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1. Introduction



Industrial context and motivations

u A road trip through uncertainties!

Figure 1: Dealing with uncertainties in an industrial process (©EDF).

+ About UQ in industrial practice: [DRDT08, DR12]
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Uncertainty�antification in a nutshell!

u Verification, Validation & Uncertainty�antification

Figure 2: VV&UQ framework (©EDF).

+ To go further into UQ in general: [Smi13, Sul15]
+ To go further into Uncertainty Propagation: [MB15, DK22]
+ To go further into Surrogate Modeling: [Bou18]
+ To go further into SA: [SRA+08, DGIP21]
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Main objectives of this talk

u In this talk , you probably will . . .

4 Have a (very) short overview about a few sensitivity indices (Sobol’,
HSIC, HSIC-ANOVA) + Wonderful textbook by [DGIP21]

4 Have a first glimpse about applying these tools to real-world /
industrial use cases!

4 Benefit from a few insights about their practical advantages and
drawbacks!

u With this talk, you probably won’t . . .

8 Become an expert in kernel-based sensitivity methods
+ Go back to Gabriel’s talk!

Main question
Do the HSIC-ANOVA indices bring a significant improvement, from
an industrial viewpoint, in terms of ranking?
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2. Background about GSA



GSA using Sobol’ indices

u Main notations and ( !4 strong) assumptions

o G scalar-valued, black-box, deterministic computer model such that:

G :

∣∣∣∣∣ X ⊆ Rd → Y ⊆ R
X 7→ Y = G(X)

(1)

Assumption A0

Let G ∈ L2(PX) where L2(PX) is (≈) “the set of all measurable
functions g s.t. E

[
g2(X)

]
< +∞”.

Assumption A1

X is a second-order random vector of independent components, i.e.:

X = (X1, X2, . . . , Xd)
> ∼ PX over X =

d×
i=1

Xi (2)
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GSA using Sobol’ indices

u Main notations and ( !4 strong) assumptions

Assumption A3

Given-data context î a single n-size i.i.d. learning sample of the
couple (X, Y ) is available!(

X(j), Y (j)
)
(1≤j≤n)

=
(
X

(j)
1 , X

(j)
2 , . . . , X

(j)
d , Y (j)

)
(1≤j≤n)

(3)

with PX(j) = PX

and Y (j) = G
(
X

(j)
1 , X

(j)
2 , . . . , X

(j)
d

)
, ∀j ∈ {1, . . . , n}
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GSA using Sobol’ indices

u A brief reminder about Sobol’ indices

P Theorem (Hoe�ding decomposition)

Under A0 and A1, ∃! decomposition of G in L2(PX) as follows:

G(x) =
∑
A∈Pd

GA(xA), PX − a.s. , (4)

such that the following two properties hold:

(i) G∅ constant a.s.

(ii) ∀ A ∈ Pd, A 6= ∅,∀ i ∈ A,
∫
Ei
GA(xA)PXi

(dxi) = 0.

The unique solution is given by, ∀ A ∈ Pd,

GA(xA) =
∑
B⊂A

(−1)|A|−|B|E [G(X) |XB = xB ] a.s. . (5)
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GSA using Sobol’ indices

u A brief reminder about Sobol’ indices

P Corollary (FANOVA)
Assume A0. For any A ∈ Pd, A 6= ∅, let VA = Var (GA(XA)). Then,
under A1, one has:

V = Var (G(X)) =
∑

A∈Pd,A 6=∅

VA. (6)

Furthermore, for any A ∈ Pd, A 6= ∅,

VA =
∑
B⊂A

(−1)|A|−|B|Var (E [G(X) |XB ]) . (7)
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GSA using Sobol’ indices

u A brief reminder about Sobol’ indices
. Definition (Sobol’ indices)
Under A0 and A1 and A ∈ Pd, one can define:

o The Sobol’ index associated to A:

SA =
VA
V

=

∑
B⊂A(−1)|A|−|B|Var (E [G(X) |XB ])

Var (G(X))
.

o The first-order index for the variable Xj : Sj = S{j}.

o The closed index associated to A (≡ 1st-order of XA):

S clos
A =

∑
A′⊂A

SA′ =
Var (E [G(X) |XA])

Var (G(X))
.

o The total index associated to XA:

S Tot
A = 1− S clos

A .
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GSA using Sobol’ indices

u An illustration of Sobol’ indices

Figure 3: Illustration of the Sobol’ and closed Sobol’ indices for a three-input
model (source: [II24]).
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GSA using Sobol’ indices

u Estimation of Sobol’ indices

o A large panel of estimators do exist!

