interactions!

◆ Some work still has to be done...

- $\boldsymbol{\times}$ To better understand the **patterns** of interactions detected by the total index!
- $\boldsymbol{\times}$ To better understand the high-dimensional setting and the effect of the estimator type \heartsuit V-stat vs. U-stat?
- ✘ To implement these indices in our open source platform OpenTURNS (HSIC already in there!) \&

Thank your for your attention! Any question?

References i

J.-M. Bourinet.

Reliability analysis and optimal design under uncertainty – Focus on adaptive surrogate-based approaches.

HDR (French Accreditation to Supervise Research), Universite Clermont Auvergne, 2018. ´ 245 pages.

S. Da Veiga, F. Gamboa, B. Iooss, and C. Prieur.

Basics and Trends in Sensitivity Analysis. Theory and Practice in R.

A. Der Kiureghian.

Structural and System Reliability. Cambridge University Press, 2022.

E. De Rocquigny.

Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods.

Wiley series in Probability and Statistics. Wiley, 2012.

E. De Rocquigny, N. Devictor, and S. Tarantola.

Uncertainty in industrial practice: a guide to quantitative uncertainty management. Wiley, 2008.

S. Da Veiga, F. Gamboa, B. Iooss, and C. Prieur.

Basics and Trends in Sensitivity Analysis: Theory and Practice in R.

Computational Science and Engineering. SIAM, 2021.

M. Il Idrissi.

Development of interpretability methods for certifying machine learning models applied to critical systems.

PhD thesis, Université de Toulouse, 2024.

References ii

J. Morio and M. Balesdent.

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach. Woodhead Publishing, Elsevier, 2015.

K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf.

Kernel Mean Embedding of Distributions: A Review and Beyond.

Foundations and Trends® in Machine Learning, 46(1-2):1–141, 2017.

R. C. Smith.

Uncertainty Quantification: Theory, Implementation, and Applications. Society for Industrial and Applied Mathematics, 2013.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola.

Global Sensitivity Analysis. The Primer.

Wiley, 2008.

T. J. Sullivan.

Introduction to Uncertainty Quantification, volume 63 of Texts in Applied Mathematics. Springer International Publishing Switzerland, 2015.