Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction and Optimization

Wenlin Chen

PhD Student at University of Cambridge & Max Planck Institute for Intelligent Systems

https://wenlin-chen.github.io/ wc337@cam.ac.uk

Collaborators

Austin Tripp (Valence Labs)

Miguel Hernández-Lobato (University of Cambridge)

Motivation: Molecular Design

- Predict bio/physicochemical properties of given molecules
- Optimize properties to design novel molecules

Small datasets are ubiquitous!

Gaussian Processes and Bayesian Optimization

Gaussian Processes and Bayesian Optimization

Gaussian Processes (GPs) and Neural Networks (NNs)

Deep Kernel Gaussian Processes

Deep kernel GPs operate on features learned by a NN.

$$
k_{\boldsymbol{\theta},\boldsymbol{\phi}}(\boldsymbol{x},\boldsymbol{x}') = c_{\boldsymbol{\theta}}(\mathbf{f}_{\boldsymbol{\phi}}(\boldsymbol{x}),\mathbf{f}_{\boldsymbol{\phi}}(\boldsymbol{x}'))
$$

deep kernel base kernel NN feature learnable parameters $\psi = (\theta, \phi)$ (e.g., RBF)extractor

Prior Work: Deep Kernel Learning (DKL)

Single-task method: **Overfitting!**

(b) Exact DKL kernel

Wilson, Andrew Gordon, et al. "Deep kernel learning." Artificial intelligence and statistics. PMLR, 2016.

Ober, Sebastian W., Carl E. Rasmussen, and Mark van der Wilk. "The promises and pitfalls of deep kernel learning." Uncertainty in Artificial Intelligence. PMLR, 2021.

Prior Work: Deep Kernel Transfer (DKT)

Multi-task method: **Underfitting!**

Patacchiola, Massimiliano, et al. "Bayesian meta-learning for the few-shot setting via deep kernels." Advances in Neural Information Processing Systems 33 (2020): 16108-16118.

Conventional Learning vs Meta-learning

Conventional learning: optimize performance on training data. Evaluate on test data.

Meta learning: optimize performance on **query set** from training tasks after having **processed support set** from such tasks. Evaluate on query set from test task.

Figures source: Borealis Al.

Adaptive Deep Kernel Fitting with IFT (ADKF-IFT)

Bilevel Optimization

$$
\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\arg \min} \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],
$$
\n
$$
\text{s.t.} \quad \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\arg \min} \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underset{\text{function}}{\text{best response}}
$$

Contrast DKL, DKT and ADKF-IFT

ADKF-IFT resolves the overfitting and underfitting issues!

How to Solve Bilevel Optimization?

implicit function of $\boldsymbol{\psi}_{meta}$ alone

$$
\psi^*_{\text{meta}} = \underset{\psi_{\text{meta}}}{\arg \min} \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi^*_{\text{adapt}}(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],
$$

 s.t. $\psi^*_{\text{adapt}}(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\arg \min} \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}).$ \leftarrow \underset{\text{function}}{\text{best response}}

- **Inner optimization:** L-BFGS with auto-diff.
- **Outer optimization:** how to calculate the gradient of the validation loss \mathcal{L}_V ?

$$
\textbf{Hypergradient:} \qquad \frac{d\mathcal{L}_V}{d\psi_{\text{meta}}} = \frac{\partial \mathcal{L}_V}{\partial \psi_{\text{meta}}} + \frac{\partial \mathcal{L}_V}{\partial \psi_{\text{adapt}}^*} \frac{\partial \psi_{\text{adapt}}^*}{\partial \psi_{\text{meta}}}, \qquad \text{(by chain rule)} \qquad \text{easy} \qquad \text{easy} \qquad \text{target}
$$

Exact and Efficient Training with IFT

- Outer optimization: how to calculate the gradient of the validation loss \mathcal{L}_V ?

Hypergradient:
$$
\frac{d\mathcal{L}_V}{d\psi_{\text{meta}}} = \frac{\partial \mathcal{L}_V}{\partial \psi_{\text{meta}}} + \frac{\partial \mathcal{L}_V}{\partial \psi_{\text{adapt}}^*} \frac{\partial \psi_{\text{adapt}}^*}{\partial \psi_{\text{meta}}},
$$
 (by chain rule)

- $\boldsymbol{\psi}^*_{adapt}$ is a critical point of the train loss \mathcal{L}_T
- Can apply the **Implicit Function Theorem** (**IFT**)!

IFT:

\n
$$
\frac{\partial \psi_{\text{adapt}}^*}{\partial \psi_{\text{meta}}}\Big|_{\psi_{\text{meta}}'} = -\left(\frac{\partial^2 \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}'})}{\partial \psi_{\text{adapt}} \partial \psi_{\text{adapt}}^T}\right)^{-1} \frac{\partial^2 \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}'})}{\partial \psi_{\text{adapt}} \partial \psi_{\text{meta}}^T}\Big|_{\psi_{\text{meta}}', \psi_{\text{adapt}}'} \cdot \frac{\partial \psi_{\text{meta}}^*}{\partial \psi_{\text{meta}}^T} \cdot \frac{\partial \psi_{\text{meta}}^*}{\partial \psi_{\text{meta}}^T} \cdot \frac{\partial \psi_{\text{meta}}^*}{\partial \psi_{\text{meta}}^T} \cdot \frac{\partial \psi_{\text{data}}^*}{\partial \psi_{\text{meta}}^T} \cdot \frac{\partial \psi_{\text{data}}^*}{\partial \psi_{\text{data}}^T} \cdot \frac{\partial \psi_{\text{data}}^*}{\partial \psi_{\text{meta}}^T} \cdot \frac{\partial \psi_{\text{data}}^*}{\partial \psi_{\text{data}}^T} \cdot \frac{\partial \psi_{\
$$

General Framework vs Specific Instantiations

ADKF-IFT can be formalized as a **bi-level optimization** problem:

$$
\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\arg\min} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],
$$

s.t.
$$
\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\arg\min} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}).
$$

- General framework: $\psi_{adapt}, \psi_{meta}, \mathcal{L}_T, \mathcal{L}_V$ could be anything.
- \checkmark Any particular choice of $\psi_{adapt}, \psi_{meta}, \mathcal{L}_T, \mathcal{L}_V$ is an **instantiation**.