o Given-data contex î k-nearest-neighbor estimator will be used in the
following! + [DVGIP21]

o In practice î function shapleysobol knn() in sensitivity

o !4 These estimators are known to show bias (in practice).
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H Take-home message #1 H

, To keep in mind ,

GSA requirements Sj S Tot
j

Ranking 3 3

Screening 7 3

Given-data 3 7

Small data 3 7

Input dependency 7 7

Invariance U.M.T. 3 3
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GSA using HSIC indices

u HSIC in a nutshell
Assumption A4

+ Ingredients:

o letHX an RKHS of functions X → R with kernel kX ;

o letHY an RKHS of functions Y → R with kernel kY ;

o a couple of random vectors (U, V ) ∼ P(U,V ) on X × Y of marginal
distributions PU and PV , resp.

Figure 4: Illustration of the “kernel mean embedding” principle (source: [MFSS17])

14



GSA using HSIC indices

u HSIC in a nutshell
N.B.: HSIC î Hilbert-Schmidt Independence Criterion

. Definition (HSIC indices)
+ First formulation:

HSIC(U, V ) = ||µP(U,V )
− µPU×PV

||2HX×HY
(8)

where µP(U,V )
and µPU×PV

are the kernel mean embeddings of the
joint / product of marginal distributions, defined as:

µP(U,V )
=

∫
X×Y

kX (·, u)kY(·, v)dP(U,V )(u, v) (9)

µPU×PV
=

∫
X×Y

kX (·, u)kY(·, v)dPU (u)dPV (v) (10)
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GSA using HSIC indices

u HSIC in a nutshell

. Definition (HSIC indices)
+ Second formulation:

HSIC(U, V ) = EU,U ′,V,V ′ [kX (U,U
′)kY(V, V

′)]

+ EU,U ′ [kX (U,U
′)]EV,V ′ [kY(V, V

′]

− 2EU,V [EU ′ [kX (U,U
′)]EV ′ [kY(V, V

′]] (11)

where (U, V ) and (U ′, V ′) are independent copies ∼ P(U,V ).

P Fundamental Property (HSIC)
Assume that kX and kY are characteristic kernels (,), one has:

HSIC(U, V ) = 0⇔ U ⊥ V.
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GSA using HSIC indices

u Estimation of HSIC indices

o Two kinds of estimators are available for HSIC(Xi, Y )

î U-stat. vs. V-stat. + [DVGIP21]

o One o�en uses a normalized sensitivity index (plug-in estimator):

R̂2
HSIC,i =

ĤSIC(Xi, Y )√
ĤSIC(Xi, Xi) ĤSIC(Y, Y )

(12)

o Kernel choice (type + hyperparameters):
ä mainstream approach (tabular data) î well-guided!

kZ(z, z
′) = exp{−θ||z − z′||2} (Gaussian / RBF kernel) (13)

with θ = 1/σ2 (σ2 the variance of Z , to be estimated empirically)
ä specific task î user-defined !4 Characteristic kernels!

o In practice î functions sensiHSIC() (and testHSIC()) in
sensitivity
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H Take-home message #2 H

N.B.: !4 notation î Hj := HSIC(Xj , Y )

, To keep in mind ,

GSA requirements Sj S Tot
j Hj

Ranking 3 3 7

Screening 7 3 3

Given-data 3 7 3

Small data 3 7 3

Input dependency 7 7 3

Invariance U.M.T. 3 3 7
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GSA using HSIC-ANOVA indices

u HSIC-ANOVA in a nutshell

+ See Gabriel’s talk for further details!
Assumption A5

The reproducing kernel kX is of the form:

kX (x,x
′) =

d∏
j=1

(1 + kj(xj , x
′
j)) (14)

where, ∀ j ∈ {1, . . . , d}, kj(·, ·) is the reproducing kernel of a RKHSHj
of real functions depending only on variable xj and such that 1 /∈ Hj .
Furthermore, ∀ j ∈ {1, . . . , d}, and ∀ xj ∈ Xj , one has:∫

Xj

kj(xj , x
′
j)dPXj

(x′j) = 0.

