Working meeting "Visualization methods for uncertainty studies" - May, 22th 2017
Seminar organized between the GdR MASCOT-NUM and the GT Visualisation of the GdR IGRV
Organizers: Bertrand Iooss (EDF R&D, GdR MASCOT-NUM) and Julien Tierny (CNRS/LIP6, GT Visualisation/GdR IGRV)
It will take place on:
May 22, 2017, at Amphithéâtre Hermite, Institut Henri Poincaré, Paris.
Agenda
Morning:
- 9h15 - Introduction - B. Iooss (EDF R&D) - slides
- 9h20 - Julien Tierny (CNRS/LIP6) - Topological analysis of data and uncertainty - slides
- 10h15 - Pause
- 10h35 - Michaël Aupetit (Qatar Computing Research Institute) - Reflections on Dimensionality Reduction for Visual Analytics: strengths, weaknesses and perspectives - slides
- 11h30 - Yann Richet (IRSN) - Visualisation of parametric scientific computing: Some interactive tools, theoretical frameworks, user experiences - slides
- 12h00 - Pause
- 14h00 - Georges-Pierre Bonneau (INRIA Grenoble Rhône-Alpes) - Visual Perception for Visualization with an application to Uncertainty - Visualization - Perception Visuelle pour la Visualisation, avec une application en visualisation de données incertaines - slides
- 14h55 - Alejandro Ribes (EDF R&D) - Uncertainty functionalities in the ParaVis scientific visualization software
- 15h25 - Pause
- 15h45 - Isabelle Bloch (LTCI, Télécom ParisTech, Université Paris-Saclay) - Modeling and representation of spatial uncertainty in image processing and understanding - slides
- 16h40 - Christoph Kinkeldey (INRIA) - Guidelines to better support the use of uncertainty for geodata analysis and spatial decision making
- 17h10 - End
- M. Aupetit - Reflections on Dimensionality Reduction for Visual Analytics: strengths, weaknesses and perspectives
- I. Bloch - Modeling and representation of spatial uncertainty in image processing and understanding
Models are of prime importance to guide the analysis and understanding of images. They can represent knowledge about acquisition geometry, noise statistics, object shape and appearance, etc. Structural models are also very useful to represent the spatial arrangement of structures, and the presentation will mostly focus on such models. Their use in spatial reasoning schemes allows for instance driving segmentation and recognition of structures in images. One important problem is related to the semantic gap. We will show that it can be addressed by generating spatial representations (in the image space) of relations expressed in linguistic or symbolic form, within a fuzzy sets formalism.
This paradigm will be illustrated on various applications, in particular in medical imaging. </sub>
- G-P. Bonneau - Visual Perception for Visualization with an application to Uncertainty Visualization - Perception Visuelle pour la Visualisation, avec une application en visualisation de données incertaines
- C. Kinkeldey (INRIA) - Guidelines to better support the use of uncertainty for geodata analysis and spatial decision making
Visualization can be a powerful means to communicate information about uncertainty in data. At the same time there is evidence that users try to avoid uncertainty and can easily be overwhelmed by working with imprecise or fuzzy representations of data. Therefore, it is important to not only communicate uncertainty to users but also to provide them with guidelines for working with uncertain data. Despite the importance of the topic, currently, few guidelines exist for incorporating uncertainty into analysis and decision making.
In this talk, the speaker will examine the need for guidelines for using uncertain data, present ideas for developing them in the context of different tasks, users, or applications, and explore the challenges that remain for their development.
</sub>
- Alejandro Ribes (EDF R&D) - Uncertainty functionalities in the ParaVis scientific visualization software
- Yann Richet (IRSN) - Visualisation of parametric scientific computing: Some interactive tools, theoretical frameworks, user experiences
- J. Tierny - Analyse topologique de données et incertitude
Ensuite, je présenterai certaines problématiques ayant récemment émergé avec le développement des ressources de calcul haute-performance, qui permettent aujourd'hui la conduite d'études paramétriques en simulation. Dans ce contexte, une même simulation est relancée à de multiples reprises pour comprendre l'impact des paramètres d'entrée. Dès lors, chaque simulation peut être interprétée comme l'observation d'un processus aléatoire, générant des champs scalaires incertains. Je présenterai donc de nouvelles directions de recherche pour l'analyse topologique de champs scalaires incertains, étayées par des résultats préliminaires récents.</sub>