ü DKL and DKT are special instantiations **(extreme cases)** of the general framework!

General Framework vs Specific Instantiations

Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT) $\begin{array}{rcl} \psi_{\mathsf{meta}}^* & = & \argmin_{\boldsymbol{\psi}_{\mathsf{meta}}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\boldsymbol{\psi}_{\mathsf{meta}}, \boldsymbol{\psi}_{\mathsf{adapt}}^*(\boldsymbol{\psi}_{\mathsf{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})], \end{array}$ s.t. $\psi^*_{\text{adapt}}(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \arg \min \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}).$ $\boldsymbol{\psi}_{\rm adapt}$ $\boldsymbol{\psi}_{adapt} = \boldsymbol{\psi} = [\boldsymbol{\theta}, \boldsymbol{\phi}]$ $\boldsymbol{\psi}_{meta} = \boldsymbol{\psi} = [\boldsymbol{\theta}, \boldsymbol{\phi}]$ $\psi_{meta} = \emptyset$ \mathcal{L}_T = NLML \mathcal{L}_V = NLML \blacklozenge $\psi_{adapt} = \emptyset$ \mathcal{L}_T = NLML \mathcal{L}_V = NLML $\bm{\psi}^* = \argmin_{\bm{\psi}} \mathbb{E}_{p(\mathcal{T})}[\text{NLML}(\bm{\psi}, \mathcal{T})] \Bigg[$ $\boldsymbol{\psi}^* = \arg \min \text{NLML}(\boldsymbol{\psi}, \mathcal{S_T})$ **Deep Kernel Learning (DKL)** \vert **Deep Kernel Transfer (DKT)**

Few-shot Molecular Property Prediction

Stanley et al. FS-Mol: A Few-Shot Learning Dataset of Molecules, NeurlPS D. & B. track 2021.

- Data extracted from ChEMBL: a database of molecules with drug-like properties.
- 4,938 training, 40 validation and 157 test tasks.
- Each task is associated with a **target protein** and has 32 to 500 data points (compounds). \bullet
- **Binary classification: IC50 or EC50 value larger than median for the task.**

Training tasks

Stanley, Megan, et al. "Fs-mol: A few-shot learning dataset of molecules." NeurIPS 2021 (Datasets and Benchmarks Track).

Few-shot Molecular Property Prediction

FS-Mol: 4,938 training tasks, 40 validation tasks, 157 test tasks; 233,786 unique compounds.

ü The improvements of ADKF-IFT over other methods are **statistically significant!**

Stanley, Megan, et al. "Fs-mol: A few-shot learning dataset of molecules." NeurIPS 2021 (Datasets and Benchmarks Track).

Ablation Study on FS-Mol

(a) Classification (157 tasks).

(b) Regression $(111$ tasks).

$DKT \approx DKT + \leq ADKF < ADKF - IFT$

- **- DKT**+ is like **DKT** but tuning the base kernel parameters θ during meta-testing.
- **0 - ADKF** is like **ADKF-IFT** but ignoring the indirect gradient (second term below).

$$
\frac{d\mathcal{L}_V}{d\psi_{\text{meta}}} = \frac{\partial \mathcal{L}_V}{\partial \psi_{\text{meta}}} + \frac{\partial \mathcal{L}_V}{\partial \psi_{\text{adapt}}^*} \frac{\partial \psi_{\text{adapt}}^*}{\partial \psi_{\text{meta}}},
$$

Additional Analysis on FS-Mol

\checkmark The base kernel parameters θ **vary across tasks!**

ü ADKF-IFT achieves **better signal-to-noise ratio!**

OOD Molecular Property Prediction and Optimization

- Bayesian optimization (BO)

- **Surrogate model:** GP operating on top of the features extracted by DNNs meta-trained on FS-Mol by different methods.

- **Evaluation:** four OOD molecular design tasks outside of FS-Mol.

ü ADKF-IFT enables **fastest discovery of top performing molecules!**

ü ADKF-IFT achieves **competitive test predictive performance!**

- Test predictive negative log likelihood (NLL)

Summary

Our proposed **Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)** approach:

 \checkmark Meta-learns feature representations that facilitate the adaptation of task-specific GP models.

Generalizes DKL and DKT for training deep kernel GPs using a bilevel optimization framework.

 \checkmark Efficiently solve the bilevel optimization problem by implicit function theorem.

 \checkmark Produces state-of-the-art results on few-shot molecular property prediction benchmarks.

 \checkmark Achieves great performance on OOD molecular property prediction and optimization tasks.

 \checkmark Produces well-calibrated models for fully-automated high-throughput experimentation.

Reference and Collabroators

● **Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction**

Wenlin Chen, Austin Tripp, José Miguel Hernández-Lobato *International Conference on Learning Representations (ICLR), 2023.*

Austin Tripp (Valence Labs)

Miguel Hernández-Lobato (University of Cambridge)