N.B.: , using univariate kernels associated to RKHSs which do not include constant functions.
19



GSA using HSIC-ANOVA indices

u HSIC-ANOVA in a nutshell
P Theorem (ANOVA for HSIC)
Under the same assumptions as for Hoe�ding decomposition and A5 (+
Mercer thm. holds):

HSIC(X, Y ) =
∑
A⊆Pd

HSICA , (15)

where each term is given by:

HSICA =
∑
B⊂A

(−1)|A|−|B|HSIC(XB , Y ) , (16)

and HSIC(XB , Y ) is defined with kernel

kB(xB ,x
′
B) =

∏
j∈B

(1 + kj(xj , x
′
j))

on the inputs.
20



GSA using HSIC-ANOVA indices

u HSIC-ANOVA in a nutshell

. Definition (HSIC-ANOVA indices)
Under similar assumptions mentioned previously, and with A ∈ Pd, one
can define:

o The normalized HSIC-ANOVA index associated to A:

SHSIC
A =

HSICA
HSIC(X, Y )

.

o The total HSIC-ANOVA index associated to A:

S Tot,HSIC
A =

∑
B⊆Pd,B∩A6=∅

SHSIC
B = 1− HSIC(X−A, Y )

HSIC(X, Y )
.
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GSA using HSIC-ANOVA indices

u HSIC-ANOVA in a nutshell

P Fundamental Property (HSIC-ANOVA)
From previous theorem, one has:∑

A⊆Pd

SHSIC
A = 1.
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GSA using HSIC-ANOVA indices

u Estimation of HSIC-ANOVA indices

o Two kinds of estimators are available for HSIC-ANOVA
î U-stat. vs. V-stat. !4 + [DVGIP21]

o Kernel choice î Sobolev r = 1 (for both inputs and output)

o In practice î functions sensiHSIC() (and testHSIC()) in
sensitivity
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H Take-home message #3 H

N.B.: !4 notation î Hj := HSIC(Xj , Y )

, To keep in mind ,

GSA requirements Sj S Tot
j Hj S H

j S Tot,H
j

Ranking 3 3 7 3 3

Screening 7 3 3 3 3

Given-data 3 7 3 3 3

Small data 3 7 3 3 3

Input dependency 7 7 3 7 7

Invariance U.M.T. 3 3 7 7 7

24



3. Appli. #1 – Mystery Case



The “Mystery Case”

u A (very) few words

o Computer model: G : X ⊆ Rd=5 → R+

o Inputs: X = (Xβ , Xγ , Xη, Xρ, Xπ) î some quantities of materials

o Probabilistic model:

ä ∀ j ∈ {1, . . . , d}, Xj ∼ U([aj , bj ])
ä The components of X are mutually independent!

o Output variable of interest: Y = G(X) î a distance of propagation of
the output phenomenon

o Given-data context: i.i.d. sample of size n = 2× 103 for(
X(j), Y (j)

)
(1≤j≤n)

Goal of the study
+ Analyse the relative importance of the inputs and the identify the
interactions.
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The “Mystery Case”

u Scenarios

o The idea: the problem does involve either all, or a part of the inputs î

several scenarios have to be tested!

o 4 analyses are conducted:

1. d = 5, X = (Xβ , Xγ , Xη, Xρ, Xπ)

2. d = 3, X = (Xβ , Xγ , Xρ)

3. d = 3, X = (Xβ , Xγ , Xη)

4. d = 3, X = (Xβ , Xη, Xρ)

Specific question
+ Are there some special combinations between materials that influence
Y globally?
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The “Mystery Case” – Case #1 (d = 5, X = (Xβ, Xγ, Xη, Xρ, Xπ))

u Uncertainty analysis
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Figure 5: Output distribution (histogram and KDE) – Case #1.
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The “Mystery Case” – Case #1 (d = 5, X = (Xβ, Xγ, Xη, Xρ, Xπ))

u Input-output visualization
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Figure 6: Sca�er plots – Case #1.
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The “Mystery Case” – Case #1 (d = 5, X = (Xβ, Xγ, Xη, Xρ, Xπ))

u Sobol’ indices

First order Sobol' indices estimation by nearest−neighbor procedure
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Figure 7: First-order Sobol’ indices – Case #1.
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The “Mystery Case” – Case #1 (d = 5, X = (Xβ, Xγ, Xη, Xρ, Xπ))

u Sobol’ indices

Total Sobol' indices estimation by nearest−neighbor procedure
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Figure 8: Total Sobol’ indices – Case #1.
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The “Mystery Case” – Case #1 (d = 5, X = (Xβ, Xγ, Xη, Xρ, Xπ))

u Sobol’ indices

Closed Sobol' indices estimation by nearest−neighbor procedure
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Figure 9: Closed Sobol’ indices – Case #1.
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The “Mystery Case” – Case #1 (d = 5, X = (Xβ, Xγ, Xη, Xρ, Xπ))

u R2-HSIC indices
N.B.: !4HSIC indices with Gaussian / RBF kernels.
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Figure 10: R2-HSIC indices – Case #1.
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The “Mystery Case” – Case #1 (d = 5, X = (Xβ, Xγ, Xη, Xρ, Xπ))

u HSIC-ANOVA indices
N.B.: !4HSIC indices with Sobolev (r = 1) kernels.
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Figure 11: HSIC-ANOVA indices – Case #1.
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The “Mystery Case” – Case #2 ( d = 3, X = (Xβ, Xγ, Xρ))

u Uncertainty analysis
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Figure 12: Output distribution (histogram and KDE) – Case #2.
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The “Mystery Case” – Case #2 ( d = 3, X = (Xβ, Xγ, Xρ))

u Input-output visualization
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Figure 13: Sca�er plots – Case #2.
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The “Mystery Case” – Case #2 ( d = 3, X = (Xβ, Xγ, Xρ))

u Sobol’ indices

First order Sobol' indices estimation by nearest−neighbor procedure
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Figure 14: First-order Sobol’ indices – Case #2.
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The “Mystery Case” – Case #2 ( d = 3, X = (Xβ, Xγ, Xρ))

u Sobol’ indices

Total Sobol' indices estimation by nearest−neighbor procedure
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Figure 15: Total Sobol’ indices – Case #2.
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The “Mystery Case” – Case #2 ( d = 3, X = (Xβ, Xγ, Xρ))

u Sobol’ indices

Closed Sobol' indices estimation by nearest−neighbor procedure
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Figure 16: Closed Sobol’ indices – Case #2.
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The “Mystery Case” – Case #2 ( d = 3, X = (Xβ, Xγ, Xρ))

u R2-HSIC indices
N.B.: !4HSIC indices with Gaussian / RBF kernels.
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Figure 17: R2-HSIC indices – Case #2.
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The “Mystery Case” – Case #2 ( d = 3, X = (Xβ, Xγ, Xρ))

u R2-HSIC and HSIC-ANOVA indices
N.B.: !4HSIC indices with Sobolev (r = 1) kernels.
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Figure 18: HSIC-ANOVA indices – Case #2.
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The “Mystery Case” – Case #3 ( d = 3, X = (Xβ, Xγ, Xη))

u Uncertainty analysis

0.00

0.02

0.04

0.06

50 100 150
Y

F
re

qu
en

cy

Figure 19: Output distribution (histogram and KDE) – Case #3.
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The “Mystery Case” – Case #3 ( d = 3, X = (Xβ, Xγ, Xη))

u Sobol’ indices

First order Sobol' indices estimation by nearest−neighbor procedure
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Figure 20: First-order Sobol’ indices – Case #3.
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The “Mystery Case” – Case #3 ( d = 3, X = (Xβ, Xγ, Xη))

u Sobol’ indices

Total Sobol' indices estimation by nearest−neighbor procedure
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Figure 21: Total Sobol’ indices – Case #3.
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The “Mystery Case” – Case #3 ( d = 3, X = (Xβ, Xγ, Xη))

u Sobol’ indices

Closed Sobol' indices estimation by nearest−neighbor procedure
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Figure 22: Closed Sobol’ indices – Case #3.

44



The “Mystery Case” – Case #3 ( d = 3, X = (Xβ, Xγ, Xη))

u R2-HSIC indices
N.B.: !4HSIC indices with Gaussian / RBF kernels.
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Figure 23: R2-HSIC indices – Case #3.
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The “Mystery Case” – Case #3 ( d = 3, X = (Xβ, Xγ, Xη))

u R2-HSIC and HSIC-ANOVA indices
N.B.: !4HSIC indices with Sobolev (r = 1) kernels.
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Figure 24: HSIC and HSIC-ANOVA indicices – Case #3.
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The “Mystery Case” – Case #4 ( d = 3, X = (Xβ, Xη, Xρ))

u Uncertainty analysis
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Figure 25: Output distribution (histogram and KDE) – Case #3.
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The “Mystery Case” – Case #4 ( d = 3, X = (Xβ, Xη, Xρ))

u Sobol’ indices

First order Sobol' indices estimation by nearest−neighbor procedure
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Figure 26: First-order Sobol’ indices – Case #4.
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The “Mystery Case” – Case #4 ( d = 3, X = (Xβ, Xη, Xρ))

u Sobol’ indices

Total Sobol' indices estimation by nearest−neighbor procedure
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Figure 27: Total Sobol’ indices – Case #4.
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The “Mystery Case” – Case #4 ( d = 3, X = (Xβ, Xη, Xρ))

u Sobol’ indices

Closed Sobol' indices estimation by nearest−neighbor procedure
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Figure 28: Closed Sobol’ indices – Case #4.
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The “Mystery Case” – Case #4 ( d = 3, X = (Xβ, Xη, Xρ))

u R2-HSIC indices
N.B.: !4HSIC indices with Gaussian / RBF kernels.
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Figure 29: R2-HSIC indices – Case #4.
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The “Mystery Case” – Case #4 ( d = 3, X = (Xβ, Xη, Xρ))

u HSIC and HSIC-ANOVA indices
N.B.: !4HSIC indices with Sobolev (r = 1) kernels.
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Figure 30: HSIC and HSIC-ANOVA indices – Case #4.
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4. Appli. #2 – TH



Thermal-hydraulic accident scenario use case

u A (very) few words

o Reliability and risk assessment of critical nuclear
systems/components:

ä Deterministic analyses (a.k.a. “conservative procedures”)
ä “Best-estimate plus uncertainty” (BEPU) analyses

o Safety analyses using a set of accident scenarios, e.g., for
thermal-hydraulic issues:

ä small-break loss-of-coolant accident
ä intermediate-break loss-of-coolant accident (IBLOCA)
ä large-break loss-of-coolant accident

Goal of the study
+ Analyse the relative importance of the inputs and the identify the
interactions.
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Thermal-hydraulic accident scenario use case

u A (very) few words

Figure 31: Illustrative scheme of an IBLOCA scenario (@CEA)
–

Simulation trajectories of the Peak Cladding Temperature (PCT) (@EDF).
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Thermal-hydraulic accident scenario use case

u A (very) few words

o Complex system: primary circuit (cold leg) of a PWR

o Scenario: IBLOCA (thermal-hydraulic issue)

o Sources of uncertainties:
+ Critical flowrates, Initial/boundary conditions, . . .

o Probabilistic quantification of the input variables:
+ Marginal probability density functions (PDFs): U , LU ,N , LN

o Goal of the study: risk assessment
+ Scalar model output→ the 2nd peak of cladding temperature (PCT)
+ �antity of Interest (QoI)→ a high-order quantile over the PCT

o Simulation computer model: CATHARE2 (V2.5 3mod3.1) code
+ Highly-nonlinear
+ Costly-to-evaluate (1 run> 1 hour)
+ High-dimensional (≈ 100 inputs)

o Uncertainty propagation: Monte Carlo sample of n = 1496 simulations
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Thermal-hydraulic accident scenario use case

u Uncertainty analysis
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Figure 32: Output distribution (histogram and KDE).
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Thermal-hydraulic accident scenario use case

u Sobol’ indices

Total Sobol' indices estimation by nearest−neighbor procedure
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Figure 33: Total Sobol’ indices.
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Thermal-hydraulic accident scenario use case

u Sobol’ indices

First order Sobol' indices estimation by nearest−neighbor procedure

Inputs/Subsets

S
ob

ol
' i

nd
ic

es

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1 X8 X20 X29 X45 X54 X70 X79 X89 X102 X115 X140

Sobol' indices
95% Confidence interval

Figure 34: First-order Sobol’ indices.
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Thermal-hydraulic accident scenario use case

u HSIC indices
N.B.: !4HSIC indices with Gaussian / RBF kernels.
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Figure 35: HSIC and HSIC-ANOVA indices.
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Thermal-hydraulic accident scenario use case

u HSIC and HSIC-ANOVA indices
N.B.: !4HSIC indices with Sobolev (r = 1) kernels.
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Figure 36: HSIC and HSIC-ANOVA indices.
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Conclusion



Conclusion

, To REALLY keep in mind ,

u From an industrial viewpoint, HSIC-ANOVA . . .

4 O�er an elegant and sound theoretical framework!

4 Benefit from both sides: Sobol’ indices (ANOVA) and HSIC (beyond
variance-based indices)!

4 Show a great potential to detect high-order / fine interactions!

u Some work still has to be done. . .

8 To be�er understand the pa�erns of interactions detected by the
total index!

8 To be�er understand the high-dimensional se�ing and the e�ect of
the estimator type î V-stat vs. U-stat?

8 To implement these indices in our open source platform
OpenTURNS (HSIC already in there!) ,
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Thank your for your a�ention!
Any question?

61



References i

J.-M. Bourinet.

Reliability analysis and optimal design under uncertainty – Focus on adaptive surrogate-based approaches.
HDR (French Accreditation to Supervise Research), Université Clermont Auvergne, 2018.
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